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This special issue is a scientific tribute to the founders and researchers 
working at Stanislaw Baranowski Polar Station of the University of Wroclaw, 
which in 2021 celebrated the 50th anniversary (1971–2021). It was named after 
Stanisław Baranowski (1935–1978) its  founder  and renown glaciologist, who 
tragically died after an accident on King George Island in 1978. On this special 
occasion, we have invited researchers from throughout Poland to present case 
studies that document and analyze changes in recently deglaciated landscapes, 
where paraglacial and periglacial processes started to remove the effects of 
glaciation. 

Stanislaw Baranowski Polar Station is located on Wedel Jarlsberg Land, on 
the west coast of Spitsbergen, the largest island in the Svalbard Archipelago 
(Fig. 1). The Station building is located on the bedrock outcrop, right under the 
embankment of the lateral moraine of the Werenskioldbreen, ca. 550 m away 
from the coast of Nottinghambukta and at ca. 15 m above the sea level. The 
Brattegg stream flows next to the building, where in a small river gorge, creates 
a 2.5-meter high waterfall. The Station is located in the Sør-Spitsbergen National 
Park, established in 1973. This unique location supports studies in a number of 
scientific disciplines, including geomorphology (including permafrost studies), 
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glaciology, climatology, geology and ecology. Both, long term and short-term 
projects are carried out. 

The first part of this special issue starts with an article by Migała et al. (2023) 
summarising the direction and rate of changes of climatic factors measured at the 
meteorological station of the Polish Polar Station in Hornsund (77° N) in 1979– 
2019, located ca. 12 km south-east from Stanislaw Baranowski Polar Station. 
Unlike similar summaries published earlier (Wawrzyniak and Osuch 2020), the 
authors of this synthesis point to factors strongly influencing the transformation 
of the natural environment, including extreme phenomena (intense precipitation, 
droughts) and weather anomalies. Based on the collected data, they comment on 
the impact of drastic temperature increase on deglaciation, permafrost 
degradation, changes in the hydrological cycle and vegetation growth.  

Fig. 1. Stanislaw Baranowski Polar Station in Spitsbergen during first years of operations in the 
1971–1980 period. The concept and location of the station was the great achievement of its founder 
Stanisław Baranowski. Images from Janusz Kida collection. 
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It is important to note that climate inducted changes in water cycle, carbon, 
and other biogeochemical cycles are crucial to determine impact of cold region 
downstream aquatic geoecosystems. Glacier melting and permafrost thawing 
increase water discharge and solute fluxes (Brighenti et al. 2019). However, it is 
still unknown what would be consequences of these processes for water flow and 
solute export, including nutrients, from both glacierised and permafrost 
catchments. In glacierised basins, exposure of proglacial sediment enhances 
chemical and physical weathering and removal of their products, e.g., solutes, 
colloids, suspended sediments, to glacier-fed streams (Stachnik et al. 2022). 
These products also include labile micro and macronutrients facilitating carbon 
metabolism in downstream aquatic ecosystems (Hawkings et al. 2014, 2020; 
Milner et al. 2017). As glaciers are absent in catchment, permafrost thaw and 
thickening of active layer affect biogeochemical processes via release of organic 
and inorganic macronutrients to surface waters such as lakes and rivers (Beel 
et al. 2020, 2021). However, there is still lack in knowledge on impact of future 
changes in both glaciers and permafrost covered catchments on chemical 
processes in ground and surface water. 

Determination of glacier melt, being important part of water cycle in polar 
region, is crucial to determine changes in water supply to proglacial zone. 
Ignatiuk (2023) shows that energy balance model is a more precise and effective 
method to determine glacier melt as compared with simpler approaches, e.g., 
temperature-index model. He demonstrates that radiation balance and sensible 
heat are major factor influencing surface melt of High Arctic glaciers, for 
Werenskioldbreen accounting for 58 and 42%, respectively. Amount of water 
sourced from ice and snow melt in glacierised basin affects chemical processes in 
proglacial groundwater. 

Modelska and Buczyński (2023) found out that despite low groundwater 
discharge in proglacial zone of Werenskioldbreen, chemical processes are 
enhanced by a wide range of processes, from sulphides and carbonates 
dissolution occurring in early stage of deglaciation to precipitation and/or 
dissolution of secondary iron (oxy)hydroxide (highly bioavailable form of Fe) at 
the longer exposed proglacial zone. This leads to elevated concentration of macro 
ions, minor and trace elements, e.g., Si and Zn, and change in physio-chemical 
water properties, e.g., rise in conductivity and acidity, in groundwater as 
compared with surface waters. Groundwater exhibits an important hotspot for 
chemical weathering and release of solute to proglacial glacier-fed rivers. 

On contrary, chemical processes in groundwater in permafrost underlined 
basin of Steinvik River exhibit completely different pattern. Rysiukiewicz et al. 
(2023) showed that chemical processes in groundwater, as depicted from springs 
originating from permafrost active layer, have much slower rate. The major 
processes controlling water chemistry are circulation of meteoric water enriched 
with atmospheric and marine derived aerosols and macronutrients supply from 
birds colonies. High permeability and hydraulic conductivity of active layer 
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result in a shorter residence time of water inhibiting chemical weathering 
processes. 

The aim of the study by Wąsik et al. (2023) was to identify the 
hydrogeological characteristics of the active layer in the glacier ice-free area 
of the Brattegg Valley. The authors measured the hydraulic conductivity of 
weathered metamorphic rocks in different geomorphological situations in the 
period 2005–2010. The highly variable results were used to determine 
groundwater runoff. Assuming a unit thickness of the aquifer, the runoff was 
determined to be 130 L s-1 in the catchment, representing between 15% and 47% 
of the average surface runoff. These specific data will be useful for modelling the 
hydrological and hydrogeological processes of the Brattegg Valley, which has 
recently been subject to thermal monitoring and geophysical surveys in 
permafrost degradation studies (Kasprzak 2020), and other High Arctic areas 
with similar geological structure, including especially small mountain catch-
ments.  
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