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Research paper

Refined energy method for the elastic flexural-torsional
buckling of steel H-section beam-columns

Part I: Formulation and solution

Marian Giżejowski1, Anna Barszcz2, Paweł Wiedro3

Abstract: Closed form solutions for the flexural-torsional buckling of elastic beam-columns may only
be obtained for simple end boundary conditions, and the case of uniform bending and compression.
Moment gradient cases need approximate analytical or numerical methods to be used. Investigations
presented in this paper deal with the analytical energy method applied for any asymmetric transverse
loading case that produces a moment gradient. Part I of this paper is devoted entirely to the theoretical
investigations into the energy based out-of-plane stability formulation and its general solution. For the
convenience of calculations, the load and the resulting moment diagram are presented as a superposition
of two components, namely the symmetric and antisymmetric ones. The basic form of a non-classical
energy equation is developed. It appears to be a function dependent upon the products of the prebuckling
displacements (know from the prebuckling analysis) and the postbuckling deformation state components
(unknowns enabling the formulation of the stability eigenproblem according to the linear buckling
analysis). Firstly, the buckling state solution is sought by presenting the basic form of the non-classical
energy equation in several variants being dependent upon the approximation of the major axis stress
resultant 𝑀𝑦 and the buckling minor axis stress resultant 𝑀𝑧 . The following are considered: the
classical energy equation leading to the linear eigenproblem analysis (LEA), its variant leading to the
quadratic eigenproblem analysis (QEA) and the other non-classical energy equation forms leading to
nonlinear eigenproblem analyses (NEA). The novel forms are those for which the stability equation
becomes dependent only upon the twist rotation and its derivatives. Such a refinement is allowed for
by using the second order out-of-plane bending differential equation through which the minor axis
curvature shape is directly related to the twist rotation shape. Secondly, the effect of coupling of the
in-plane and out-of-plane buckling forms is taken into consideration by introducing approximate second
order bending relationships. The accuracy of the classical energy method of solving FTB problems is
expected to be improved for both H- and I-section beam-columns. The outcomes of research presented
in this part are utilized in Part II.
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1. Introduction
The energy approach for the evaluation of elastic FTB problems of beam-columns was

studied by many authors by using the classical energy method (CEM). The classical energy
equation is referred to such an equation that neglects the effect of prebuckling displacements
and results in the LBA problem being formulated as a linear eigenproblem (as presented
by Roik [20], Trahair [23]). Giżejowski et al. [8] presented the general solution of FTB
problems using the linear eigenproblem analysis (LEA) and an arbitrary loading pattern.
A way for the refinement of the classical energy approach in the case of lateral-

torsional buckling (LTB) of beams was shown by Timishenko and Gere [22], therefore
referred to TEM (Timoshenko’s Energy Method). The accuracy of classical approach of
solving LTB problems is improved by making use of the minor axis in-plane first order
bending differential equilibrium equation. This method, in combination with the classical
energy equation was used by many authors to solve different LTB problems of bisymmetric
and monosymmetric double-tee section beams and beam-columns, e.g. [3–5, 15, 16, 19].
Barszcz et al. [1] derived recently the energy equation of elastic thin-walled members and
used it for solving LTB problems of beams in a non-classical form of TEM in which the
effect of prebuckling displacements is taken into consideration. As far as FTB problems
are concerned, it may be proved that the direct use of TEM refinement for beam-columns
in the same way as that used for the classical form of energy approach for beams, and
based on the second order minor axis in-plane bending differential equilibrium equation,
fails to yield the solution consistent with that obtained for beams [2, 6] (when setting the
axial force to zero value in the resultant energy equation). It is therefore important to derive
a more accurate energy equation in which the nonlinear prebuckling stress resultant terms
are retained.
A more accurate closed form solution of FTB of fork-supported beam-columns of

double-tee bisymmetric sections takes the form given by Trahair et al. [24]:

(1.1)

(√
𝑘1𝑘2 𝑀𝑦

𝑀cr,0

)2
=

(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

) (
1 − 𝑁

𝑁𝑇

)
where: 𝑁 – prebuckling axial stress resultant being constant along the member length,
𝑀𝑦 – prebuckling major axis bending stress resultant being constant along the member

length, 𝑘1 = 1 − 𝐸𝐼𝑧

𝐸𝐼𝑦
and 𝑘2 = 1 − 1

2
𝐺𝐼𝑇

𝐸𝐼𝑦

(
1 + 𝐸𝐼𝑤

𝐺𝐼𝑇

𝜋2

𝐿2

)
– factors accounting for the

second order prebuckling effects, 𝐸 , 𝐺 – Young modulus and Kirchhoff modulus of steel,
𝐼𝑦 , 𝐼𝑧 , 𝐼𝑤 , 𝐼𝑇 – major and minor axis moment of inertia, warping constant and Saint Venant
torsion constant, 𝐿 – member length, 𝑀𝑐𝑟 ,0 = 𝑖0

√
𝑁𝑧𝑁𝑇 – critical moment in the case of

uniform bending, 𝑖0 – polar radius of gyration, 𝑁𝑦 , 𝑁𝑧 , 𝑁𝑇 – major axis, minor axis and
torsional bifurcation forces in pure compression.
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Many authors tried to omit the direct formulation of a more accurate energy equation.
Solutions for non-uniform bendingwas available by using theGalerkin approximatemethod
in solving FTB differential equilibrium problems. The starting point for such an approach
is to establish the set of second order differential equilibrium equations. Mohri et al. [14]
solved analytically the FTB problems of beam-columns subjected to simple and symmetric
loading patterns using the Galerkinmethod.More general case of the beam-column loading
pattern of narrow flange I-sections, namely being a combination of unequal end moments
and the uniformly distributed load over the entire length, was considered by Bijak [5]
for solving analytically the FTB problem. The Bubnov–Galerkin method was used. Cuk
and Trahair [7] studied the narrow flange I-section beam-column FTB under unequal end
moments, and recently it was also done by Gizejowski et al. [11]. The summary of solutions
for the elastic LTB and FTB formulation based on the classical energy equation is presented
in Trahair et al. [24], Gizejowski and Uziak [12] and Gizejowski et al. [10].
The classical energy approach to solve elastic flexural-torsional problems of beam-

columns subjected to load patterns dependent upon a single load parameter was used in [8].
Such an approach may represent the loads different on both half-lengths of the member.
Investigations presented herein are a continuation of previously conducted research. In the
energymethod presented in this paper, the non-classical energy equation valid for H-section
beam-columns, like hot-rolled steel HEB sections, affected by the problem addressed in
the article is formulated first. The equation is valid also for narrow flange I-shape sections,
like hot-rolled IPE sections. In order to be consistent with the energy solution developed
earlier for beams [1], the higher order terms are retained in the flexural components of the
strain equations. As a result, the developed non-classical energy equation term, associated
with the prebuckling moment 𝑀𝑦 , becomes a sum of two products, the first being the
product of twist rotation 𝜙𝑥 and curvature 𝑣′′0 of the out-of-plane displacement state, while
the second being the product of minor axis moment 𝑀𝑧 at buckling and twist rotation
𝜙𝑥 . Since the single term of the second order derivative of the minor axis displacement
and the twist rotation in CEM is replaced by two components, the proposed approach is
referred hereafter to the refined energy method (REM). The integral terms of general CEM
and REM solutions are distinguished hereafter by adopting the subscripts cem and rem,
accordingly.

2. Elastic flexural-torsional buckling formulation

2.1. Refined energy equation

The starting point for strain components evaluation of the nonlinear buckling problem
of thin-walled beam-columns is the formulation presented by Gizejowski et al. [13]. The
displacement field relationship developed there enabled to express coupling between the
torsion deformation state and those of bending and axial states, therefore extending the
formulation of Pi and Bradford in [17,18] which neglected the effect of axial deformations
on the torsion state. In the present study, the first step is to formulate the rotation matrix in
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the member deflected configuration, assuming small rotations in that configuration. This
allows to write an approximate, general matrix relationship for the displacement field in
the deflected configuration as:

(2.1)

𝑢(𝑥, 𝑦, 𝑧)
𝑣(𝑥, 𝑦, 𝑧)
𝑤(𝑥, 𝑦, 𝑧)

 = R

d𝑥
𝑦

𝑧

 −

d𝑥 + 𝜔𝜅𝑥 (𝑥)

𝑦

𝑧


where: 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧) – displacements 𝑢, 𝑣, 𝑤 of a member point identified
by the coordinates 𝑥, 𝑦, 𝑧 in the deflected configuration, 𝜔 – sectional warping coordinate,
𝜅𝑥 (𝑥) = (𝜙𝑥) ′ − 𝑥 – coordinate dependent twist along the axis indicated by the subscript
symbol; 𝑓 (. . .) – variable 𝑓 being a function of selected arguments listed in the round
bracket that indicate the coordinates of adopted Cartesian system (in the following, the

arguments are dropped for the convenience of notation), ( 𝑓 ) ′ = d 𝑓
d𝑥
.

The rotation matrix R defined for the deflected configuration in reference to the fixed
Cartesian coordinate system in the initial configuration takes the form:

(2.2) R =


√
1 + 2𝑒 −𝜙𝑧 𝜙𝑦

𝜙𝑧 1 − 1
2
(𝜙𝑥)2 −𝜙𝑥

−𝜙𝑦 𝜙𝑥 1 − 1
2
(𝜙𝑥)2


where: 𝜙𝑥 , 𝜙𝑦 , 𝜙𝑧 – angles of rotation in the deflected configuration with reference to the
initial configuration,

√
1 + 2𝑒d𝑥 ≈ (1 + 𝑒) d𝑥 – fiber length measured along the 𝑥-axis in

the deflected configuration, 𝑒 = 𝑢′0 +
1
2
𝜙2 – normal strain measure of the section fiber

including the bowing effect, 𝜙 =

√︄(
𝜕𝑣

𝜕𝑥

)2
+

(
𝜕𝑤

𝜕𝑥

)2
, 𝑢0 – displacement along the member

axis.
The vector of rotation angles in the deflected configuration may be related to those in

the initial configuration through the cosines direction matrix TR𝜽 as follows:

(2.3)

𝜙𝑥

𝜙𝑧

𝜙𝑦

 =


𝜃𝑥

0
0

 + TR𝜽

[
𝜃𝑧

𝜃𝑦

]
where: TR𝜽 – direction cosines matrix

(2.4) TR𝜽 =


−1
2
𝜃𝑦

1
2
𝜃𝑧

cos 𝜙𝑥 − sin 𝜙𝑥
sin 𝜙𝑥 cos 𝜙𝑥


where: 𝜃𝑥 – angle of twist rotation, 𝜃𝑦 , 𝜃𝑧 – angles of flexural rotations about the member

axis along 𝑦 and 𝑧, respectively, 𝜃𝑦 = arctan
( −𝑤′

0
1 + 𝑢′0

)
, 𝜃𝑧 = arctan

(
𝑣′0
1 + 𝑢′0

)
, 𝑣0, 𝑤0 –

displacements of the member axis along 𝑦 and 𝑧 coordinates, respectively.
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After decomposing the square rotation matrix R into two components, namely into
the vector corresponding to the rigid rotation of d𝑥 and the rectangular rotation matrix
component Ryz corresponding to the section coordinates (𝑦, 𝑧), the displacement field may
be expressed as follows

(2.5)

𝑢

𝑣

𝑤

 =


𝑢′0 +

1
2
𝜙2 − 𝜔𝜅′𝑥

𝜃𝑧 cos 𝜙𝑥 −𝜃𝑦 sin 𝜙𝑥

−
(
𝜃𝑦 cos 𝜙𝑥 + 𝜃𝑧 sin 𝜙𝑥

)

d𝑥 + Ryz

[
𝑦

𝑧

]

The submatrix Ryz of the rotation matrix R takes the following form

(2.6) Ryz =



−
(
𝜃𝑧 cos 𝜙𝑥 − 𝜃𝑦 sin 𝜙𝑥

) (
𝜃𝑦 cos 𝜙𝑥 + 𝜃𝑧 sin 𝜙𝑥

)
−1
2

[
𝜃𝑥 +

1
2

(
𝜃𝑦 𝜃𝑧 − 𝜃𝑦 𝜃𝑧

)]2
−

[
𝜃𝑥 +

1
2

(
𝜃𝑦 𝜃𝑧 − 𝜃𝑦 𝜃𝑧

)]
[
𝜃𝑥 + 12

(
𝜃𝑦 𝜃𝑧 − 𝜃𝑦 𝜃𝑧

)]
−1
2

[
𝜃𝑥 +

1
2

(
𝜃𝑦 𝜃𝑧 − 𝜃𝑦 𝜃𝑧

)]2


where all the framed quantities in this final displacement field relationship are the terms
belonging to the direction cosines matrix TR𝜽 .
Barszcz et al. [1] presented the formulation based on the rotationmatrix developed by Pi

and Bradford in [17,18] with reference to LBA buckling problems of thin-walled members.
Comparison of the displacement field relationship developed in [1] and that presented herein
yields the conclusion that both formulations are identical as far as LBA problems of thin-
walled members are concerned. The difference between the above formulation, presented
also in [13], and that developed by Pi and Bradford in [17, 18] may arise only when the
nonlinear buckling problems (NBA) of thin-walled members are dealt with.
The solutions presented hereafter are related to LBA problems of thin-walled beam-

columns in which the expression for the total potential energy formulation is the sum of the
strain energy𝑈 being a sum of𝑈𝐿 (based on the linear terms of Green strain components,
both normal and shear) and 𝑈𝑁𝐿 (based on the nonlinear term of the Green normal strain
component), and the negative work of applied loads 𝑉 :

(2.7) Π = 𝑈𝐿 +𝑈𝑁𝐿 −𝑉

In-plane transverse loads and/or end moments generate the in-plane bending moment
𝑀𝑦 and the axial force 𝑁 , compressive or tensile. Maintaining all the important terms
of strain energy for a general case of the FTB of thin-walled beam-columns of the I-
bisymmetric open cross-section, then neglecting the terms of higher order then 2 in re-
lation to the postbuckling out-of-plane deformation state components and carrying out
the required calculations for the out-of-plane LBA, the energy components of the total
potential energy Π of H- and I-section beam-columns, under the loads of different values
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in two half-lengths but of symmetrical placement with reference to the mid-section, may
be presented in compression and bending as follows:

𝑈𝐿 =
1
2

𝐿∫
0

[
𝐸𝐼𝑧

(
𝑣′′0

)2 − (
1 − 𝐼𝑧/𝐼𝑦

)
𝐸𝐼𝑦𝑤

′′
0 𝜙𝑥

(
2𝑣′′0 − 𝑤′′

0 𝜙𝑥
)

(2.8)

+ 𝐸𝐼𝑤
(
𝜙′′𝑥

)2 + 𝐺𝐼𝑇 (
𝜙′𝑥

)2] d𝑥
𝑈𝑁𝐿 = −1

2
𝐸𝐴𝑢′0

𝐿∫
0

[ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2] d𝑥
(2.9)

𝑉 =
1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗

[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗(2.10)

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗

[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2
where: 𝐴 – cross-sectional area; remaining symbols according to Fig. 1, where 𝑞𝑧,𝑖 ,𝑄𝑧, 𝑗 –
load components in the first half-length of the member while 𝜓𝑞𝑞𝑧,𝑖 , 𝜓𝑄𝑄𝑧, 𝑗 – correspond-
ing load components for the second half-length; the shear centre displacements correspond
to the right hand rule coordinate system axes 𝑥, 𝑦 and 𝑧 (axis 𝑦 is perpendicular to the
figure plane).

Fig. 1. Coordinate system adopted and general loading pattern in the undeflected configuration

Let us consider the definitions of the axial force 𝑁 = 𝐸𝐴𝑢′0 and the major axis bending
moment 𝑀𝑦 = −𝐸𝐼𝑦𝑤′′

0 , the curvature of which is identified by the second derivative of
the prebuckling displacement component 𝑤0 and defined as follows:

(2.11) 𝑤′′
0 = −

𝑀𝑦

𝐸𝐼𝑦
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Moreover, let us introduce the direct definition of the out-of-plane moment at the
member buckled position:

(2.12) 𝑀𝑧 = 𝐸𝐼𝑧𝑤
′′
0 𝜙𝑥 → 𝑤′′

0 𝜙𝑥 =
𝑀𝑧

𝐸𝐼𝑧

Substituting Eqs. (2.11) and (2.12) to the energy equation (2.7), with contributions
given by Eqs. (2.8)÷(2.10), results in the non-classical energy equation representing the
stationary condition of the total potential energy at buckling:

(2.13)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2] − 𝑁𝛿 [ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2]
+ 𝑘1𝑀𝑦𝛿

(
2𝑣′′0 𝜙𝑥 −

𝑀𝑧

𝐸𝐼𝑧
𝜙𝑥

)}
d𝑥 + 1

2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+

∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗 +

∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+

∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

In the following, beam-columns with simple member natural boundary conditions are
dealt with. The shape functions used hereafter, approximating the out-of-plane displace-
ment and twist rotation are of the well known format that has also been used in the previous
studies [1,5,8,17,23]. The energy equationmay therefore be expressed in terms of unknown
buckled shape constants in relation to the post-buckling displacements:

(2.14) 𝑣0 = 𝑣0𝑠 + 𝑣0𝑎

in which 𝑣0𝑠 = 𝑎1 sin(𝜋𝜉), 𝑣0𝑎 = 𝑎2 sin(2𝜋𝜉)
and

(2.15) 𝜙𝑥 = 𝑎3 sin(𝜋𝜉)

where: 𝜉 – dimensionless coordinate equal to 𝑥/𝐿, 𝑎1, 𝑎2 and 𝑎3 – unknown buckled shape
constants.
Eq. (2.13) is called hereafter as a refined energy equation that provides a basis for

the eigenproblem formulation of FTB problems. Depending on the assumption used, the
major axis moment 𝑀𝑦 might be approximated using 𝑀 II𝑦 or 𝑀 I𝑦 , depending on whether
the obtained solution accounts for the in-plane second order effect on the out-of-plane
bifurcation state, or not. The minor axis moment 𝑀𝑧 might be approximated by using 𝑀 II𝑧
or 𝑀 I𝑧 , or even 𝑀𝑧 = 0, depending on whether all the second order minor axis effects are
accounted for in the out-of-plane bifurcation state, or not.
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2.2. Summary of solutions based on linear or quadratic
eigenproblem formulations

The classical formulation is based on ignoring the prebuckling displacements on the
buckling state (𝑘1 = 1), while the major axis moment 𝑀𝑦 is approximated by 𝑀 I𝑦 and
the minor axis moment 𝑀𝑧 is approximated by either its zero value (leading to the linear
eigenproblem analysis, LEA) or taking it as 𝑀 I𝑧 (leading to the quadratic linear analysis,
QEA) as shown hereafter. Therefore, in both LEA and QEA formulations, the effect of
axial compression on the minor axis bending state is neglected.

2.2.1. Solution based on LEA
Taking 𝑘1 = 1, and approximating the energy equation by taking 𝑀𝑧 = 0 and 𝑀𝑦 = 𝑀 I𝑦

in Eq. (2.13), results in the classical energy equation that has been widely used in the
development of bifurcation solutions of variety of simple and more complex loading
conditions, e.g. Trahair [23]. Such an energy equation is dependent linearly upon the
in-plane moment, the axial force and the in-plane load acting away from the shear centre:

(2.16)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2] + 2𝑀 I𝑦𝛿 (
𝑣′′0 𝜙𝑥

)}
d𝑥

− 1
2
𝑁

𝐿∫
0

𝛿

[ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2] d𝑥
+ 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

The above equation is the basic relationship used in CEM, see Gizejowski et al [8].
The direct use of such an equation leads to the linear eigenproblem analysis (LEA). Using
displacement field approximation given by Eqs. (2.14) and (2.15), the LEA closed form
solution results from the eigenproblem involving the stiffness stability matrix K of size
3 × 3. The solution yields the following stability criterion [8]:

(2.17) 𝐾 (3, 3) −
{
[𝐾 (1, 3)]2

𝐾 (1, 1) + [𝐾 (2, 3)]2

𝐾 (2, 2)

}
= 0

in which 𝐾 (𝑚, 𝑛) are the terms of the stiffness matrix K, multiplied by 2𝐿
𝜋2
and associated

with the vector of unknown buckled shape constants The terms of Eq. (2.17) are as follows:

(2.18) 𝐾 (3, 3) = 𝑖20𝑁𝑇

(
1 − 𝑁

𝑁𝑇

)
𝜁
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(2.19)
[𝐾 (1, 3)]2

𝐾 (1, 1) =

(
𝑀𝑦,𝑠,max2𝐼𝑠

)2
𝑁𝑧

(
1 − 𝑁

𝑁𝑧

)

(2.20)
[𝐾 (2, 3)]2

𝐾 (2, 2) =

(
4𝑀𝑦,𝑎,max2𝐼𝑎

)2
4𝑁𝑧𝑎

(
1 − 𝑁

𝑁𝑧𝑎

)
where: 𝑁𝑇 =

(
𝜋2𝐸𝐼𝑤/𝐿2 + 𝐺𝐼𝑇

)
/𝑖20, 𝑁𝑧 = 𝜋2𝐸𝐼𝑧/𝐿2, 𝑁𝑧𝑎 – second lowest bifurcation

load equal to 4𝑁𝑧 ,

𝜁 = 1 + 𝐶𝑏𝐹 𝑧𝐹

𝑖20𝑁𝑇

(
1 − 𝑁

𝑁𝑇

) ,

𝐶𝑏𝐹 𝑧𝐹 =



2𝐿2

𝜋2

∑︁
𝑖


𝜉𝑞2,𝑖∫

𝜉𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖 sin2 (𝜋𝜉) d𝜉 +
1−𝜉𝑞1,𝑖∫
1−𝜉𝑞2,𝑖

𝜓𝑞,𝑖𝑞𝑧,𝑖𝑧𝑞,𝑖 sin2 (𝜋𝜉) d𝜉


for distributed loads
2𝐿
𝜋2

∑︁
𝑗

{
𝑄𝑧, 𝑗 𝑧𝑄, 𝑗 sin2 (𝜋𝜉 𝑗 ) + 𝜓𝑄, 𝑗𝑄𝑧, 𝑗 𝑧𝑄, 𝑗 sin2

[
𝜋

(
1 − 𝜉 𝑗

) ]}
for concentrated loads

𝑀𝑦,𝑠,max, 𝑀𝑦,𝑎,max – maximum absolute values of symmetric and antisymmetric moment
components, scaling the elementary action field moments 𝑀𝑦,𝑠 (𝜉) and 𝑀𝑦,𝑎 (𝜉), respec-
tively,

𝐼𝑠 =

1∫
0

𝑀𝑦,𝑠 (𝜉)
𝑀𝑦,𝑠,max

sin2 (𝜋𝜉) d𝜉 – symmetric moment integral,

𝐼𝑎 =

1∫
0

𝑀𝑦,𝑎 (𝜉)
𝑀𝑦,𝑎,max

sin(𝜋𝜉) sin(2𝜋𝜉) d𝜉 – antisymmetric moment integral.

The term
[𝐾 (1, 3)]2

𝐾 (1, 1) in Eq. (2.17) represents a decrease in the potential energy equal to

the work done by the first order field moment component 𝑀𝑦,𝑠 (𝜉) as the element deflects
𝑤0 due to the combined effects of the lateral deflection 𝑣0 and twist rotation 𝜙𝑥 . Similarly,

the term
[𝐾 (2, 3)]2

𝐾 (2, 2) represents the work done by the first order field moment component

𝑀𝑦,𝑎 (𝜉).
Finally, the LEA solution takes the form:

(2.21)
(
𝑀𝑦,max

𝐶𝑏𝑐𝑀𝑐𝑟 ,0

)2 1
𝐹2 (𝑁)

= 1

where: 𝑀𝑦,max – maximum moment under the considered loading system, 𝐶𝑏𝑐 – factor
converting an arbitrary moment gradient case into an equivalent uniform moment case,
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𝐹2 (𝑁) =
(
1 − 𝑁

𝑁𝑧

) (
1 − 𝑁

𝑁𝑇

)
– coefficient representing the effect of out-of-plane buckling

under compressive force on the LTB buckling moment.
The equivalent uniform moment factor𝐶𝑏𝑐 is varying with the minor axis critical force

utilization ratio 𝑁/𝑁𝑧 as given below:

(2.22)
1
𝐶𝑏𝑐

=
1
√
𝜁


(
𝑀𝑦,𝑠,max

𝑀𝑦,max

1
𝐶𝑏𝑠,cem

)2
+
1 − 𝑁

𝑁𝑧

1 − 𝑁

𝑁𝑧𝑎

(
𝑀𝑦,𝑎,max

𝑀𝑦,max

1
𝐶𝑏𝑎,cem

)2
0.5

where:
1

𝐶𝑏𝑠,cem
= 2𝐼𝑠 and

1
𝐶𝑏𝑎,cem

= 2𝐼𝑎 – conversion factors for the symmetric and

antisymmetric moment diagram components.
Eq. (2.17) with its 𝐶𝑏𝑐 factor evaluated from (2.22) is of the same form as presented

by Giżejowski et al. [8].

2.2.2. Solution based on QEA
The solution may be obtained in the form of QEA when 𝑘1 =1 in Eq. (2.13), the minor

axis moment 𝑀𝑧 = 𝑀 I𝑧 = −𝑀 I𝑦𝜙. The major axis curvature is evaluated from the second
order differential equilibrium equation:

(2.23) 𝑣′′0 = −
𝑀 I𝑦𝜙 + 𝑁𝑣0

𝐸𝐼𝑧

As a result, the energy equation (2.13) is dependent nonlinearly upon the in-plane stress
resultants, while it remains dependent linearly upon the in-plane load components acting
away from the shear centre:

(2.24)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]
− 𝑀 I𝑦𝛿

(
𝑀 I𝑦𝜙

2
𝑥

𝐸𝐼𝑧
+ 𝑁 2𝑣0𝜙𝑥

𝐸𝐼𝑧

)}
d𝑥 − 1

2
𝑁

𝐿∫
0

{
𝛿

[ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2]} d𝑥
+ 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

The energy equation (2.24) becomes dependent quadratically upon the in-plane stress
resultants, therefore its use leads to the quadratic eigenproblem analysis (QEA). The solu-
tion of energy equation (2.24) yields the stability criterion of the same format as Eq. (2.17)
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but with different structure of the stiffness matrix terms 𝐾 (𝑚, 𝑛) as far as the terms 𝐾 (3, 3)
and off-diagonal terms for 𝑚 ≠ 𝑛 are concerned. As a result, the following holds:

𝐾 (3, 3) = 𝑖20𝑁𝑇

(
1 − 𝑁

𝑁𝑇

)
𝜁 −

(
𝑀𝑦,max

)2
𝑁𝑧

[(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2
2𝐽𝑠 +

(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2
2𝐽𝑎

]
(2.25)

[𝐾 (1, 3)]2

𝐾 (1, 1) =

(
𝑁

𝑁𝑧

)2 (
𝑀𝑦,𝑠,max2𝐼𝑠

)2
𝑁𝑧

(
1 − 𝑁

𝑁𝑧

)(2.26)

[𝐾 (2, 3)]2

𝐾 (2, 2) =

(
𝑁

𝑁𝑧

)2 (
𝑀𝑦,𝑎,max2𝐼𝑎

)2
4𝑁𝑧𝑎

(
1 − 𝑁

𝑁𝑧𝑎

)(2.27)

where: 𝐽𝑠 =
1∫
0

[
𝑀𝑦,𝑠 (𝜉)
𝑀𝑦,𝑠,max

]2
sin2 (𝜋𝜉) d𝜉, 𝐽𝑎 =

1∫
0

[
𝑀𝑦,𝑎 (𝜉)
𝑀𝑦,𝑎,max

]2
sin2 (𝜋𝜉) d𝜉 and the other

unexplained symbols are the same as in Eq. (2.17).
Finally, the solution of Eq. (2.24) takes the form given by Eq. (2.21) in which:

(2.28)
1
𝐶𝑏𝑐

=
1
√
𝜁

{(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2 [(
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑠,rem

)2
+

(
𝑁

𝑁𝑧

1
𝐶𝑏𝑠,cem

)2]

+
(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2 
(
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑎,rem

)2
+
1 − 𝑁

𝑁𝑧

1 − 𝑁

𝑁𝑧𝑎

(
𝑁

𝑁𝑧𝑎

1
𝐶𝑏𝑎,cem

)2

0.5

where:
1

𝐶𝑏𝑠,rem
=
√
2𝐽𝑠 and

1
𝐶𝑏𝑎,rem

=
√
2𝐽𝑎 – conversion factors for the symmetric and

antisymmetric moment diagram components.
The solution based on Eq. (2.24) with its 𝐶𝑏𝑐 factor evaluated from (2.28) seems to

be similar to that given by Bijak [5]. Differences between the Bijak’s solution and that of
present study arise from the power of 𝑁/𝑁𝑧 before the conversion factor 1/𝐶𝑏𝑠,cem squared
and the power of 𝑁/𝑁𝑧𝑎 before 1/𝐶𝑏𝑎,cem squared:

(2.29)
1
𝐶𝑏𝑐

=
1
√
𝜁

{(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2 [(
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑠,rem

)2
+ 𝑁

𝑁𝑧

(
1

𝐶𝑏𝑠,cem

)2]

+
(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2 
(
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑎,rem

)2
+
1 − 𝑁

𝑁𝑧

1 − 𝑁

𝑁𝑧𝑎

𝑁

𝑁𝑧𝑎

(
1

𝐶𝑏𝑎,cem

)2

0.5

Eq. (2.29) contains the terms that are dependent linearly upon 𝑁/𝑁𝑧 and 𝑁/𝑁𝑧𝑎 while
those terms in Eq. (2.28) are being squared. For 𝑁 = 0, both equations convert to that
yielding from the classical TEM.
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In the following subsection, novel solutions are being looked at by using the second
order moments of 𝑀𝑦 = 𝑀 II𝑦 and 𝑀𝑧 = 𝑀 II𝑧 , therefore considering all the other effects
being neglected in the energy equations presented in this section.

2.3. Summary of novel solutions based on the higher order
eigenproblem formulations

When there are used 𝑀𝑧 = 𝑀 II𝑧 and the minor axis curvature is determined from the
differential second order equilibrium equation, the energy equation becomes dependent
nonlinearly upon the in-plane stress resultants, therefore its use leads to the nonlinear
eigenproblem analysis (NEA).
The nonlinear minor axis moment term in Eq. (2.13) takes the form:

(2.30)
𝑀𝑧

𝐸𝐼𝑧
=
𝑀 II𝑧
𝐸𝐼𝑧

= −
𝑀 I𝑦𝜙 + 𝑁𝑣0

𝐸𝐼𝑧

while the term associatedwith𝑀𝑦 in the same equation (2.13) expressed in the postbuckling
displacement field components (𝑣0, 𝜙) yields:

(2.31) 2𝑣′′0 𝜙 = −2
𝑀 II𝑧 𝜙

𝐸𝐼𝑧
= −2

𝑀 I𝑦𝜙 + 𝑁𝑣0
𝐸𝐼𝑧

𝜙

As a result, the non-classical refined second-order energy equation takes the form:

(2.32)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]
− 𝑘1𝛿

[
𝑀 II𝑦

(
𝑀 II𝑧 𝜙𝑥

𝐸𝐼𝑧

)]}
d𝑥 − 1

2
𝑁

𝐿∫
0

{
𝛿

[ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2]} d𝑥
+ 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

The accuracy of FTB solutions based on Eq. (2.32) is dependent upon the approxima-
tions used in evaluation of the in-plane moment 𝑀 II𝑦 and the out-of-plane moment 𝑀 II𝑧 at
buckling. Table 1a presents the summary of different options in approximating the moment
𝑀 II𝑦 , identified by the Roman number I (where I–A used for the second order moment
amplification approximation of 𝑀 II𝑦 = 𝑀 II𝑦,amp and I–B for the second order moment 𝑃 − 𝛿
approximation of 𝑀 II𝑦 = 𝑀 II

𝑦,𝑃−𝛿). Additionally, 𝑁𝑦 = 𝜋2𝐸𝐼𝑦/𝐿2, 𝑁𝑦𝑎 – second lowest
bifurcation load equal to 4𝑁𝑦 .
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Table 1a. Approximations of the second order in-plane field moment 𝑀II𝑦

Symbol Field moment equation

I
A 𝑀II𝑦,amp =

𝑀I𝑦,𝑠

1 − 𝑁

𝑁𝑦

+
𝑀I𝑦,𝑎

1 − 𝑁

𝑁𝑦𝑎

B 𝑀II
𝑦,𝑃−𝛿 = 𝑀I𝑦,𝑠 +

𝑁𝑤I𝑠

1 − 𝑁

𝑁𝑦

+ 𝑀I𝑦,𝑎 + 𝑁𝑤I𝑎

1 − 𝑁

𝑁𝑦𝑎

where:
𝑀I𝑦,𝑠 = 𝑀

I
𝑦,𝑠,supp + 𝑀I𝑦,𝑠,span – symmetric component of the field moment,

𝑀I𝑦,𝑠,supp – field moment produced by the symmetric component of support applied moments,
𝑀I𝑦,𝑠,span – field moment produced by the symmetric component of span loads,
𝑀I𝑦,𝑎 = 𝑀I𝑦,𝑎,supp + 𝑀I𝑦,𝑎,span – antysymmetric component of the field moment,
𝑀I𝑦,𝑎,supp – field moment produced by the antisymmetric component of support moments,
𝑀I𝑦,𝑎,span – field moment produced by the antisymmetric component of span loads,
𝑤I𝑠 = 𝛿I𝑧,𝑠 sin(𝜋𝜉), 𝛿I𝑧,𝑠 – amplitude of the first order single curvature deflected profile for sym-
metric field in-plane moment component,
𝑤I𝑎 = 𝛿I𝑧,𝑎 sin(2𝜋𝜉), 𝛿I𝑧,𝑎 – amplitude of the first order double curvature deflected profile for
antisymmetric field in-plane moment component.

The accuracy of approximate relationships might be checked by comparison of their
maximum moments with that yielding from the exact relationship in meaning of the
second order bending theory. Investigations into the accuracy of the in-plane moment 𝑀𝑦

approximations, for the case of unequal end moments were carried out by Gizejowski and
Stachura [9] and verified by using an exact second order relationship [24]:

(2.33) 𝑀 II𝑦 = 𝑀𝑦𝑀,max

{
cos

(
𝜋

√︄
𝑁

𝑁𝑦

𝜉

)
+

[
𝜓𝑀 cosec

(
𝜋

√︄
𝑁

𝑁𝑦

)
− cot

(
𝜋

√︄
𝑁

𝑁𝑦

)]
sin

(
𝜋

√︄
𝑁

𝑁𝑦

𝜉

)}
where: 𝜓𝑀 = 𝑀𝑦𝑀,min/𝑀𝑦𝑀,max – moment gradient ratio (𝑀𝑦𝑀,min and 𝑀𝑦𝑀,max applied
support moments).
Based on the results of investigations presented in [9], one may conclude that options

I–A and I–B for the approximation of second order in-plane moments are rather close to
each other as far as the maximum moment is considered. Considering the whole range
of the axial force utilization parameter 𝑁/𝑁𝑦 , the solution of FTB problems based on
option I–A seems to be preferable for design applications. The options mentioned above
are considered for the investigations presented hereafter.
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2.4. General solution of non-classical second order energy equation

Since the nonlinear term ofminor axis curvaturemay be evaluated by its decomposition,
the buckling minor axis second moment may be approximated with use of equations given
in Table 1b.

Table 1b. Approximations of the second order out-of-plane field moment 𝑀II𝑧

Symbol Field moment equation

II
A 𝑀II𝑧,amp =

𝑀I𝑧,𝑠

1 − 𝑁

𝑁𝑧

+
𝑀I𝑧,𝑎

1 − 𝑁

𝑁𝑧𝑎

B 𝑀II
𝑧,𝑃−𝛿 = 𝑀I𝑧,𝑠 +

𝑁𝑣I𝑠

1 − 𝑁

𝑁𝑧

+ 𝑀I𝑧,𝑎 + 𝑁𝑣I𝑎

1 − 𝑁

𝑁𝑧𝑎

where:
𝑀II𝑧,amp, 𝑀II𝑦,𝑃−𝛿 – approximations of the second order out-of-plane moments based on the ampli-
fication rule and the 𝑃 − 𝛿 rule, respectively,
𝑀I𝑧,𝑠 = 𝑀

I
𝑦,𝑠𝜙, 𝑀I𝑧,𝑎 = 𝑀I𝑦,𝑎𝜙 – first order out-of-plane moments,

𝑣I𝑠 = 𝛿
I
𝑦,𝑠 sin(𝜋𝜉), 𝛿I𝑦,𝑠 = 𝛿I𝑧,𝑠𝜙 – amplitude of the first order single curvature deflected profile for

symmetric field out-of-plane moment component,
𝑣I𝑎 = 𝛿I𝑦,𝑎 sin(2𝜋𝜉), 𝛿I𝑦,𝑎 = 𝛿I𝑧,𝑎𝜙 – amplitude of the first order double curvature deflected profile
for antisymmetric field out-of-plane moment component.

Hence, the following approximations hold for option II–A and II–B from Table 1b:
– for Option II–A:

(2.34)
𝑀 II𝑧
𝐸𝐼𝑧

=
1
𝐸𝐼𝑧

[
𝑀 I𝑦,𝑠

1 − 𝑁
𝑁𝑧

+
𝑀 I𝑦,𝑎

1 − 𝑁
𝑁𝑧𝑎

]
𝜙𝑥

– for Option II–B:

(2.35)
𝑀 II𝑧
𝐸𝐼𝑧

=
𝑀 II𝑦 𝜙𝑥

𝐸𝐼𝑧

=
1
𝐸𝐼𝑧

𝑀
I
𝑦,𝑠 +

𝑁𝛿I𝑧,𝑠

1 − 𝑁

𝑁𝑧

sin(𝜋𝜉) + 𝑀 I𝑦,𝑎 +
𝑁𝛿I𝑧,𝑎

1 − 𝑁

𝑁𝑧𝑎

sin(2𝜋𝜉)

 𝜙𝑥
The moment terms in the energy equation (2.32) are therefore dependent only upon

one post-buckling displacement component, namely the twist rotation 𝜙𝑥 , instead of the
product of minor axis curvature and twist rotation, like in the energy approaches presented
in section 2.2. As a result, the refined second order energy equation may be formulated in
two ways, presented in the following subsections.
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2.4.1. Options 1 based on NEA

Option 1 in the versions 1a and 1b is based on Eq. (2.34), therefore Eq. (2.29) takes the
form:

(2.36)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]

−𝑘1𝛿


𝑀 II𝑦 𝜙𝑥

𝐸𝐼𝑧

©­­­«
𝑀 I𝑦,𝑠𝜙

1 − 𝑁

𝑁𝑧

+
𝑀 I𝑦,𝑎𝜙𝑥

1 − 𝑁

𝑁𝑧𝑎

ª®®®¬

 d𝑥 −

1
2
𝑁

𝐿∫
0

{[
𝛿
(
𝑣′0

)2 + 𝑖20𝛿 (
𝜙′𝑥

)2]} d𝑥
+ 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

Buckling deformation state in Eq. (2.32) is decoupled since the terms associated with
components (𝑣0, 𝜙𝑥) are independent from each other. Three independent buckling modes
are related to: a) the flexural-torsional mode governing the prediction of the beam-column
buckling state, and two additional modes representing two lowest flexural buckling modes
in pure compression. The matrix representation of the stability criterion corresponding to
Eq. (2.32) means that the said terms are the diagonal terms 𝐾 (1, 1) and 𝐾 (2, 2) of K matrix
of the size 3×3 while the corresponding off-diagonal terms 𝐾 (𝑚, 𝑛) are of zero values (for
𝑚 ≠ 𝑛 and 𝑚, 𝑛 = 1, 2, 3).
Since the second order minor axis moment terms account for the minor axis buckling

modes under compression, the stability criterion for the flexural-torsional buckling based
on the proposed refined energy method is that yielding from 𝐾 (3, 3) equated to zero:

(2.37) 𝛿𝑎3 [𝐾 (3, 3)] 𝑎3 = 0 → 𝐾 (3, 3) = 0

The structure of 𝐾 (3, 3) term depends upon the option used for the approximation of
the in-plane moment 𝑀𝑦 .

Option 1a based on NEA

Adopting option I–A from Table 1a, that is, substituting the amplified first order in-
plane moment 𝑀 II𝑦 = 𝑀 II𝑦,amp to Eq. (2.36), the refined second order energy equation takes
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the form:

(2.38)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]

− 𝑘1
𝐸𝐼𝑧

𝛿


©­­­«
𝑀 I𝑦,𝑠

1 − 𝑁

𝑁𝑦

+
𝑀 I𝑦,𝑎

1 − 𝑁

𝑁𝑦𝑎

ª®®®¬ 𝜙𝑥
©­­­«
𝑀 I𝑦,𝑠𝜙𝑥

1 − 𝑁

𝑁𝑧

+
𝑀 I𝑦,𝑎𝜙𝑥

1 − 𝑁

𝑁𝑧𝑎

ª®®®¬

 d𝑥

− 1
2
𝑁

𝐿∫
0

[
𝛿
(
𝑣′0

)2 + 𝑖20𝛿 (
𝜙′𝑥

)2] d𝑥 + 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗 +

∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2}
= 0

Carrying out the integrations of moment independent terms and multiplying by
2𝐿
𝜋2

leads to the following relationship:

(2.39) 𝐾 (3, 3) = 𝑖20𝑁𝑇

(
1 − 𝑁

𝑁𝑇

)
𝜁

−
𝑘1𝑀

2
𝑦,max

𝑁𝑧


(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2
2𝐽𝑠(

1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

) +

(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2
2𝐽𝑎(

1 − 𝑁

𝑁𝑦𝑎

) (
1 − 𝑁

𝑁𝑧𝑎

)


Hence, the general solution of the Option 1a becomes that of Eq. (2.21) in which 𝐹2 (𝑁)
is replaced by 𝐹3 (𝑁) – coefficient representing the effect of compressive force with regard
to both in-plane and out-of-plane buckling on the LTB buckling moment:

(2.40) 𝐹3 (𝑁) =
(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

) (
1 − 𝑁

𝑁𝑇

)
The conversion factor 𝐶𝑏𝑐 is varying with the major axis critical force utilization ratio

𝑁/𝑁𝑦 , in addition to that of the minor axis critical force utilization ratio 𝑁/𝑁𝑧 :

(2.41)
1
𝐶𝑏𝑐

=

√︄
𝑘1
𝜁


(
𝑀𝑦,𝑠,max

𝑀𝑦,max

1
𝐶𝑏𝑠,rem

)2
+

(
1− 𝑁

𝑁𝑦

) (
1− 𝑁

𝑁𝑧

)
(
1− 𝑁

𝑁𝑦𝑎

) (
1− 𝑁

𝑁𝑧𝑎

) (
𝑀𝑦,𝑎,max

𝑀𝑦,max

1
𝐶𝑏𝑎,rem

)2
0.5
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Option 1b based on NEA
Adopting option I–B from Table 1a, the refined second order energy equation takes the

form:

(2.42)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2]
+ 𝐺𝐼𝑇 𝛿

[ (
𝜙′𝑥

)2] − 𝑘1
𝐸𝐼𝑧

𝛿

{[
𝑀 I𝑦,𝑠 + 𝑀 I𝑦,𝑎 +

𝑁𝛿I𝑧,𝑠

1 − 𝑁

𝑁𝑦

sin
(
𝜋
𝑥

𝐿

)

+
𝑁𝛿I𝑧,𝑎

1 − 𝑁

𝑁𝑦𝑎

sin
(
2𝜋
𝑥

𝐿

)]
𝜙𝑥

©­­­«
𝑀 I𝑦,𝑠𝜙𝑥

1 − 𝑁

𝑁𝑧

+
𝑀 I𝑦,𝑎𝜙𝑥

1 − 𝑁

𝑁𝑧𝑎

ª®®®¬
}}
d𝑥

− 1
2
𝑁

𝐿∫
0

{
𝛿

[ (
𝑣′0

)2 + 𝑖20 (
𝜙′𝑥

)2]} d𝑥 + 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗 +

∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2}
= 0

Carrying out integrations of the moment independent terms in Eq. (2.42) and multiply-

ing by
2𝐿
𝜋2
leads to the following relationship:

(2.43) 𝐾 (3, 3) = 𝑖20𝑁𝑇

(
1 − 𝑁

𝑁𝑇

)
𝜁

−
𝑘1𝑀

2
𝑦,max

𝑁𝑧


(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2 
1

1− 𝑁

𝑁𝑧

(
1

𝐶𝑏𝑠,rem

)2
+ 𝑁

𝑁𝑦

𝜋2𝑐𝛿𝑠(
1− 𝑁

𝑁𝑦

) (
1− 𝑁

𝑁𝑧

) 2𝐽𝑠1


+
(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2 
1

1− 𝑁

𝑁𝑧𝑎

(
1

𝐶𝑏𝑎,rem

)2
+ 𝑁

𝑁𝑦𝑎

𝜋2𝑐𝛿𝑎(
1− 𝑁

𝑁𝑦𝑎

) (
1− 𝑁

𝑁𝑧𝑎

) 2𝐽𝑎1



where: 𝐽𝑠1 =
1∫
0

[
𝑀𝑦,𝑠 (𝜉)
𝑀𝑦,𝑠,max

]
sin3 (𝜋𝜉) d𝜉, 𝐽𝑎1 =

1∫
0

[
𝑀𝑦,𝑎 (𝜉)
𝑀𝑦,𝑎,max

]
sin2 (𝜋𝜉) sin(2𝜋𝜉) d𝜉,
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𝑐𝛿𝑠 =
𝛿𝑧,𝑠𝐸𝐼𝑦

𝑀𝑦,𝑠,max𝐿2
, 𝑐𝛿𝑎 =

𝛿𝑧,𝑎𝐸𝐼𝑦

𝑀𝑦,𝑎,max (𝐿/2)2
.

As a result, the general solution becomes that of Eq. (2.21) inwhich 𝐹2 (𝑁) is replaced by
𝐹3 (𝑁) and the conversion factor𝐶𝑏𝑐 is varying with the major axis critical force utilization
ratio 𝑁/𝑁𝑦 , in addition to that of minor axis critical force utilization ratio 𝑁/𝑁𝑧 . Thus:

(2.44)
1
𝐶𝑏𝑐

=

√︄
𝑘1
𝜁

{(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2 [(
1 − 𝑁

𝑁𝑦

) (
1

𝐶𝑏𝑠,rem

)2
+ 𝑁

𝑁𝑦

𝜋2𝑐𝛿𝑠
1

𝐶𝑏𝑠,rem1

]
+

(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2 1 − 𝑁
𝑁𝑧

1 − 𝑁
𝑁𝑧𝑎

[(
1 − 𝑁

𝑁𝑦

) (
1

𝐶𝑏𝑎,rem

)2
+
1 − 𝑁

𝑁𝑦

1 − 𝑁
𝑁𝑦𝑎

𝑁

𝑁𝑦𝑎

𝜋2𝑐𝛿𝑎
1

𝐶𝑏𝑎,rem1

]}0.5
where:

1
𝐶𝑏𝑠,rem1

= 2𝐽𝑠1 and
1

𝐶𝑏𝑎,rem1
= 2𝐽𝑎1.

The coefficients of first order amplitudes of in-plane prebuckling deflected profiles
for the single curvature of the symmetric field moment component 𝑐𝛿𝑠 and the double
curvature of the antisymmetric field moment component 𝑐𝛿𝑎 are given in Table 2.
The following notation is used in Table 2: 𝛿𝑧,𝑠,max – amplitude of the first order single

curvature deflected profile for symmetric field in-plane moment component, 𝛿𝑧,𝑎,max –
amplitude of the first order double curvature deflected profile for antisymmetric field in-
plane moment component, 𝛿𝑧,𝑎,𝑥=𝐿/4 – displacement at 𝑥 = 𝐿/4 of the first order double
curvature deflected profile for antisymmetric field in-plane moment component.

Table 2. The coefficients of first order amplitudes of in-plane prebuckling deflected profiles

Symbol and scheme of load case

𝑐𝛿𝑠 for
symmetric

deflected profile

𝑐𝛿𝑎 for
antisymmetric
deflected profile

𝛿𝑧,𝑠,max 𝛿𝑧,𝑎,max 𝛿𝑧,𝑎,𝑥=𝐿/4

M 0.125 0.0641 0.0625

q 0.104 0.104 0.104

Q

𝑥0 = 𝐿/2 𝜓𝑄 = 0 0.0833 – –

𝑥0 = 3𝐿/8

𝜓𝑄 ≠ 0

0.102 0.0774 0.0764
𝑥0 = 𝐿/3 0.106 0.0806 0.0798
𝑥0 = 𝐿/4 0.115 0.0833 0.0833
𝑥0 = 𝐿/6 0.120 0.0806 0.0798
𝑥0 = 𝐿/8 0.122 0.0776 0.0764
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The coefficients 𝐶𝑏𝑠,cem, 𝐶𝑏𝑎,cem, 𝐶𝑏𝑠,rem, 𝐶𝑏𝑎,rem as well as 𝐶𝑏𝑠,rem1, 𝐶𝑏𝑎,rem1 are
dependent upon the in-plane moment distribution decomposed into its two components,
symmetric and antisymmetric. Their values are listed in Table 3 and dealt with the same
loading patterns as that considered in Table 2. The last column coefficients𝐶𝑏𝐹 are used for
the evaluation of the term 𝜁 associated with the off-shear load application. This coefficient
becomes equal to zero when the in-span load is applied at the cross section shear centre.

Table 3. The loading pattern dependent coefficients

Loading case
Basic coefficients Additional coefficients

𝐶𝑏𝐹

symbol
Coefficients cem Coefficients rem for option 2

𝐶𝑏𝑠,cem 𝐶𝑏𝑎,cem 𝐶𝑏𝑠,rem 𝐶𝑏𝑎,rem 𝐶𝑏𝑠,rem1 𝐶𝑏𝑎,rem1

M 1 2.78 1 2.77 1.18 4.19 –

q 1.15 1.43 1.13 1.37 1.31 1.94 𝑞𝑧𝐿
2/𝜋2

Q

𝑥0 = 𝐿/2 1.42 – 1.37 – 1.59 – 2𝑄𝑧𝐿/𝜋2

𝑥0 = 3𝐿/8 1.17 1.76 1.14 1.49 1,32 2.22 3.414𝑄𝑧𝐿/𝜋2

𝑥0 = 𝐿/3 1.12 1.74 1.10 1.56 1.27 2.25 3𝑄𝑧𝐿/𝜋2

𝑥0 = 𝐿/4 1.05 1.81 1.04 1.73 1.21 2.47 2𝑄𝑧𝐿/𝜋2

𝑥0 = 𝐿/6 1.01 2.01 1.01 1.98 1.18 2.89 𝑄𝑧𝐿/𝜋2

𝑥0 = 𝐿/8 1.01 2.15 1.01 2.14 1.18 3.18 0.586𝑄𝑧𝐿/𝜋2

2.4.2. Option 2 based on NEA
Option 2 is based on Eq. (2.35), therefore Eq. (2.32) takes the form:

(2.45)
1
2

𝐿∫
0

{
𝐸𝐼𝑧𝛿

[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]
− 𝑘1𝛿

[
𝑀 II𝑦 𝜙𝑥

𝐸𝐼𝑧

(
𝑀 I𝑦,𝑠𝜙𝑥 +

𝑁𝛿I𝑧,𝑠𝜙𝑥

1 − 𝑁

𝑁𝑧

sin
(
𝜋
𝑥

𝐿

)
+ 𝑀 I𝑦,𝑎𝜙 +

𝑁𝛿I𝑧,𝑎𝜙𝑥

1 − 𝑁

𝑁𝑧𝑎

sin
(
2𝜋
𝑥

𝐿

))]}
d𝑥

− 1
2
𝑁

𝐿∫
0

{[
𝛿
(
𝑣′0

)2 + 𝑖20𝛿 (
𝜙′𝑥

)2]} d𝑥 + 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗 +

∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥
+
∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2}
= 0
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It is rational to suggest that the in-plane moment in the form of I–B from Table 1a is
adopted in Eq. (2.45). This results in:

(2.46)
1
2

𝐿∫
0

𝐸𝐼𝑧𝛿
[ (
𝑣′′0

)2] + 𝐸𝐼𝑤𝛿 [ (
𝜙′′𝑥

)2] + 𝐺𝐼𝑇 𝛿 [ (
𝜙′𝑥

)2]

− 𝑘1
𝐸𝐼𝑧

𝛿


𝑀
I
𝑦,𝑠 + 𝑀 I𝑦,𝑎 +

𝑁𝛿I𝑧,𝑠

1 − 𝑁

𝑁𝑦

sin
(
𝜋
𝑥

𝐿

)
+

𝑁𝛿I𝑧,𝑎

1 − 𝑁

𝑁𝑦𝑎

sin
(
2𝜋
𝑥

𝐿

)
×

𝑀
I
𝑦,𝑠 + 𝑀 I𝑦,𝑎 +

𝑁𝛿I𝑧,𝑠

1 − 𝑁

𝑁𝑧

sin
(
𝜋
𝑥

𝐿

)
+

𝑁𝛿I𝑧,𝑎

1 − 𝑁

𝑁𝑧𝑎

sin
(
2𝜋
𝑥

𝐿

) 𝜙
2
𝑥


 d𝑥

− 1
2

𝐿∫
0

[
𝑁𝛿

(
𝑣′0

)2 + 𝑁𝑖20𝛿 (
𝜙′𝑥

)2] d𝑥
+ 1
2


∑︁
𝑖

𝑥𝑞2,𝑖∫
𝑥𝑞1,𝑖

𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝑥𝑄, 𝑗

) ]2
𝜙2𝑥, 𝑗

+
∑︁
𝑖

𝐿−𝑥𝑞1,𝑖∫
𝐿−𝑥𝑞2,𝑖

𝜓𝑞𝑞𝑧,𝑖𝑧𝑞,𝑖𝛿
[
𝜙𝑥,𝑖 (𝑥)

]2 d𝑥 + ∑︁
𝑗

𝜓𝑄𝑄𝑧, 𝑗 𝑧𝑄, 𝑗𝛿
[
𝜙𝑥, 𝑗

(
𝐿 − 𝑥𝑄, 𝑗

) ]2 = 0

Carrying out the calculations as in the Options of 1a and 1b, the general solution
becomes that of Eq. (2.21) with the conversion factor 𝐶𝑏𝑐 derived from the following:

(2.47)
1
𝐶𝑏𝑐

=

√︄
𝑘1
𝜁


(
𝑀𝑦,𝑠,max

𝑀𝑦,max

)2 [(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑠,rem

)2

+
(
2 − 𝑁

𝑁𝑦

− 𝑁

𝑁𝑧

)
𝑁

𝑁𝑦

𝜋2𝑐𝛿𝑠
𝐶𝑏𝑠,rem1

+ 3
4

(
𝑁

𝑁𝑦

)2 (
𝜋2𝑐𝛿𝑠

)2]

+
(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)2 
(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

) (
1

𝐶𝑏𝑎,rem

)2
+

(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧

)
(
1 − 𝑁

𝑁𝑦𝑎

) (
1 − 𝑁

𝑁𝑧𝑎

)

×
((
2 − 𝑁

𝑁𝑦𝑎

− 𝑁

𝑁𝑧𝑎

)
𝑁

𝑁𝑦𝑎

𝜋2𝑐𝛿𝑎
𝐶𝑏𝑎,rem1

+ 1
2

(
𝑁

𝑁𝑦𝑎

)2 (
𝜋2𝑐𝛿𝑎

)2) 

0.5
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3. Summary and conclusions

A novelty of present study yields from a generalization of the energy method by
including the second order effects on the decrease of bending energy at the out-of-plane
buckling state of beam-columns. As a result, the refined form of the energy equation has
been obtained and used for the evaluation of the interaction between the axial force and the
first order bending moment at the flexural-torsional buckling state. The solutions presented
in the paper are valid for an arbitrary asymmetric major axis bending load case in which
the in-plane moment terms represent the symmetric and antisymmetric load components.
The integral moment terms being the product of sinus function of the mean twist rotation
might be calculated either by the direct integration or by a numerical integration as shown
in Serna et al. [21]. The obtained solutions may be directly compared with those existing
in literature for single load cases when the load is symmetric and under a single load
parameter.
Reciprocals of the conversion factors 1/𝐶𝑏𝑐 of the present study for the most robust op-

tion 1a solution are for simple load cases dependent upon the moment parameters
𝑀𝑦,𝑠,max

𝑀𝑦,max

and
𝑀𝑦,𝑎,max

𝑀𝑦,max
as well as the reciprocals of elementary conversion factors 1/𝐶𝑏𝑠,rem and

1/𝐶𝑏𝑠,rem. The elementary conversion factors depend only upon the bendingmoment distri-
butions along the beam-column length for the symmetric and antisymmetric components.
Moreover, the conversion factors depend upon the lowest bifurcation flexural buckling
force utilization ratios 𝑁/𝑁𝑦 and 𝑁/𝑁𝑧 , and the second lowest bifurcation flexural buck-
ling force utilization ratios 𝑁/𝑁𝑦𝑎 and 𝑁/𝑁𝑧𝑎. This is a novelty of the present study since
the solutions presented in earlier investigations and referred to asymmetric loading cases
[8] were developed from the classical energy method in which the effects of prebuckling
displacements and in-plane buckling were neglected. Moment distribution dependent co-
efficients 𝐶𝑏𝑠,cem and 𝐶𝑏𝑎,cem used in the classical energy method were based on LEA
(linear eigenproblem analysis). The coefficients 𝐶𝑏𝑠,rem and 𝐶𝑏𝑎,rem used in the refined
energy method are based on NEA Option 1a. In the other NEA option solutions, coeffi-
cients 𝐶𝑏𝑠,rem and 𝐶𝑏𝑎,rem are used together with 𝐶𝑏𝑠,cem and 𝐶𝑏𝑎,cem. The comparison of
elementary cem and rem equivalent uniform moment factors of 𝐶𝑏𝑠 and 𝐶𝑏𝑎 as well as the
𝐶𝑏𝐹 factor was presented in Table 3 of this paper. One may notice that coefficients 𝐶𝑏𝑠,cem
and 𝐶𝑏𝑎,cem are generally of a higher value than those of 𝐶𝑏𝑠,rem and 𝐶𝑏𝑎,rem for all the
considered loading cases shown in Table 3, especially for the loading cases dominated by
an antisymmetric component. On the other hand, the energy term of the off-shear centre
span loads is independent from the distribution of bending moment components, therefore
factors 𝐶𝑏𝐹 of present study are the same as those from earlier studies, regardless whether
the energy method is classical or refined to its non-classical form as presented in this study.
For simple boundary conditions considered in this study, the following notationsmay be

used 𝑁/𝑁𝑦 = (1 − 𝑘1) (𝑁/𝑁𝑧), 𝑁/𝑁𝑦𝑎 = (1 − 𝑘1) (𝑁/𝑁𝑧𝑎), therefore solutions based on
Eq. (2.32) may be expressed as a function of 𝑘1 and 𝑁/𝑁𝑧 . The general Option 1a solution,
according to Eq. (2.38), may be used for comparing the results with those obtained in
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earlier analytical studies, e.g. for load cases presented in [8], namely end moments (EMs),
half-span unequal uniformly distributed loads (UDLs) and half-span unequal concentrated
loads (CLs), the inequality of which in the half-spans is identified by the load factors 𝜓𝑀 ,
𝜓𝑞 , 𝜓𝑄, cf. Fig. 1. Comparing constants 𝐶𝑏𝑠,rem and 𝐶𝑏𝑎,rem of present study with those
of 𝐶𝑏𝑠,cem and 𝐶𝑏𝑎,cem given in [8] and obtained from the classical energy method leads
to the conclusion that for extreme symmetric or antisymmetric cases, the elastic flexural-
torsional buckling limit curves (𝑀𝑦 − 𝑁)𝑐𝑟 of present study, based on the Option 1a for
the non-classical energy method in which 𝑘1 = 1, are placed below those corresponding
to the classical energy method. On the other hand, the solution of present non-classical
energy method gives, for 𝑘1 = 0, the values of 1/𝐶𝑏𝑐 = 0, therefore 𝐶𝑏𝑐 = ∞, i.e. the
lateral-flexural mode seems not to be possible and only the buckling modes possible are
those related to the axial compression.
The classical solution is based on the assumption that the effect of prebuckling dis-

placements along 𝑧 − 𝑧 axis, resulting from the bending action about 𝑦 − 𝑦 axis and the
second order effects in the form of amplification of first order moments or according to
𝑃 − 𝛿 rule, may be neglected. Such an assumption is valid only for beam-columns laterally
and torsionally unrestrained (ULT) between end points and having a narrow flange I-section
(NFI). In order to account for the effect of prebuckling displacements and second order
effects, one has to use the energy equation derived from the displacement field in which
the circular trigonometric functions of twist rotation are maintained up to the final stage
of the strain energy derivation as shown in [13] and used in this study. Such an approach
is desired for beam-columns restrained laterally and torsionally (RLT) between end points
and/or having wide flange I-sections (WFI). The classical FTBmodel seems therefore to be
too conservative, especially in the situations referred to RLT and WFI. The conservatism
is more and more visible when the second moment of inertia ratio 𝐼𝑧/𝐼𝑦 is much closer
to unity than to its zero value. At the extreme situation of 𝐼𝑧/𝐼𝑦 close to unity, the critical
moment becomes so high that the buckling state is related only to compression, regardless
the level of prebuckling bending action.
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Udoskonalona metoda energetyczna sprężystego wyboczenia
giętno-skrętnego stalowych elementów ściskanych i zginanych

o przekroju dwuteowym
Część I: Sformułowanie i rozwiązanie

Słowa kluczowe: stalowa belka-słup, dwuteownik bisymetryczny, zachowanie sprężyste, wybocze-
nie giętno-skrętne, klasyczna metoda energetyczna, udoskonalona metoda energe-
tyczna, rozwiązania analityczne

Streszczenie:

Rozwiązania w postaci zamkniętej dla wyboczenia giętno-skrętnego (FTB) sprężystych belek-
słupów można uzyskać tylko dla prostych warunków brzegowych oraz przypadku równomiernego
zginania i ściskania. Przypadki zmiennego momentu zginającego wymagają zastosowania przy-
bliżonych metod analitycznych lub numerycznych. Badania przedstawione w niniejszym artykule
dotyczą analitycznej metody energetycznej, stosowanej dla dowolnych przypadków asymetrycznych
obciążeń poprzecznych, wywołujących nierównomierny moment zginający. Część I prezentowa-
nego artykułu jest w całości poświęcona badaniom teoretycznym nad energetyczną formułą utraty
stateczności z płaszczyzny zginania i jej ogólnemu rozwiązaniu. Dla wygody obliczeń obciążenie
i wykres momentów zginających przedstawiono jako superpozycję dwóch składowych: symetrycz-
nej i antysymetrycznej. Opracowano podstawową postać nieklasycznego (udoskonalonego) równania
energetycznego. Jest ono funkcjonałem zależnym od iloczynów odkształceń stanu przedwybocze-
niowego, przemieszczeń osi pręta i ich pochodnych, odpowiednio – 𝑢0 i 𝑤0, oraz składowych stanu
odkształcenia pokrytycznego, przemieszczenia z płaszczyzny zginania przedkrytycznego i kąta skrę-
cenia, odpowiednio – 𝑣0 i 𝜙𝑥 . Przemieszczenia przedwyboczeniowe 𝑢0 osi pręta i 𝑤0 w płaszczyźnie
zginania są znane i mogą być powiązane z siłą osiową 𝑁 i momentem zginającym względem osi
głównej 𝑀𝑦 otrzymanymi z analizy pierwszego rzędu (LA). Składowe stanu deformacji 𝑣0 i 𝜙𝑥
z płaszczyzny płaskiego stanu zginania oraz ich pochodne są niewiadomymi umożliwiającymi sfor-
mułowanie problemu stateczności jako problemuwartości własnych (LBA).W artykule, po pierwsze,
poszukiwane jest rozwiązanie stanu wyboczenia poprzez przedstawienie podstawowej postaci nie-
klasycznego równania energetycznego w kilku wariantach, zależnych od aproksymacji momentu
𝑀𝑧 , a mianowicie klasycznego, prowadzącego do analizy liniowego problemu własnego (LEA)
i kwadratowego problemu własnego (QEA) oraz innych form prowadzących do nieliniowych analiz
problemów własnych (NEA). Nowe formy to te, dla których równanie stateczności zależy tylko od
kąta skręcenia i jego pochodnych. Takie udoskonalenie jest możliwe, gdy do zginania z płaszczy-
zny zastosowane zostanie równanie różniczkowe drugiego rzędu, za pomocą którego krzywizna osi
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słabszej jest bezpośrednio powiązana z kątem skręcenia. Po drugie, uwzględniono efekt sprzężenia
form wyboczenia w płaszczyźnie i z płaszczyzny zginania przedwyboczeniowego przez wprowadze-
nie przybliżonych zależności zginania drugiego rzędu. Dzięki uwzględnieniu tych efektów znacznie
poprawiono dokładność klasycznej metody energetycznej rozwiązywania problemów FTB elemen-
tów ściskanych i zginanych w płaszczyźnie większej bezwładności przekroju, zarówno w wypadku
przekroju dwuteowego H, jak i I. Wyniki tej części są wykorzystywane w Części II, dotyczącej
porównania i weryfikacji rozwiązań uzyskanych w formie zamkniętej w Części I artykułu.
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