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Abstract 
 

The purposes of this study were to investigate the impact of proportions of cast iron scrap, steel scrap, carbon and ferro silicon on hardness 

and the quality of cast iron and to obtain an appropriate proportion of the four components in iron casting process using a mixture 

experimental design, analysis of variance and response surface methodology coupled with desirability function. Monte Carlo simulation was 

used to demonstrate the impacts of different proportions of the four components by varying the proportions of components within ±5% of 

the four components. Microstructures of the cast iron sample obtained from a company and the cast iron samples casted with the appropriate 

proportions of the four components were examined to see the differences of size and spacing of pearlite particle. The results showed that 

linear mixture components were statistically significant implying a high proportion of total variability for hardness of the cast iron samples 

explained by the casting mixtures of raw materials. The graphite of the sample casted from the appropriate proportion has shorter length and 

more uniform distribution than that from the company. When varying percentages of the four components within ±5% of the appropriate 

proportion, simulated hardness values were in the range of 237 to 256 HB. 
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1. Introduction 
 

Generally, there are many factors influencing the quality of 

castings during sand molding process and casting process. The 

factors include pattern design, molding material preparation, 

characteristics of sand mold and quality of raw materials. Quality 

of raw materials is one of the most important aspects in casting 

process before delivering high quality castings to the customers. 

Raw materials are deemed necessary to investigate the impact of 

proportions of components on mechanical properties and quality of 

the castings. A variety of scraps has been added as casting mixtures 

of materials in casting processes. Some previous researchers stated 

that addition of some materials with various fractions in the 

compositions of raw materials has impact on the properties and 

quality of castings. 

Iron scrap is one of mainly recycled raw materials for iron 

casting processes. Li et al. [1] recycled iron scraps from machining 

process by compressing into iron scrap cake, which was used 

appropriately for replacing pig iron for producing ductile iron and 

grey cast iron. They stated that use of iron scrap cake in place of 

pig iron can improve mechanical properties of the iron castings 

with lower material cost and environmental pollution, less energy 

consumption and gas emission. Weiss et al. [2] expressed that 

adding higher recycled steel scrap can increase hardness of grey 

cast iron. Janerka et al. [3] also confirmed that grey cast iron 

melting on steel scrap base can be produced with less sulphur and 

phosphorus than that melting on the pig iron base. 

http://creativecommons.org/licenses/by/4.0/
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Adding of alloying constituents during smelting process can 

improve the performances of cast irons such as improving 

morphology and distribution, increasing pearlite content, 

decreasing interlamellar spacing of pearlite [4, 5]. Ferro silicon 

(FeSi) is one of the conventional inoculants used to add in some 

amount to adjust melting and cooling process for quality 

improvement of castings. Xue & Li [6] investigated the effect of 

adding FeSi75 of 0.4-1.2 wt% and another inoculant during the 

smelting process on morphology and distribution of graphite. They 

found that morphology and distribution of type A graphite in the 

matrix of grey cast iron samples can be improved with increasing 

the content of FeSi75. Hossain & Rashid [7] reported that 

zirconium bearing FeSi has better mechanical properties and 

machinability than SiC for producing high quality of low sulphur 

grey cast iron. The nucleation of liquid metal and the amount of 

graphite present in ductile cast iron depended on the amount of FeSi 

[8]. Petrus et al. [8] also confirmed that the quality of cast iron 

depends on proper amounts of iron scrap, pig iron, charge materials 

and other raw materials.  

Consequently, recycled raw materials, carbon and ferro silicon 

contents were deemed necessary to evaluate the impact of their 

different compositions on mechanical properties and the quality of 

cast iron. However, one of its major drawbacks is that mechanical 

properties of the recycled castings are not good enough for some 

applications. Hence the objective of this study was to assess the 

influence of casting raw materials on a mechanical property and to 

determine the component proportions of the casting raw materials 

so as to maximize hardness of the cast iron in sand casting process. 

 

 

2. Methodology 
 

 

2.1. Experimental design  
 

Mixture experimental design has been used when responses 

depend only on proportions and not the amount of ingredients [9]. 

It is noted that the proportions of the compositions are defined in 

percent form [10]. The feasible design space is an irregular 

hyperpolytope whereas the feasible region for this experiment is 

not a simplex. Generally, the extreme vertices of the constrained 

area are formed by the combinations of the upper- and lower-bound 

constraints [11]. Thus, there are eight extreme vertices for four 

components in the mixture experimental design. Practically, there 

are constraints on the component proportions in many mixture 

experiments. The D-optimal criterion is used to randomly select 

design points from a listed of candidate points in a constrained 

region using the routine in Design Expert® software package [12] 

so that the variances of the model regression coefficients are 

minimized. Response surface methodology (RSM) coupled with 

desirability function is used to determine the appropriate proportion 

of the components. The Design Expert® software package uses 

direct search and downhill simplex methods to maximize 

desirability function based on the experimenter’s objectives [12]. 

In green sand molding process, Kul et al. [13] used D-optimal 

mixture design to investigate the effect of humidity, coal dust and 

bentonite on green compressive strength, shear strength and gas 

permeability and to optimize the proportion of the components for 

reducing the number of defects on the surface of the casting parts. 

Saikaew and Wiengwiset [14] also employed a systematic 

experimental design based on D-optimal criterion and RSM to 

determine the optimal proportion of recycled molding sand, 

bentonite and water influencing the green compressive strength and 

gas permeability in iron casting process. The appropriate 

proportion of recycled molding sand, bentonite and water was 

obtained at 93.3%, 5% and 1.7%, respectively. They also stated that 

surface roughness and hardness of the cast iron samples with the 

optimized mixture proportion of sand mold were better than those 

with the conventional mixture proportion of sand mold.  

 

 

2.2. Materials and procedure 
 

Four components of raw materials in melting process consisted 

of cast iron scrap, steel scrap, carbon and ferro silicon. The upper- 

and lower-bound constraints of the four components in iron casting 

process were specified based on literature review and experience 

of foundry manufacturers. Proportions of the four components 

were randomly selected within the constraints using the D-optimal 

criterion in mixture experimental design. The upper- and lower-

bound constraints of the four components of casting mixture 

materials were mathematically expressed as follows: 

 

A + B + C + D = 100           (1) 

 

73 ≤ A ≤ 80            (2) 

 

13 ≤ B ≤ 20            (3) 

 

2.5 ≤ C ≤ 4            (4) 

 

1 ≤ D ≤ 3             (5) 

 

where A, B, C and D were the contents of cast iron scrap, steel 

scrap, carbon and ferro silicon, respectively. It was noted that the 

constraints used in the formulas (1)-(5) were based on the 

experience of foundry manufacturers and literature review. 

However, the upper- and lower-constraints were automatically 

adjusted by Design Expert® software based on the D-optimal 

criterion. 

Induction furnace with maximum capacity of 100 kg was used 

to melt the four raw materials according to the mixture 

experimental design. Green sand for sand casting experiments was 

based on the appropriate proportion, consisting of 93.3% of 

recycled molding sand, 5% of bentonite and 1.7% of water [14]. 

Sand molding was performed in the same manner as described in 

the previous study [14]. 

After solidification, each cast iron sample was machined on 

CNC milling machine (Micron VCE 750) to a test bar with 10 mm 

in width, 15 mm in length and 10 mm in thickness. Hardness 

measurement was performed on the machined surface of a cast iron 

sample with a 10-mm-diameter hardened steel ball using a Brinell 

hardness testing machine (Hollywood International Ltd., FM-800). 

The hardness values were recorded at three different points to avoid 

statistical bias of measurements. Averages from three observations 

were used for analysis of variance (ANOVA). Furthermore, 
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microstructures of the cast iron samples were examined by optical 

microscope (Olympus BX60M). 
Monte Carlo simulation (MCS) is one of the useful methods for 

evaluating sensitivity and uncertainty of a variety of processes. 

Intanon et al. [15] applied MCS to validate the appropriate 

operating condition of the TiN coating process coated on a machine 

component of a fishing net weaving machine. They stated that this 

method could be used to verify whether the hardness of the TiN-

coated machine component and wear performance were sensitive 

to the variations of the coating process factors. In drilling of forging 

brass using uncoated- and AlCrN coated-WC tools, Timata & 

Saikaew [16] employed this method to assess the uncertainty of 

cutting speed and feed rate on tool life prediction for sensitivity 

analysis. For lost foam casting and gravity die casting of aluminum 

alloys, MCS was used to predict the fatigue behavior and the 

sensitivity of two cast aluminum alloys to the size effect and to 

investigate the effect of porosity and other defects on mechanical 

properties [17]. For sand casting process, Khalifa & Mzali [18] 

used simulation techniques to identify the interfacial heat transfer 

coefficient by varying the initial value of the coefficient during the 

solidification process. They found that the technique of MCS 

outperformed the competitive technique and was then used to 

obtain the optimal thickness of the rectangular cast iron part and 

the optimal position for the temperature measurement.  

In this study, MCS was used to demonstrate the impacts of 

different proportions of the four components in the casting process. 

When varying the proportions of components within ±5% of the 

four components, the data set of 3000 for different proportions of 

the components was generated based on the D-optimal criterion in 

mixture experimental design using Design Expert® software 

package [12]. Based on the hardness model, hardness values of 

3000 data points were predicted and plotted against simulation run 

order. 

 

 

3. Results and discussion 
 

 

3.1. Effect of component compositions on 

hardness of cast iron 
 

Table 1 shows the experimental matrix of the component 

proportions of raw materials based on the mixture experimental 

design and D-optimal criterion in the Design Expert® software 

package. There are many treatment combinations of the mixture 

components for the casting process that could produce and improve 

quality and hardness of the cast iron. In this display, the actual 

mixture components and the results of average hardness values of 

the cast iron samples in different proportions are shown. The 

variations of hardness values of the samples produced in various 

compositions are illustrated in Fig. 1. It should be noted that error 

bars represent the variation of hardness values from three cast iron 

samples. It is seen that hardness values of the cast iron samples 

varied depending on different proportions of components. 

Consequently, analysis of variance (ANOVA) was used to evaluate 

the significance of the effect of components on average hardness of 

the cast iron samples. 

 

Table 1. 

An experimental matrix of the mixtures of materials and test results for hardness 

 Components Average hardness  

(HB) Run # A B C D 

1 74.1020 19.9991 2.8989 3.0000 169.78 

2 73.0031 19.9970 3.9998 3.0000 212.82 

3 79.9988 15.9431 3.0581 1.0000 224.62 

4 78.0187 17.5487 2.5000 1.9326 169.82 

5 80.0000 14.3563 2.6457 2.9980 173.30 

6 76.4364 20.0000 2.5566 1.0070 242.64 

7 75.6875 19.2617 4.0000 1.0508 183.01 

8 77.1982 15.8023 4.0000 2.9995 159.04 

9 74.5649 20.0000 3.3883 2.0468 221.21 

10 80.0000 14.5275 3.9967 1.4758 138.72 

11 75.3704 17.6317 3.9986 2.9993 165.47 

12 76.4081 18.5117 2.8375 2.2426 180.87 

13 78.3470 16.2437 3.9247 1.4845 175.83 

14 77.1660 17.8346 3.9994 1.0000 154.71 

15 78.6233 15.5807 2.8248 2.9712 182.15 
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Fig. 1. Variations of hardness values of the cast iron samples produced in various compositions 

 

Table 2 presents the results of ANOVA for average hardness 

values. The results show that p-value for the linear mixture model 

for hardness was found to be less than 0.05. Linear mixture 

components were statistically significant model terms including 

AB, AC, BC and CD. In addition, R2 of 0.9335 and adjusted R2 of 

0.8449 were high indicating a reasonably high proportion of total 

variability for hardness explained by the casting mixtures of raw 

materials. This indicated that the casting mixtures of materials 

significantly affected the property of the cast iron and the casting 

process at the significance level of 0.05. 

 

Table 2. 

ANOVA for hardness of the cast iron 

Source of variation Sum of 

squares 

Degree of freedom Mean square F-value p-value 

Model 10997.12 8 1374.64 10.53 0.0051 

   Linear mixture 4947.49 3 1649.16 12.63 0.0053 

AB 789.69 1 789.69 6.05 0.0492 

AC 1437.84 1 1437.84 11.01 0.0161 

BC 1786.45 1 1786.45 13.68 0.0101 

BD 611.45 1 611.45 4.68 0.0737 

CD 3005.05 1 3005.05 23.02 0.0031 

Error 783.31 6 130.55   

Total 11780.42 14    

 

The final equation in terms of actual components for hardness 

was given in Eq. (6): 

 

Hardness = 10.2031A + 146.9837B – 5960.9738C – 92.7389D – 

2.4572AB + 61.1651AC + 68.3895BC – 4.9327BD + 99.6733CD

                 (6) 

 

In addition, Fig. 2 shows the plots of relationship between the 

actual and predicted values for hardness. It was clearly that most 

data points between the actual and predicted values lied closely 

along the experimental runs as illustrated in Fig. 2(a) and lied along 

a straight line with high R2 as shown in Fig. 2(b). This signified 

that the mixture model was valid and could fit about 93% of the 

variability in the hardness test results. Thus, the model could be 

used for prediction of hardness of the cast iron. 

 

 

 

 
Fig. 2. Actual observations and predicted values of hardness 

 

Contour plots for hardness in terms of the four components 

illustrated in various compositions within the ranges of the upper- 

and lower-constraints were constructed from Eq. (6) as illustrated 

in Fig. 3. In Fig. 3(a) at a constant wt% of ferro silicon, highest 

hardness was observed at mid-values of carbon component. Fig. 

3(a) also shows that hardness increased as either cast iron scrap or 

steel scrap increased. This result agreed with previous findings that 
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hardness and tensile strength of the grey cast irons increase with 

increasing the content of steel scrap [19]. This attributed to the 

statements that graphite of cast iron sample becomes smaller and 

more uniformly [1]. In addition, Li et al. [1] stated that pearlite 

content in matrix increases whereas interlamellar spacing of 

pearlite decreases after adding iron scrap cakes instead of pig iron. 

By contrast, in Fig. 3(b), the highest hardness shows significant 

dependence to ferro silicon by moving toward higher proportion of 

ferro silicon. In addition, Fig. 3(c) shows that the hardness 

increased as ferro silicon content increased by holding cast iron 

scrap constant. Similarly, at a constant wt% of iron steel scrap, the 

hardness also increased with increasing the ferro silicon content as 

presented in Fig. 3(d). 

The appropriate proportion of the four components consisted 

of approximately cast iron scrap of 76%, steel scrap of 20%, carbon 

of 3% and ferro silicon of 1% based on the results from RSM 

coupled with desirability function. According to Eq. (6), the 

predicted value of maximum hardness of the cast iron was 254 HB. 

It is also noted that the average hardness of cast irons obtained from 

the company was approximately 195 HB. 

 

  
  

  
Fig. 3. Contour plots for hardness illustrated in various compositions 

 

 

3.2. Monte Carlo simulation results 
 

Based on the appropriate proportion of the four components, 

the new constraints of proportions of the four components have 

been proposed for MCS as listed in Eqs. (7)-(11) 

A + B + C + D = 100        (7) 

 

75.85 ≤ A ≤ 77.2         (8) 

 

19 ≤ B ≤ 20         (9) 

 

(a) (b) 

(c) (d) 
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2.85 ≤ C ≤ 3.15       (10) 

 

0.95 ≤ D ≤ 1.05       (11) 

 

The proposed constraints have been defined according to the 

variations plus-minus around 5% of the appropriate proportion of 

each of the four components. Fig. 4 illustrates the variations of 

simulated hardness values after performing MCS on different 

proportions of components for the original constraints and for 

appropriate proportion of the four components. Fig. 4(a) shows that 

the range of simulated hardness values spreads from 117 to 254 

HB. On the other hand, Fig. 4(b) displays lower spread of simulated 

hardness values, which is ranging from 237 to 256 HB. Fig. 4(c) 

also reveals that some simulated hardness values, which were 

obtained from MCS results around the appropriate proportion of 

each of the four components, were higher than those obtained from 

MCS results at the original proportion of each of the four 

components. The results demonstrated that some proportions 

(around 5% of the appropriate proportion of each of the four 

components) could be used to produce cast irons with higher 

hardness values than those of components at the original 

constraints. 

 

 
Fig. 4. Variations of simulated hardness values after performing 

MCS on different proportions of components for (a) previous 

constraints (b) and (c) for appropriate proportion of the four 

components 

3.3. Surface quality examination of the cast 

iron 
 

The chemical composition of the sample casted from the 

appropriate proportion of the four components was specified as 

(wt%): 3.05 C, 2.3 Si, 0.32 Mn, 0.14 P, 0.06 S and Fe balance. 

Similarly, the chemical composition of the sample obtained from 

the company was 3.13 C, 1.95 Si, 0.4 Mn, 0.07 P, 0.06 S and Fe 

balance. Fig. 5 shows typical stereomicroscopy images of 

microstructures of cast irons. Overall, the images showed that 

microstructure of the cast iron obtained from the company was not 

significantly different to that of the sample casted from the 

appropriate proportion of the four components. However, it could 

be seen that the cast iron sample obtained from the company 

contains A-type graphite and some B-type graphite whereas the 

sample casted from the appropriate proportion mainly contains 

graphite type A and fewer B-type graphite. The graphite of the 

sample casted from the appropriate proportion has shorter length 

and more uniform distribution than that from the company due to 

the effect of adding FeSi. This can be attributed to the increasing 

the nucleation ability of the molten iron and stimulating the 

potential inoculation performance [6]. Moreover, interlamellar 

spacing of pearlite of the sample obtained from the company was 

not different to that of the sample casted from the appropriate 

proportion of the four components. 

 

  

  
Fig. 5. Stereomicroscopy images of microstructures of cast irons 

obtained (a) and (b) from the company (c) and (d) from this study 

 

 

4. Conclusions 
 

This study investigated the impact of proportions of raw 

materials on hardness and the quality of cast iron and to obtain a 

proportion of the four components in iron casting process using a 

mixture experiment (D-optimal design), ANOVA and RSM 

coupled with desirability function. Based on the findings of this 

study, the following conclusions could be drawn: 

• The four components of raw materials significantly affected 

average hardness values of the cast iron samples at the 

significance level of 0.05. 
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• Linear mixture components were statistically significant at 

the significance level of 0.05 indicating a high proportion of 

total variability for hardness of the cast iron samples 

explained by the casting mixtures of raw materials. 

• Hardness of the cast iron samples increased as either cast iron 

scrap or steel scrap increased. 

• Hardness increased as ferro silicon content increased by 

holding cast iron constant. 

• The appropriate proportion of the four components was 

obtained at 76% cast iron scrap, 20% steel scrap, 3% carbon 

and 1% ferro silicon based on the results from RSM coupled 

with desirability function. 

• Based on the microstructure analysis, cast iron sample 

obtained from the company contained A-type graphite and 

some B-type graphite whereas the sample casted from the 

appropriate proportion mostly contained graphite type A and 

fewer B-type graphite. 

• The graphite of the sample casted from the appropriate 

proportion has shorter length and more uniform distribution 

than that from the company. 

• According to the results from Monte Carlo simulation, the 

range of simulated hardness values spread from 117 to 254 

HB based on the constraints of proportions of the four 

components. 

• Simulated hardness values were in the range of 237 to 256 

HB when varying percentages of the four components within 

±5% of the appropriate proportion. 

 

In summary, this study focused on the effect of proportion of 

raw materials on the mechanical property and the quality of cast 

iron. However, the research may be extended to enhance the 

achievement or overcome a limitation of the stage of the 

metallurgical quality of the melt, which is deemed to be important. 

The study of holding temperature and time in the furnace and ladle 

in the furnace influence on the quality of the melt and the cast iron 

casted with various proportions of raw materials has not been 

investigated in this work and should be subject of future research. 
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