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Research paper

Refined energy method for the elastic flexural-torsional
buckling of steel H-section beam-columns
Part I: Formulation and solution

Marian Gizejowski!, Anna Barszcz?, Pawel Wiedro®

Abstract: Closed form solutions for the flexural-torsional buckling of elastic beam-columns may only
be obtained for simple end boundary conditions, and the case of uniform bending and compression.
Moment gradient cases need approximate analytical or numerical methods to be used. Investigations
presented in this paper deal with the analytical energy method applied for any asymmetric transverse
loading case that produces a moment gradient. Part I of this paper is devoted entirely to the theoretical
investigations into the energy based out-of-plane stability formulation and its general solution. For the
convenience of calculations, the load and the resulting moment diagram are presented as a superposition
of two components, namely the symmetric and antisymmetric ones. The basic form of a non-classical
energy equation is developed. It appears to be a function dependent upon the products of the prebuckling
displacements (know from the prebuckling analysis) and the postbuckling deformation state components
(unknowns enabling the formulation of the stability eigenproblem according to the linear buckling
analysis). Firstly, the buckling state solution is sought by presenting the basic form of the non-classical
energy equation in several variants being dependent upon the approximation of the major axis stress
resultant My and the buckling minor axis stress resultant M. The following are considered: the
classical energy equation leading to the linear eigenproblem analysis (LEA), its variant leading to the
quadratic eigenproblem analysis (QEA) and the other non-classical energy equation forms leading to
nonlinear eigenproblem analyses (NEA). The novel forms are those for which the stability equation
becomes dependent only upon the twist rotation and its derivatives. Such a refinement is allowed for
by using the second order out-of-plane bending differential equation through which the minor axis
curvature shape is directly related to the twist rotation shape. Secondly, the effect of coupling of the
in-plane and out-of-plane buckling forms is taken into consideration by introducing approximate second
order bending relationships. The accuracy of the classical energy method of solving FTB problems is
expected to be improved for both H- and I-section beam-columns. The outcomes of research presented
in this part are utilized in Part II.
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1. Introduction

The energy approach for the evaluation of elastic FTB problems of beam-columns was
studied by many authors by using the classical energy method (CEM). The classical energy
equation is referred to such an equation that neglects the effect of prebuckling displacements
and results in the LBA problem being formulated as a linear eigenproblem (as presented
by Roik [20], Trahair [23]). Gizejowski et al. [8] presented the general solution of FTB
problems using the linear eigenproblem analysis (LEA) and an arbitrary loading pattern.

A way for the refinement of the classical energy approach in the case of lateral-
torsional buckling (LTB) of beams was shown by Timishenko and Gere [22], therefore
referred to TEM (Timoshenko’s Energy Method). The accuracy of classical approach of
solving LTB problems is improved by making use of the minor axis in-plane first order
bending differential equilibrium equation. This method, in combination with the classical
energy equation was used by many authors to solve different LTB problems of bisymmetric
and monosymmetric double-tee section beams and beam-columns, e.g. [3-5, 15, 16, 19].
Barszcz et al. [1] derived recently the energy equation of elastic thin-walled members and
used it for solving LTB problems of beams in a non-classical form of TEM in which the
effect of prebuckling displacements is taken into consideration. As far as FTB problems
are concerned, it may be proved that the direct use of TEM refinement for beam-columns
in the same way as that used for the classical form of energy approach for beams, and
based on the second order minor axis in-plane bending differential equilibrium equation,
fails to yield the solution consistent with that obtained for beams [2, 6] (when setting the
axial force to zero value in the resultant energy equation). It is therefore important to derive
a more accurate energy equation in which the nonlinear prebuckling stress resultant terms
are retained.

A more accurate closed form solution of FTB of fork-supported beam-columns of
double-tee bisymmetric sections takes the form given by Trahair et al. [24]:

2
0 (_m) (- -2 -
Mcr,O Ny N, Nt

where: N — prebuckling axial stress resultant being constant along the member length,
My, — prebuckling major axis bending stress resultant being constant along the member
2
length, ky = 1 — % and k, = 1—1%(1+ﬂ”—
EI, 2 El Glr L?
second order prebuckling effects, E, G — Young modulus and Kirchhoff modulus of steel,
Iy, 1, I,,, IT —major and minor axis moment of inertia, warping constant and Saint Venant
torsion constant, L — member length, M., o = iopVN,Nr — critical moment in the case of
uniform bending, iy — polar radius of gyration, N, N, Ny — major axis, minor axis and
torsional bifurcation forces in pure compression.

) — factors accounting for the
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Many authors tried to omit the direct formulation of a more accurate energy equation.
Solutions for non-uniform bending was available by using the Galerkin approximate method
in solving FTB differential equilibrium problems. The starting point for such an approach
is to establish the set of second order differential equilibrium equations. Mohri et al. [14]
solved analytically the FTB problems of beam-columns subjected to simple and symmetric
loading patterns using the Galerkin method. More general case of the beam-column loading
pattern of narrow flange I-sections, namely being a combination of unequal end moments
and the uniformly distributed load over the entire length, was considered by Bijak [5]
for solving analytically the FTB problem. The Bubnov—Galerkin method was used. Cuk
and Trahair [7] studied the narrow flange I-section beam-column FTB under unequal end
moments, and recently it was also done by Gizejowski et al. [11]. The summary of solutions
for the elastic LTB and FTB formulation based on the classical energy equation is presented
in Trahair et al. [24], Gizejowski and Uziak [12] and Gizejowski et al. [10].

The classical energy approach to solve elastic flexural-torsional problems of beam-
columns subjected to load patterns dependent upon a single load parameter was used in [8].
Such an approach may represent the loads different on both half-lengths of the member.
Investigations presented herein are a continuation of previously conducted research. In the
energy method presented in this paper, the non-classical energy equation valid for H-section
beam-columns, like hot-rolled steel HEB sections, affected by the problem addressed in
the article is formulated first. The equation is valid also for narrow flange I-shape sections,
like hot-rolled IPE sections. In order to be consistent with the energy solution developed
earlier for beams [1], the higher order terms are retained in the flexural components of the
strain equations. As a result, the developed non-classical energy equation term, associated
with the prebuckling moment My, becomes a sum of two products, the first being the
product of twist rotation ¢, and curvature v of the out-of-plane displacement state, while
the second being the product of minor axis moment M, at buckling and twist rotation
¢x. Since the single term of the second order derivative of the minor axis displacement
and the twist rotation in CEM is replaced by two components, the proposed approach is
referred hereafter to the refined energy method (REM). The integral terms of general CEM
and REM solutions are distinguished hereafter by adopting the subscripts cem and rem,
accordingly.

2. Elastic flexural-torsional buckling formulation

2.1. Refined energy equation

The starting point for strain components evaluation of the nonlinear buckling problem
of thin-walled beam-columns is the formulation presented by Gizejowski et al. [13]. The
displacement field relationship developed there enabled to express coupling between the
torsion deformation state and those of bending and axial states, therefore extending the
formulation of Pi and Bradford in [17, 18] which neglected the effect of axial deformations
on the torsion state. In the present study, the first step is to formulate the rotation matrix in
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the member deflected configuration, assuming small rotations in that configuration. This
allows to write an approximate, general matrix relationship for the displacement field in
the deflected configuration as:

u(x,y,z) dx dx + wk (x)
2.1 v(x,y,2) [=R|y |- y
w(x,y,z) 4 z

where: u(x,y, z), v(x, y, z), w(x, y, z) — displacements u, v, w of a member point identified
by the coordinates x, y, z in the deflected configuration, w — sectional warping coordinate,
kx(x) = (¢x)" — x — coordinate dependent twist along the axis indicated by the subscript
symbol; f (...) — variable f being a function of selected arguments listed in the round
bracket that indicate the coordinates of adopted Cartesian system (in the following, the

arguments are dropped for the convenience of notation), (f)’ = —

The rotation matrix R defined for the deflected configuration in reference to the fixed
Cartesian coordinate system in the initial configuration takes the form:

V1+2e —¢, by
1
2.2) R=| ¢ 1-5(0)° ~¢x
1 2
—dy bx 1- 3 (¢x)

where: ¢, ¢, ¢, — angles of rotation in the deflected configuration with reference to the
initial configuration, V1 +2edx =~ (1 + e¢)dx — fiber length measured along the x-axis in

. 1 . .
the deflected configuration, e = u( + 5(;52 — normal strain measure of the section fiber

ov\*  (ow)’
including the bowing effect, ¢ = (a_v) + (a_w) , ug — displacement along the member
X X
axis.
The vector of rotation angles in the deflected configuration may be related to those in

the initial configuration through the cosines direction matrix Tgg as follows:

¢:] [ox )
(2.3) ¢z =10 |+Tre [HZ]
by 0 Y
where: Tgg — direction cosines matrix
! 0 ! 0
3 5%
2.4) Tro = |cos éx —singy

singy  coS Py

where: 6, — angle of twist rotation, 6, 8, — angles of flexural rotations about the member
’ ’

0
——, 68, = arctan
1+u(’)) N (

displacements of the member axis along y and z coordinates, respectively.

axis along y and z, respectively, 6, = arctan( TO’)’ Vo, Wo —
u
0
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After decomposing the square rotation matrix R into two components, namely into
the vector corresponding to the rigid rotation of dx and the rectangular rotation matrix
component R, corresponding to the section coordinates (y, z), the displacement field may
be expressed as follows

1
’ 2 ’
ug + 2¢ WK

2.5) 92‘ COS P ‘—Hy‘ sin @ ‘ dx + Ry, B]

T < =
Il

_ (gy‘ oS P ‘ + 92‘ sin ¢« ‘)

The submatrix Ry, of the rotation matrix R takes the following form

- (HZ’ COoS ¢y ‘— Hy’ sin ¢ ‘) (Gy‘ COS ¢y ‘+ GZ‘ Sin ¢ ‘)

_% Oy + % (os[02] —ez)r o, + % (os]e:] —02)]

ecet(ofo-[op)]  -z[ers (o[
2 2

where all the framed quantities in this final displacement field relationship are the terms
belonging to the direction cosines matrix Tgg.

Barszcz et al. [1] presented the formulation based on the rotation matrix developed by Pi
and Bradford in [17, 18] with reference to LBA buckling problems of thin-walled members.
Comparison of the displacement field relationship developed in [1] and that presented herein
yields the conclusion that both formulations are identical as far as LBA problems of thin-
walled members are concerned. The difference between the above formulation, presented
also in [13], and that developed by Pi and Bradford in [17, 18] may arise only when the
nonlinear buckling problems (NBA) of thin-walled members are dealt with.

The solutions presented hereafter are related to LBA problems of thin-walled beam-
columns in which the expression for the total potential energy formulation is the sum of the
strain energy U being a sum of Uj, (based on the linear terms of Green strain components,
both normal and shear) and Uy . (based on the nonlinear term of the Green normal strain
component), and the negative work of applied loads V:

(2.6) Ry =

2

(27) HZUL-FUNL—V

In-plane transverse loads and/or end moments generate the in-plane bending moment
M, and the axial force N, compressive or tensile. Maintaining all the important terms
of strain energy for a general case of the FIB of thin-walled beam-columns of the I-
bisymmetric open cross-section, then neglecting the terms of higher order then 2 in re-
lation to the postbuckling out-of-plane deformation state components and carrying out
the required calculations for the out-of-plane LBA, the energy components of the total
potential energy IT of H- and I-section beam-columns, under the loads of different values
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in two half-lengths but of symmetrical placement with reference to the mid-section, may
be presented in compression and bending as follows:
L

1
@8) Un=3 [ [EL(5) = (1= 1/1) ELwiion (2 - wien)

0
+ElLy ()7 + Gl (¢)7] dx

2.9)

L
UNL———EAMO/ x) ]
0

2.10) V== Z/ququ i ()] dx"‘ZQZJZQJ (6.7 (xo.1)]* #2
L—xq41,i
+Z /wqququ[‘bxt(x) dx+zl/’QQz]ZQ][¢x1(L -ij)]
lL —Xg2,i

where: A — cross-sectional area; remaining symbols according to Fig. 1, where g, ;, O, ; —
load components in the first half-length of the member while Y, g ;, ¥ 0 Q, ; — correspond-
ing load components for the second half-length; the shear centre displacements correspond
to the right hand rule coordinate system axes x, y and z (axis y is perpendicular to the
figure plane).

qz,i
M —~ l‘l’quZV WQQZJ
L VY VYYYNYVYYYY |5 yM
el Ty
K/ . Xo,) ¥ X
Xq1,i
Xgo.i
L-x,,
L-x,,,
L
z
v

Fig. 1. Coordinate system adopted and general loading pattern in the undeflected configuration

Let us consider the definitions of the axial force N = E' Au(, and the major axis bending

moment M, = —EI,w(, the curvature of which is 1dent1ﬁed by the second derivative of
the prebuckling d1splacement component wo and defined as follows:

’” M)’
(2.11) wg = -

Ely
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Moreover, let us introduce the direct definition of the out-of-plane moment at the
member buckled position:

M,

(2.12) M, =EIlwi$x — widx = TR
zZ

Substituting Egs. (2.11) and (2.12) to the energy equation (2.7), with contributions
given by Egs. (2.8)+(2.10), results in the non-classical energy equation representing the
stationary condition of the total potential energy at buckling:

L
1
(2.13) 5/{EIZ(S[(V(’;)Z] +ELS [(02)°] + GIra | (60)°] - N () + 3 (41)°]
0
+ k1Mo (2v6’¢x - ﬁ )}dx+— Z / qz,i2q,i0 [(b,”(x)]
L—xq41,i
+ZQZJZQJ6[¢XJ x0,j)] %f"z / Yqqz2,i24.i0 [¢xt(x)]
i - —Xq2,i

+ ) 000:,j20,i6 [#x (L =%0,1)]" } =0
7

In the following, beam-columns with simple member natural boundary conditions are
dealt with. The shape functions used hereafter, approximating the out-of-plane displace-
ment and twist rotation are of the well known format that has also been used in the previous
studies [1,5,8,17,23]. The energy equation may therefore be expressed in terms of unknown
buckled shape constants in relation to the post-buckling displacements:

(2.14) Vo = Vos + V0oa

in which vos = a; sin(n€), voq = ap sin(2n€)
and

(2.15) ¢x = azsin(né)

where: ¢ — dimensionless coordinate equal to x/L, ay, a; and az — unknown buckled shape
constants.

Eq. (2.13) is called hereafter as a refined energy equation that provides a basis for
the eigenproblem formulation of FTB problems. Depending on the assumption used, the
major axis moment M, might be approximated using My or M;, depending on whether
the obtained solution accounts for the in-plane second order effect on the out-of-plane
bifurcation state, or not. The minor axis moment M, might be approximated by using M g
or M i, or even M, = 0, depending on whether all the second order minor axis effects are
accounted for in the out-of-plane bifurcation state, or not.
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2.2. Summary of solutions based on linear or quadratic
eigenproblem formulations

The classical formulation is based on ignoring the prebuckling displacements on the
buckling state (k; = 1), while the major axis moment M, is approximated by M; and
the minor axis moment M, is approximated by either its zero value (leading to the linear
eigenproblem analysis, LEA) or taking it as M. ; (leading to the quadratic linear analysis,
QEA) as shown hereafter. Therefore, in both LEA and QEA formulations, the effect of
axial compression on the minor axis bending state is neglected.

2.2.1. Solution based on LEA

Taking k1 = 1, and approximating the energy equation by taking M, = 0 and M, = M;
in Eq. (2.13), results in the classical energy equation that has been widely used in the
development of bifurcation solutions of variety of simple and more complex loading
conditions, e.g. Trahair [23]. Such an energy equation is dependent linearly upon the
in-plane moment, the axial force and the in-plane load acting away from the shear centre:

L
1 144 ’” ’ 144
@.16) 3 /{EIZ(S |60)?| + ELus |(60)°| + Glre [ (87| + 2035 (v 9.) | dx
0
L
- 5N [o]00) 43 (0] ax
0
1 q2,i
+ 5 Z /qz,izq,i5 [6.4(0)]” dx + Z 020,16 .7 (v0.j)]” 1.
! Xgl,i J
L—quyi
+> / Vqdz.i29.6 [#xi (0] dx+ Y 0002 120,16 6. (L ~x0.,7)]" t =0
i L*xqzyi ]

The above equation is the basic relationship used in CEM, see Gizejowski et al [8].
The direct use of such an equation leads to the linear eigenproblem analysis (LEA). Using
displacement field approximation given by Eqs. (2.14) and (2.15), the LEA closed form
solution results from the eigenproblem involving the stiffness stability matrix K of size
3 x 3. The solution yields the following stability criterion [8]:

[K(1,3)]° [K(z,a)]z; o
K(1,1) K2,2) |~

(2.17) K(@3,3) - :

. . . . . 2L .

in which K(m, n) are the terms of the stiffness matrix K, multiplied by - and associated
b3

with the vector of unknown buckled shape constants The terms of Eq. (2.17) are as follows:

2.18) K(3.3) = 2N7 (1 - ﬁ)(
Nr
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[K(1,3)1>  (My o max2ls)’

(2.19) Al ool
(-5

2 2

(2.20) [K(2,3)]*  (4My amax2la)

K(2,2) N
4N, |1 -
wli- 5]

where: Np = (n?El,,/L* +GlIr) [i§, N, = n?EI.[L?, N, — second lowest bifurcation
load equal to 4N,

C

=1+ bFIF ’
>Ny |1 - N
T Ny
§q2,i l_'fql,i

217 ) )

— z,i2q,iSIN"(7E)AE+ [ Yq,iqz,i2q,i sIn”(7&) dE

L

Yo =&,

CprzF = for distributed loads

2L
= 2 A0 20,50 (7€) + ¥, 0z 20, sin” [x (1-¢)]}
7

for concentrated loads
My s max> My a4 max — maximum absolute values of symmetric and antisymmetric moment
components, scaling the elementary action field moments M, (&) and M, (&), respec-
tively,

- / My s(&) sin? (&) d€ — symmetric moment integral,

¥,§,max

1, = / My a(§) sin(n¢) sin(2n¢) d¢ — antisymmetric moment integral.

y,a,max

[K (1,3)]° .

K1) in Eq. (2.17) represents a decrease in the potential energy equal to

the work done by the first order field moment component M, s (¢) as the element deflects
wo due to the combined effects of the lateral deflection v( and twist rotation ¢ . Similarly,
(K (2.3)1
K (2,2)
M y,a (é: ) .
Finally, the LEA solution takes the form:

My,max )2 1 _
F, (N)

The term

the term represents the work done by the first order field moment component

2.21) (

CbcMcr,O

where: My, .x — maximum moment under the considered loading system, Cj,. — factor
converting an arbitrary moment gradient case into an equivalent uniform moment case,
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N N
F> (N) = (1 - N_) (1 - —coeflicient representing the effect of out-of-plane buckling
z T

under compressive force on the LTB buckling moment.
The equivalent uniform moment factor Cp,. is varying with the minor axis critical force
utilization ratio N/N, as given below:

2 1= N 2 "
222) L_1 (My’s’ma" ! ) 2N (My’“’ma" 1
Cbc \/Z My,rnax Cbs,cem 1_i My,max Cba,cem
Nza
where: = 21, and = 21, — conversion factors for the symmetric and
bs,cem ba,cem

antisymmetric moment diagram components.
Eq. (2.17) with its Cp. factor evaluated from (2.22) is of the same form as presented
by Gizejowski et al. [8].

2.2.2. Solution based on QEA

The solution may be obtained in the form of QEA when k; =1 in Eq. (2.13), the minor
axis moment M, = Mi = —M;qﬁ. The major axis curvature is evaluated from the second
order differential equilibrium equation:

Mo+ Ny
(2.23) vy =
EI,

As aresult, the energy equation (2.13) is dependent nonlinearly upon the in-plane stress
resultants, while it remains dependent linearly upon the in-plane load components acting
away from the shear centre:

L

(2.24) %/{Elzé[(v(’)’)z]+EIW6[(¢;’)2] +GIT5[(¢;)2]
}dx—%N/{é[(v(’))2+ié ()]} ax

1
+ 5 Z /qz,izq,i5 [6.4(0)]” dx + Zjl 0:.20.16 [#x.; (xo.1)]° ¢

142
My¢x i N2V()¢x
El, El,

1
- Mo

! Xql,i
L—qu,l—
2 2
) /quz,izq,ié (00" dx+ ) 000:.20.6 [9x. (L ~x0.,/)] =0
i L—xqz,i J
The energy equation (2.24) becomes dependent quadratically upon the in-plane stress

resultants, therefore its use leads to the quadratic eigenproblem analysis (QEA). The solu-
tion of energy equation (2.24) yields the stability criterion of the same format as Eq. (2.17)
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but with different structure of the stiffness matrix terms K (m, n) as far as the terms K (3, 3)
and off-diagonal terms for m # n are concerned. As a result, the following holds:

2 2 2
M M M
(225 K(3.3)=iJNr (1——]3; )4—( mex) l( y""“‘“) 2Js+(—y’“’m“) 2/

Nz My,max My,max

[K(L3)] _ ( N )2 (My s max21s)’

(2.26)
K(1,1) N, Nz(l—ﬁ)
N,
2 2 2
(2.27) %:(Nﬁ) M
> z 4N, (1_ )
Nza
1
where: Jsz/ [L(f) sin® (7€) d&, Ja /[My a(f)] sin? (7€) dé and the other
ysmax y,a,max
0

unexplained symbols are the same as in Eq. (2. 17)
Finally, the solution of Eq. (2.24) takes the form given by Eq. (2.21) in which:

1 1 |(M 2 N 1\ (N 1 \2
Che \/Z My,max N Cbs,rem N, Cbs,cem

N 0.5
1- —
e o) e ()
My,max N, Cba,rem 1= i Nza Cba,cem
Nza
1
where: = V2Js and 2J, — conversion factors for the symmetric and
bs,rem Cba,rem

antisymmetric moment diagram components.

The solution based on Eq. (2.24) with its Cp. factor evaluated from (2.28) seems to
be similar to that given by Bijak [5]. Differences between the Bijak’s solution and that of
present study arise from the power of N /N, before the conversion factor 1/Cpy_cem squared
and the power of N/N,, before 1/Cp 4 cem squared:

()
z Cbs,cem

11 [ Myomax\® N 1V N
(2.29) = — (ﬂ) (1 - _) ( ) +
Cbc \/Z My,max Nz Cbs,rem N.
N 0.5
N.

1-
| ([ e
My,max N, Cba,rem 1- N Nza Cba,cem
Nza

Eq. (2.29) contains the terms that are dependent linearly upon N/N, and N/N_, while
those terms in Eq. (2.28) are being squared. For N = 0, both equations convert to that
yielding from the classical TEM.

N
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In the following subsection, novel solutions are being looked at by using the second
order moments of M, = M;I and M, = M;I, therefore considering all the other effects
being neglected in the energy equations presented in this section.

2.3. Summary of novel solutions based on the higher order
eigenproblem formulations

When there are used M, = M g and the minor axis curvature is determined from the
differential second order equilibrium equation, the energy equation becomes dependent
nonlinearly upon the in-plane stress resultants, therefore its use leads to the nonlinear
eigenproblem analysis (NEA).

The nonlinear minor axis moment term in Eq. (2.13) takes the form:

M, MI  Mjg+Nv
EI, EI, EI,

(2.30)

while the term associated with M, in the same equation (2.13) expressed in the postbuckling
displacement field components (vg, ¢) yields:
M;I(p_ MI¢+NV0¢

2.31 W' =2 = _p2
(2.31) Yo d EL EL

As a result, the non-classical refined second-order energy equation takes the form:
L

2.32) %/{Elzé[(v(’)’)z]+E1w6[(¢;’)2]+G1T6[(¢;)2]

0

L
11
e T e | e R g {0
< 0

1
+ E Z /QZ,iZq,i6 [¢x,[(x)]2dx+;Qz,jZQ,j6 [¢x,j (XQ’j)]zqﬁ’j

12
Xgl,i

L*quyi

+Z / ‘J/qqz,izq,i(S [¢x,i(x)]2 dx + Z WQQz,jZQ,jé [¢x,j (L _xQ,j)]z =0
J

! L—=xq2,i

The accuracy of FTB solutions based on Eq. (2.32) is dependent upon the approxima-
tions used in evaluation of the in-plane moment M;I and the out-of-plane moment M g at
buckling. Table 1a presents the summary of different options in approximating the moment
M;I, identified by the Roman number I (where I-A used for the second order moment
amplification approximation of M}l = M} .~ and I-B for the second order moment P — &

approximation of M;I = M;I p_s)- Additionally, Ny = 712EIy /L?, Ny, — second lowest

bifurcation load equal to 4Ny’.
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Table 1a. Approximations of the second order in-plane field moment Mg,l

Symbol Field moment equation
I I
A ity = s M
I y-amp ) N 1 N
Ny Nya
I o N W£ I N wL
B My,P—é =M, + ] N +M, N
Ny Nya
where:
M;, s = M;’X‘Supp + M;’S’Span — symmetric component of the field moment,
M)I,, s,supp — field moment produced by the symmetric component of support applied moments,
M; s,span — field moment produced by the symmetric component of span loads,
M;’ a=M Iy a,supp T M;’ a,span — antysymmetric component of the field moment,
M; a,supp — field moment produced by the antisymmetric component of support moments,
I

M5, 4 span — field moment produced by the antisymmetric component of span loads,

wL = 611’ s sin(xé), 527 ¢ — amplitude of the first order single curvature deflected profile for sym-
metric field in-plane moment component,

wl = 62# sin(2x¢), 62, o — amplitude of the first order double curvature deflected profile for
antisymmetric field in-plane moment component.

The accuracy of approximate relationships might be checked by comparison of their
maximum moments with that yielding from the exact relationship in meaning of the
second order bending theory. Investigations into the accuracy of the in-plane moment M,
approximations, for the case of unequal end moments were carried out by Gizejowski and
Stachura [9] and verified by using an exact second order relationship [24]:

N
(2.33) MY = Myp max cos(ﬂ —f)
Ny

+ v N " N . N§
coseC [y [— | —cot|my|—||sin|m|—
. Ny Ny Ny

where: Yy = Myar min/ Mysr max —moment gradient ratio (M ps min and My ps max applied
support moments).

Based on the results of investigations presented in [9], one may conclude that options
I-A and I-B for the approximation of second order in-plane moments are rather close to
each other as far as the maximum moment is considered. Considering the whole range
of the axial force utilization parameter N/N,, the solution of FTB problems based on
option I-A seems to be preferable for design applications. The options mentioned above
are considered for the investigations presented hereafter.
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2.4. General solution of non-classical second order energy equation
Since the nonlinear term of minor axis curvature may be evaluated by its decomposition,

the buckling minor axis second moment may be approximated with use of equations given
in Table 1b.

Table 1b. Approximations of the second order out-of-plane field moment M. g

Symbol Field moment equation
M! Mm!
11 _ Z,8 z,a
no| A Mz amp = N * N
NZ NZG
1 1 Nvg I Nvi
B M pog =Mzs+ ——N +Mza+ N
- — 1-
NZ NZa
where:
MII MII

zamps My, p_5— approximations of the second order out-of-plane moments based on the ampli-
fication rule and the P — § rule, respectively,

M;’S = Mg,’s o, Mi,u = M;’aqﬁ — first order out-of-plane moments,

vi = 6Iy’s sin(w¢), (5Iy’s = 612’545 —amplitude of the first order single curvature deflected profile for
symmetric field out-of-plane moment component,

v%l = (5;, o Sin(2né), 6&,’ a= 612’ «% —amplitude of the first order double curvature deflected profile
for antisymmetric field out-of-plane moment component.

Hence, the following approximations hold for option II-A and II-B from Table 1b:
— for Option II-A:

1 1
(2.34) ML) My + My.a )
. - X
EI, EI, 1_1\% I_NI\;
— for Option II-B:
MH MH¢
(2.35) —z -2 7
EI,  EI,
Ul o, Nows P, NoL.
= %7 My + N sin(zé) + My, , + — N sin(2n€) | Py
‘ 1-— 1-

NZ NZa

The moment terms in the energy equation (2.32) are therefore dependent only upon
one post-buckling displacement component, namely the twist rotation ¢,, instead of the
product of minor axis curvature and twist rotation, like in the energy approaches presented

in section 2.2. As a result, the refined second order energy equation may be formulated in
two ways, presented in the following subsections.
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2.4.1. Options 1 based on NEA

Option 1 in the versions 1a and 1b is based on Eq. (2.34), therefore Eq. (2.29) takes the
form:

(2.36) %/{Elza[(v(’;)z]+E1W5[(¢;;)2]+GIT5[(¢;)2]

L
—k10 MEEI‘EX M;;;p + M;’a;éx x—%N‘/ V(’) +lé5 (¢x) ”dx
SR °
Xq2.i
+% Z/‘IUZW [fx, ()] dx+ZQZJZQJ [¢XJ(XQJ)]2¢§,j
XqLi
L—xg1.i
+Z /WqCIthqt [¢x1(x)] dx"'Z@DQQZJZQ/ [ (L - xQJ)]2 =0
- —Xq2,i

Buckling deformation state in Eq. (2.32) is decoupled since the terms associated with
components (vg, @) are independent from each other. Three independent buckling modes
are related to: a) the flexural-torsional mode governing the prediction of the beam-column
buckling state, and two additional modes representing two lowest flexural buckling modes
in pure compression. The matrix representation of the stability criterion corresponding to
Eq. (2.32) means that the said terms are the diagonal terms K (1, 1) and K (2, 2) of K matrix
of the size 3 x 3 while the corresponding oftf-diagonal terms K (m, n) are of zero values (for
m#nandm,n=1,2,3).

Since the second order minor axis moment terms account for the minor axis buckling
modes under compression, the stability criterion for the flexural-torsional buckling based
on the proposed refined energy method is that yielding from K (3, 3) equated to zero:

(2.37) 6a3[K(3,3)]az =0 — K(3,3)=0

The structure of K (3, 3) term depends upon the option used for the approximation of
the in-plane moment M.

Option 1a based on NEA

Adopting option I-A from Table 1a, that is, substituting the amplified first order in-

plane moment M, e M;I amp 10 Eq. (2.36), the refined second order energy equation takes



www.czasopisma.pan.pl N www.journals.pan.pl
Y

528 M. GIZEJOWSKI, A. BARSZCZ, P. WIEDRO
the form:
L
1 2 m2 7\2
238) 3 ELS |(v§)] + ELos [(67)°| + GIro | (9]
0
k MI N MI MI sTrX MI ¢x
-5 SR " L P Pr  Mya dx
LN TN NN
Ny Ny, N, Nza
1 L Xq2,i
— EN,/[ (VO) +106(¢X dx+— Z/qzlqué[qﬁ“(x)]
0 t quz
L—quyi
2 2
+ZQZ jZQj ¢xj (ij ¢)2c] +Z / ‘quIz,iZq,ié [¢x,i(x)] dx
J i L—xg2,i

+ ) 000:,20.i0 [6x. (L - XQ,j)]z} =0
7

2L
Carrying out the integrations of moment independent terms and multiplying by —
g
leads to the following relationship:
N
(2.39) K(3,3) —z (1 - —) I
Nr

(M)’,s,max )2 ZJS (My,a,rnax )2 ZJa
kl y max My,max My,max

I NI

Hence, the general solution of the Option 1a becomes that of Eq. (2.21) in which F,(N)
is replaced by F3(N) — coefficient representing the effect of compressive force with regard
to both in-plane and out-of-plane buckling on the LTB buckling moment:

N N N
o))

The conversion factor Cp, is varying with the major axis critical force utilization ratio
N/Ny,, in addition to that of the minor axis critical force utilization ratio N/N,:

55
2.41) ki (My,S,max 1 )2+ Ny N, (My,a,max 1 )2
Cbc é’ My,max Cbs,rem ( N )(l—i) My,max Cba,rem

1_
Nya Nza
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Option 1b based on NEA

Adopting option I-B from Table 1a, the refined second order energy equation takes the
form:

L

(2.42) %f{ElZ(s[(V{;)Z] +E1W5[(¢;’)2]

Gl S ’ kl 5 EMI MI N(Slz,s . X
+ GIro|(¢,)°] - £l ys + My o+ ——gsin {7
L N,
NéL ) M b M) s ‘
+1_Nsm(7rL)¢x1_£+l_N X
Nya NZ Nza
L Xq2,i
1 2
) / (vo) +lo (¢%) ” dx+ - Z /4z,izq,i6 [qﬁx,i(x)] dx
0 e
L—- —Xgl,i
+ZQZJZQJ [¢x] XQ0,j ] ¢x1+z / ':[/qthqu(S [¢xl(x)]
i L— qu,

+ ) 0002520, [¢x.y (L - xQ,j)]z} =0
j

Carrying out integrations of the moment independent terms in Eq. (2.42) and multiply-

2L
ing by ) leads to the following relationship:

(243) K(3,3) = i3 Ny (1 - ﬁ) Ve
Nt

kl ymax (Alysmax)2 1 ( 1 )2+£ TCss 27
N, M max 1_ﬁ Chs.rem N, (]_ﬁ) (l_l) s1
N, N, N,
. (1\4y,a,m)2 1 ( 1 )2+ N 72 sa 2
My,max 1_i Cba,rem Nya (1—i) (1_i)
Nza Nya Nq

y s, max y,a,max

1 1
where: Jg| :/ [ v.s(€) sin® (7€) dé, Jo1 = / [My a(®) } sin? (7€) sin(2n€) d&,
0 0
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o OBl el
§s = %, C6a = .
My,s,maxL My,a,max (L/2)

As aresult, the general solution becomes that of Eq. (2.21) in which F;, (N) is replaced by
F3(N) and the conversion factor Cj, is varying with the major axis critical force utilization
ratio N /Ny, in addition to that of minor axis critical force utilization ratio N/N,. Thus:

1 ki [ (My s max\* N 1\ N 1
(2.44) == (y—ma") (1——)( ) + 725y
Cbc é’ My,max Ny Cbs,rem Ny Cbs,reml

N N 0.5

My ama\> 1= N N 1V - N, 1

+ 1\; 1-— + N ' Csa—=""

My,max 1- N Ny Cba,rem 1- N Nyu Cba,reml

za ya
1 1
where: ——— =2Jgy and ——— =2J,;.
bs,reml ba,reml

The coefficients of first order amplitudes of in-plane prebuckling deflected profiles
for the single curvature of the symmetric field moment component c¢ss and the double
curvature of the antisymmetric field moment component c s, are given in Table 2.

The following notation is used in Table 2: §, s max — amplitude of the first order single
curvature deflected profile for symmetric field in-plane moment component, 6, 4 max —
amplitude of the first order double curvature deflected profile for antisymmetric field in-
plane moment component, &, , x—r /4 — displacement at x = L/4 of the first order double
curvature deflected profile for antisymmetric field in-plane moment component.

Table 2. The coefficients of first order amplitudes of in-plane prebuckling deflected profiles

cgs for cg§q for
symmetric antisymmetric
Symbol and scheme of load case deflected profile deflected profile
5z,s,max 6z,a,max 6z,a,x=L/4
(VM,VM '/’MM,VM‘\
M i L AIJ X 0.125 0.0641 0.0625
4z
M aqz
q osL , osL 0% 0.104 0.104 0.104
L 1
2 1
xo=L/2 ¢ =0 0.0833 - -
fl *Wooz xo =3L/8 0.102 0.0774 0.0764
Q .o ~—= | xo=L/3 0.106 0.0806 0.0798
__'0_‘|‘L_X
1 i3 xo=L/4 |yo #0 0.115 0.0833 0.0833
: xo=L/6 0.120 0.0806 0.0798
xo=1L/8 0.122 0.0776 0.0764
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The coefficients Cps.cems Cpa,cems Chs,rems Cha,rem as Well as Cpg remis Cha,remi are
dependent upon the in-plane moment distribution decomposed into its two components,
symmetric and antisymmetric. Their values are listed in Table 3 and dealt with the same
loading patterns as that considered in Table 2. The last column coefficients Cpr are used for
the evaluation of the term ¢ associated with the off-shear load application. This coefficient
becomes equal to zero when the in-span load is applied at the cross section shear centre.

Table 3. The loading pattern dependent coefficients

Basic coefficients Additional coefficients
Loading case | Coefficients cem Coefficients rem for option 2 Cvor
symbol Cps,cem | Coa,cem | Cbs,rem | Cha,rem | Chs,reml | Cha,reml

M 1 2.78 1 2.77 1.18 4.19 -

q 1.15 1.43 1.13 1.37 131 1.94 g L?/n?
xo=L/2| 142 - 1.37 - 1.59 - 20.L/n?
xo=3L/8| 1.17 1.76 1.14 1.49 1,32 222 |3.414Q,L/x*

Q| xp=L/3| 1.12 1.74 1.10 1.56 1.27 2.25 30, L/n?
xo=L/4 | 1.05 1.81 1.04 1.73 1.21 247 20.L/n?
xo=L/6 | 101 2.01 1.01 1.98 1.18 2.89 Q,L/n?
xo=L/8 | 101 2.15 1.01 2.14 1.18 3.18  |0.5860Q,L/x*

2.4.2. Option 2 based on NEA
Option 2 is based on Eq. (2.35), therefore Eq. (2.32) takes the form:

L

1
(245) 5 /

0

MH(Z)X 61 v‘f’x . X N(gl ¢’ . X
Eylz (M; $Px + : _Zﬁ sin (ﬂ'z) + M, ¢+ I_Z—N sin (27rz) dx
N

z za

{EI 5| (v§)?| + Envs | (67)°] + G [(41)7]

- k1o

Xq2,i

L
1 1
EN/ (v$) +105(¢X) ]}dx+§ Z / q2,i%2q,i0 [¢X’i(x)]2
0

12
Xgl,i

L*qui

+ZQ 20,50 [6x.j (xa.j ] ¢x1+2 / ¥49z.i24,i6 [¢x,i(x)]2
J

i
L- —Xg2,i

+ D 000:,j70.16 [0x (L - xQ,j)]z} =0
7
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532
It is rational to suggest that the in-plane moment in the form of I-B from Table 1a is

adopted in Eq. (2.45). This results in:

L
I
(2.46) E/ ELS ()] + ELos [(67)°| + GIro [ (2]
0
ki 1 1 N(Slz,s . X N6[
_Elzé My’S+My’a+1_£81 (nz)+1_ N sm(27r )
Ny Nya

I 1 z,s
XMy +M, ,+ N S

l\)l'—‘

L
/ |5 (vg)* + Nigs (93)° | dx
0

Xg2,i
4z,i2q,i0 [¢x,i(x)]2 dx + Z 0z,j20,j0 [¢x,j (xQJ)]Z ¢,
J

5%/

13
Xql,i
L—qu’i
2 2
+Z Yq4z,iZq,i [¢xi(x)] dx"'Z‘ﬁQQz,jZQJ(S [¢x,j (L_xQ,j)] =0
i L—xqz’i J
Carrying out the calculations as in the Options of la and 1b, the general solution
becomes that of Eq. (2.21) with the conversion factor Cp. derived from the following:

1 ki | (My.s.max N N (A
R [ [T
Cbc ( My,max Ny NZ Cbs,rem
2 N 2 2
+ (2—£—l)£ T Cos +§(—) (nzc(sx)
Ny Nz Nycbsreml 4 Ny
N N
M : N N 1\ (I_N_)(I_N_)
) -w)-w e =
My,mdx Ny Nz Cba,rem 1— N 1 N
Nyq Nza
0.5
N N\ N nr¥sqa 1[N 2( )2
- —_———+ = n°Csa
2 | Nyq

Nya Cba,reml
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3. Summary and conclusions

A novelty of present study yields from a generalization of the energy method by
including the second order effects on the decrease of bending energy at the out-of-plane
buckling state of beam-columns. As a result, the refined form of the energy equation has
been obtained and used for the evaluation of the interaction between the axial force and the
first order bending moment at the flexural-torsional buckling state. The solutions presented
in the paper are valid for an arbitrary asymmetric major axis bending load case in which
the in-plane moment terms represent the symmetric and antisymmetric load components.
The integral moment terms being the product of sinus function of the mean twist rotation
might be calculated either by the direct integration or by a numerical integration as shown
in Serna et al. [21]. The obtained solutions may be directly compared with those existing
in literature for single load cases when the load is symmetric and under a single load
parameter.

Reciprocals of the conversion factors 1/C},.. of the present study for the most robust op-

y,§,max

tion la solution are for simple load cases dependent upon the moment parameters
y,max

My,a,max

and as well as the reciprocals of elementary conversion factors 1/Cp ., and

y,max
1/C g rem- The elementary conversion factors depend only upon the bending moment distri-

butions along the beam-column length for the symmetric and antisymmetric components.
Moreover, the conversion factors depend upon the lowest bifurcation flexural buckling
force utilization ratios N/Ny and N/N., and the second lowest bifurcation flexural buck-
ling force utilization ratios N/Ny, and N/N_,. This is a novelty of the present study since
the solutions presented in earlier investigations and referred to asymmetric loading cases
[8] were developed from the classical energy method in which the effects of prebuckling
displacements and in-plane buckling were neglected. Moment distribution dependent co-
efficients Cps cem and Cpg cem Used in the classical energy method were based on LEA
(linear eigenproblem analysis). The coefficients Cps rem and Cpg rem used in the refined
energy method are based on NEA Option la. In the other NEA option solutions, coeffi-
cients Cpg rem and Cpq rem are used together with Cp cem and Cpg,cem- The comparison of
elementary cem and rem equivalent uniform moment factors of Cps and Cp, as well as the
Cyr factor was presented in Table 3 of this paper. One may notice that coefficients Cps cem
and Cpg cem are generally of a higher value than those of Cpg rem and Cpq rem for all the
considered loading cases shown in Table 3, especially for the loading cases dominated by
an antisymmetric component. On the other hand, the energy term of the off-shear centre
span loads is independent from the distribution of bending moment components, therefore
factors C,r of present study are the same as those from earlier studies, regardless whether
the energy method is classical or refined to its non-classical form as presented in this study.

For simple boundary conditions considered in this study, the following notations may be
used N/N, = (1 - k1) (N/N;),N/Nyq = (1 = k1) (N/N4), therefore solutions based on
Eq. (2.32) may be expressed as a function of k; and N/N. The general Option 1a solution,
according to Eq. (2.38), may be used for comparing the results with those obtained in
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earlier analytical studies, e.g. for load cases presented in [8], namely end moments (EMs),
half-span unequal uniformly distributed loads (UDLs) and half-span unequal concentrated
loads (CLs), the inequality of which in the half-spans is identified by the load factors i/,
Vg, Yo, cf. Fig. 1. Comparing constants Cpy rem and Cpq rem Of present study with those
of Cps,cem and Cpq cem given in [8] and obtained from the classical energy method leads
to the conclusion that for extreme symmetric or antisymmetric cases, the elastic flexural-
torsional buckling limit curves (M, — N)., of present study, based on the Option 1a for
the non-classical energy method in which k| = 1, are placed below those corresponding
to the classical energy method. On the other hand, the solution of present non-classical
energy method gives, for k; = 0, the values of 1/Cp. = 0, therefore Cp, = o0, i.c. the
lateral-flexural mode seems not to be possible and only the buckling modes possible are
those related to the axial compression.

The classical solution is based on the assumption that the effect of prebuckling dis-
placements along z — z axis, resulting from the bending action about y — y axis and the
second order effects in the form of amplification of first order moments or according to
P — ¢ rule, may be neglected. Such an assumption is valid only for beam-columns laterally
and torsionally unrestrained (ULT) between end points and having a narrow flange I-section
(NFI). In order to account for the effect of prebuckling displacements and second order
effects, one has to use the energy equation derived from the displacement field in which
the circular trigonometric functions of twist rotation are maintained up to the final stage
of the strain energy derivation as shown in [13] and used in this study. Such an approach
is desired for beam-columns restrained laterally and torsionally (RLT) between end points
and/or having wide flange I-sections (WFI). The classical FTB model seems therefore to be
too conservative, especially in the situations referred to RLT and WFI. The conservatism
is more and more visible when the second moment of inertia ratio I /1, is much closer
to unity than to its zero value. At the extreme situation of /. /I, close to unity, the critical
moment becomes so high that the buckling state is related only to compression, regardless
the level of prebuckling bending action.
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Udoskonalona metoda energetyczna sprezystego wyboczenia
gietno-skretnego stalowych elementow Sciskanych i zginanych
o przekroju dwuteowym
Czesé 1: Sformulowanie i rozwigzanie

Stowa kluczowe: stalowa belka-stup, dwuteownik bisymetryczny, zachowanie sprezyste, wybocze-
nie gietno-skretne, klasyczna metoda energetyczna, udoskonalona metoda energe-
tyczna, rozwigzania analityczne

Streszczenie:

Rozwiazania w postaci zamknietej dla wyboczenia gi¢tno-skretnego (FTB) sprezystych belek-
stupéw mozna uzyskaé tylko dla prostych warunkéw brzegowych oraz przypadku réwnomiernego
zginania i Sciskania. Przypadki zmiennego momentu zginajagcego wymagaja zastosowania przy-
blizonych metod analitycznych lub numerycznych. Badania przedstawione w niniejszym artykule
dotyczg analitycznej metody energetycznej, stosowanej dla dowolnych przypadkéw asymetrycznych
obcigzeri poprzecznych, wywolujacych nieréwnomierny moment zginajacy. Czes¢ I prezentowa-
nego artykutu jest w catosci po§wigcona badaniom teoretycznym nad energetyczng formulg utraty
stateczno$ci z plaszczyzny zginania i jej ogélnemu rozwigzaniu. Dla wygody obliczert obciaZenie
i wykres momentéw zginajacych przedstawiono jako superpozycje dwéch sktadowych: symetrycz-
nej i antysymetrycznej. Opracowano podstawowg postac nieklasycznego (udoskonalonego) réwnania
energetycznego. Jest ono funkcjonalem zaleznym od iloczynéw odksztalcen stanu przedwybocze-
niowego, przemieszczen osi preta i ich pochodnych, odpowiednio — ug i wq, oraz sktadowych stanu
odksztalcenia pokrytycznego, przemieszczenia z plaszczyzny zginania przedkrytycznego i kata skre-
cenia, odpowiednio — vq i ¢ . Przemieszczenia przedwyboczeniowe u( osi pretai wo w plaszczyZnie
zginania sa znane i mogg by¢ powigzane z silg osiowg N i momentem zginajacym wzgledem osi
gtéwnej My otrzymanymi z analizy pierwszego rzgdu (LA). Sktadowe stanu deformacji v i ¢y
z plaszczyzny plaskiego stanu zginania oraz ich pochodne sa niewiadomymi umozliwiajacymi sfor-
mutowanie problemu stateczno$ci jako problemu wartosci wlasnych (LBA). W artykule, po pierwsze,
poszukiwane jest rozwigzanie stanu wyboczenia poprzez przedstawienie podstawowej postaci nie-
klasycznego réwnania energetycznego w kilku wariantach, zaleznych od aproksymacji momentu
M, a mianowicie klasycznego, prowadzacego do analizy liniowego problemu wiasnego (LEA)
i kwadratowego problemu wtasnego (QEA) oraz innych form prowadzacych do nieliniowych analiz
probleméw wiasnych (NEA). Nowe formy to te, dla ktérych réwnanie statecznosci zalezy tylko od
kata skrecenia i jego pochodnych. Takie udoskonalenie jest mozliwe, gdy do zginania z plaszczy-
zny zastosowane zostanie réwnanie rézniczkowe drugiego rzedu, za pomocg ktérego krzywizna osi
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stabszej jest bezpoSrednio powigzana z katem skrecenia. Po drugie, uwzgledniono efekt sprz¢zenia
form wyboczenia w plaszczyZnie i z ptaszczyzny zginania przedwyboczeniowego przez wprowadze-
nie przyblizonych zalezno$ci zginania drugiego rz¢du. Dzigki uwzglednieniu tych efektéw znacznie
poprawiono doktadno$¢ klasycznej metody energetycznej rozwiazywania probleméw FTB elemen-
téw Sciskanych i zginanych w plaszczyZnie wigkszej bezwladnosci przekroju, zar6wno w wypadku
przekroju dwuteowego H, jak i I. Wyniki tej czgsci sa wykorzystywane w Czesci II, dotyczacej
poréwnania i weryfikacji rozwigzan uzyskanych w formie zamknietej w Czesci I artykutu.
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