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Research paper

Calculation of second-order effects in columns –
applications and examples

Janusz Pędziwiatr1, Michał Musiał2

Abstract: Standard PN-EN 1992-1-1 for designing reinforced concrete structures gives a major priority
to the issues relating to second-order effects, but presents in detail only two approximate calculation
methods: the nominal stiffness method and the nominal curvature method. As regards the general
method, only certain requirements and suggestions are provided. In typical situations, when the ap-
propriate assumptions are satisfied, the approximate methods yield satisfactory results. However, in
engineering practice one can come across several cases (e.g. very tall columns, columns with a can-
tilever for a gantry girder, and floor joists) in which the approximate methods will prove unreliable.
This paper presents and discusses a procedural algorithm for analysing second-order effects using the
general method. The algorithm is employed to perform exemplary calculations and their results are
compared with the results yielded by the approximate methods commonly used by engineers. Moreover,
areas in which the approximate methods can be unreliable are indicated. The analyses have confirmed
the significant advantage of the general method over the approximate methods. Therefore it is worth
popularizing this method, the more so that its calculation procedures can be to a large extent automated
and dedicated computer programs can be developed.
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1. Introduction

Standard [1] devotes much attention to second-order effects as applying to slender
columns, and even to beams. When designing cross sections, the second-order effects can
be reduced to the displacements of the axes of structural members. In classical statics
the principle of solidification, which disregards the effect of load-induced strains on the
internal forces, holds good. But this simplification cannot be applied to slender members,
which tall columns usually are.
Even though standard [1] provides several general guidelines and requirements, in

practical terms only two approximate calculation methods – the nominal stiffness method
and the nominal curvature – are described. The first of the two methods is similar to the
one found in old standard [2] which had been in force before Eurocodes were adopted in
Poland. Owing to the above and the method’s greater universality it has been more often
used in engineering practice. For rather typical situations the results yielded by the two
methods are satisfactory, but in more complex cases, e.g. very tall columns or stepped
columns, they fail. It should be noted that there have been attempts to refine the methods
proposed by standard [1]. One should mention here the method proposed by Klempka and
Knauff in [3], which takes into account the main assumptions of standard [1] and is based
on the incremental analysis using numerical integration. The method takes into account
changes in column stiffness, resulting from strain increments.
The fact that there are no publications which would explain the principles of ap-

proximate methods poses a practical difficulty. Sometimes, especially when ready-made
computer software is used, this leads to serious errors. Therefore it is essential to have good
knowledge of all the assumptions and the consequent limitations lying at the basis of the
simplified methods.
Nevertheless, it should be noted that there are available publications (e.g. [4]) highly

attractive for practicing engineers owing to the way in which design problems are presented
and solved (algorithms, nomographs, tables).
As regards the nominal stiffness method, one should bear in mind the following facts:
– One of the principal parameters is (critical) buckling force 𝑁𝐵 defined as follows:

(1.1) 𝑁𝐵 =
𝜋2𝐸𝐼

𝑙20

where: EI – bending stiffness, 𝑙0 – the buckling length of the column.
The buckling force has no physical sense, but only a mathematical sense. As a matter

of fact, for different static systems it has a different value solely in order that the differential
equation yields nonzero solutions [5]. This comes down to the condition that the determi-
nant of the main system (the so-called indeterminate system) of equations for calculating
integration constants must equal zero. Therefore in order to simplify and generalize the
calculation procedures the notion of buckling length 𝑙0 was introduced, whereby Eq. (1.1)
can be used in all situations. Obviously, also the buckling length has no explicit physical
interpretation (it does not stand for sections of the sinusoid!).
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– The design bendingmoment (𝑀𝐸𝑑) which takes into account the second-order effects
is defined by the relation:

(1.2) 𝑀𝐸𝑑 = 𝑀0𝐸𝑑

(
1 + 𝛽

𝑁𝐵

𝑁𝐸𝑑
− 1

)
where:𝑀0𝐸𝑑 – a first-order bendingmoment, 𝛽 – a coefficient dependent on the distribution
of first-order and second-order bending moments, 𝑁𝐸𝑑 – the design axial force.
If 𝛽 = 1 (described in the standard as a rational simplification) is used in Eq. (1.2),

then it becomes clear that the end value of the moment is the sum of an infinite geometric
progression with ratio 𝑞 = 𝑁𝐸𝑑/𝑁𝐵. This progression is convergent when 𝑞 < 1. The
other possible standard values of 𝛽 (from the interval of 0.82÷1.23) are used only for
a modification to take into account the distribution of moments. Actually, tracing the
successive increments in the moments [6] for a pinned-pinned column with a constant
stiffness and a constant first-order moment along its whole length, in the middle of the
column’s height one gets a sequence very similar to a geometric progression. If, however,
the paths of the moments and especially, the mode of support differ from the above, this
sequence no longer resembles a geometric progression. Consequently, the conditions for the
convergence of this sequence and the sum of the latter should be estimated in a different way.
– The previously described assumptions concerning the estimation of the increment in
the moments can be treated as realistic to some degree only when it is additionally
assumed that the column’s stiffness is constant.

But here other difficulties arise. The stiffness of the eccentrically compressed cross
section depends on the applied force and the moment. Figure 1 shows exemplary graphs of
stiffness versus bending moment for selected values of axial forces and bending moments.

Fig. 1. Relative bending moment 𝑚 versus relative stiffness ei for selected values of force 𝑛

In order to ensure greater generality, dimensionless coordinates were used. The relative
values of the force 𝑛, bending moment 𝑚 and stiffness ei were defined as follows:

𝑛 =
𝑁𝐸𝑑

𝑓𝑐𝑑𝑏𝑑
(1.3)
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𝑚 =
𝑀𝐸𝑑

𝑓𝑐𝑑𝑏𝑑
2(1.4)

𝑒𝑖 =
𝐸𝐼

𝑓𝑐𝑑𝑏𝑑
3 =

𝑚

𝜅𝑑
(1.5)

where: 𝑓𝑐𝑑 – the design compressive strength of the concrete, 𝑏 – the width of the column
cross section, 𝑑 – the effective height of the column cross section, 𝜅 – the local curvature
of the axis of the beam.
In the nominal stiffness method, stiffness can be assumed as constant and given by the

formula:

(1.6) 𝐸𝐼 = 𝐾𝑐𝐸𝑐𝑑 𝐼𝑐 + 𝐸𝑠 𝐼𝑠

where: 𝐾𝑐 – a coefficient dependent on the effects of cracking, creep and so on, 𝐸𝑐𝑑 – the
design E-modulus of the concrete, 𝐼𝑐 – the moment of inertia of the concrete cross section,
𝐸𝑠 – the E-modulus of the steel, 𝐼𝑠 – the moment of inertia of the reinforcement steel.
If the moment is invariable along the column height and the column is cracked, the

above estimation, although highly conservative, can be regarded as dependable. If, however,
we are dealing with a fixed column subjected to a strong axial force and to a linearly variable
moment, the reliability of this estimation sharply decreases. This is illustrated in Fig. 2 [7].
The diagram was produced for overall reinforcement ratio 𝜌 = 2%. The reinforcement ratio
at the less compressed edge (𝜌1) differed from the one at the more compressed edge (𝜌2).

Fig. 2. Dependence between strain in more compressed concrete fibres and relative stiffness
(for 𝜌 = 𝜌1 + 𝜌2 = 2% and 𝑛 = 1)

The solid line in Fig. 2 represents the relative stiffness calculated from Eq. (1.6),
assuming that the coefficient 𝑘2 dependent on the longitudinal force and slenderness, used
to calculate coefficient𝐾𝑐 , reaches themaximumvalue of 0.2 [1]. The dashed lines represent
changes in stiffness as a function of the strain in the concrete for three configurations of
reinforcement in the cross section: favourable configuration – 𝜌2 = 1.5% in the more
compressed zone, symmetrical configuration – 𝜌1 = 𝜌2 = 1%, unfavourable configuration
– 𝜌2 = 0.5% in the more compressed zone.
Two important conclusions emerge from the above. The nominal stiffness corresponds

to the symmetrically reinforced cross section in which the strain in the concrete amounts
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to the plastic strain (along the whole length of the column). In this method the effect of the
reinforcement locations is completely disregarded (the less compressed location and the
more compressed one are treated equally). When most of the reinforcement is placed in the
more compressed zone (the favourable configuration), this results in considerably greater
stiffness of the cross section. In the case of the reverse reinforcement configuration, the
stiffness is even lower than the one calculated from Eq. (1.6) for each stress intensity level.
The second of the approximate methods (the nominal curvature method) consists in

adding up the first-order moment and the moment resulting from the appearance of second-
order eccentricity 𝑒2. The latter is originally determined as the displacement of the axis
of a pinned-pinned beam in the middle of the column height (as for a constant first-order
moment). Using Euler’s solution, after transformations one gets the following dependence
between curvature 𝜅 and the eccentricity:

(1.7) 𝑒2 = 𝜅
𝑙2

𝜋2

In order to generalize the dependence to cover other cases of support or moment paths
it is enough to replace 𝑙 with 𝑙0 and 𝜋2 with 𝑐 – similarly as in the case of the nominal
stiffness method.
Initial curvature 𝜅0 is determined in accordance with the assumptions illustrated

in Fig. 3.

Fig. 3. Schematic of cross section and strain configuration
for determining 𝜅0

It is assumed that one of the reinforcements is in compression while the other one is in
tension and that both have just reached plastic strain 𝜀𝑦𝑑 . It is also assumed that 𝑎/𝑑 = 0.1.
This leads to the relation:

(1.8) 𝜅0 =
𝑓𝑦𝑑

𝐸𝑠

1
0.45𝑑
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After completions taking into account the effect of creep (𝐾𝜑) and that of the axial
force on stiffness (𝐾𝑟 ) one gets:

(1.9) 𝑒2 = 𝜅0
𝑙20
𝑐
𝐾𝑟𝐾𝜑 =

𝑓𝑦𝑑

𝐸𝑠

1
0.45𝑑

𝑙20
𝑐
𝐾𝑟𝐾𝜑

Coefficient 𝐾𝜑 is purely empirical and 𝐾𝑟 is defined by the formula:

(1.10) 𝐾𝑟 =
𝑛𝑢 − 𝑛
𝑛𝑢 − 𝑛bal

≤ 1

Also the nominal curvature method is based on greatly simplified solutions derived
from the Euler beam model. This particularly applies to the use of the notion of the
design column length. The nominal curvature method to a higher degree (coefficient
𝐾𝑟 ) takes into account the effect of the force on the stiffness (curvature) of the cross
section than the nominal stiffness method. According to the assumptions, the maximum
curvature occurs when both the reinforcements are mobilized and it linearly decreases
to zero when the whole cross section is in compression. This approximation departs
from reality and in Fig. 4 is represented by the straight line. Relative forces 𝑛bal and
𝑛𝑢 , respectively, correspond to the above situations. Relative force 𝑛bal corresponds to the
maximummoment which the cross section can bear. It can be determined by independently
plotting envelope curves (of interactions) for specific conditions. Standard [1] specifies
𝑛bal = 0.4. If the concrete is of higher grade than C50/60, then 𝑛bal = 0.5. As the concrete
grade increases, 𝑛bal decreases.Moreover, one should exercise caution when calculating 𝑛𝑢 .
The formulas given in standard [1] assume that under axial compression no reinforcement
is mobilized. However, the maximum strains in the concrete when the whole cross section
is in compression are limited to 𝜀𝑐3. The latter is higher than 𝜀𝑦𝑑 only for high concrete
grades. In the case of common concrete grades, the reinforcement in this system is only
partially mobilized (𝜎𝑠 = 𝜀𝑐3𝐸𝑠 < 𝑓𝑦𝑑).

Fig. 4. Differences between envelope curves for symmetrical and asymmetrical
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Summing up, it can be stated that:
– The fact that the method is based on the simplest Euler beam model and its modi-
fication is limited to the use of the fictional buckling length and the replacement of
𝜋2 by slightly more universal coefficient 𝑐 whose values range from 8 to 10 raises
substantial doubts.

– The adoption of the strain system as shown in Fig. 3 for determining the maximum
curvature is justified, even though there are situations when the curvature can be
greater [7] (but these are extreme conditions). However, the relation expressed by
Eq. (1.10) raises doubts. It implies a much quicker decrease in curvature (as the axial
force increases) than it is the case in reality.

– For the already mentioned reasons the method is practically limited to symmetrically
reinforced cross sections.

2. Gist of general method and relevant procedural
algorithms

As opposed to the nominal stiffness and curvature methods, there are no reservations
concerning the general method. However, the method is much less exhaustively described
in standard [1]. Practically one can find there only general guidelines and recommen-
dations. Neither can one find exhaustive descriptions in the available studies and other
publications [8, 9]. The opinion prevails that because of its requirements the method is
complicated. But this is not true. The work expenditure in this case is greater, but the
results better describe the actual behaviour of the column.
The general method algorithms are to enable the solution of the basic differential

equation describing the column axis displacements as a function of changing moments
and the corresponding stiffness. In other words, the dependence between the local load
and the local curvature must be the basis for the calculations. It must take into account
the behaviour of the cross section, and so the onset of cracking and the yielding of the
concrete and the steel. Another important issue is how to solve the differential equation with
these dependences taken into account. A solution in the form describing the displacements
of the whole axis would require highly complicated computer programs. The alternative
recommended by the standard is to use the finite difference method which enables one to
determine the values of displacements and moments in selected cross sections.
In the case of the general method, changes in column axis displacements are traced on

a continuous basis [11]. Whereas the simplified methods limit themselves to the determi-
nation of the final state. The tracing simply consists in successive iterations which can lead
to a situation in which the column (the steel or the concrete) will fail or the internal force
will stabilize at a safe level. Consequently, it is not necessary to introduce assumptions
about the shape of the beam’s axis and the character of the sequence of displacements (a
geometric progression or other) into the calculations and there are no notions of the design
length or the buckling force.
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As opposed to members in bending, the curvature of the axis depends on not only the
moment value, but also the axial force value. This entails increased work expenditure. In
practice it is worth working out a solution using the already mentioned relative dimension-
less parameters: 𝑚, 𝑛 and 𝜅𝑑 (bending moment, axial force and curvature, respectively),
whereby it will be possible to use ready-made solutions when analysing other cases. The
calculations are performed for appropriate steel and concrete models. The models can be
highly advanced, but such as the ones shown in Fig. 5 are sufficient.

(a) (b)
Fig. 5. Stress-strain dependences for concrete (a) and steel (b), assumed for moment-curvature

dependence calculations

The𝑚–𝜅𝑑 dependence is generated for the assumed proper 𝑛, the specific reinforcement
ratios 𝜌1 and 𝜌2, the concrete strength class and the 𝑎/𝑑 ratio. The variable is the strain
in the edge concrete fibres in compression. Its minimal value corresponds to the axial
compression of the cross section and its maximum value is equal to 𝜀𝑐𝑢3. Depending on the
value of relative force 𝑛, one goes in this way through the different stages in the behaviour
of the cross section, such as:
1) the whole cross section is being uniformly compressed;
2) the cross section is being compressed, but not uniformly;
3) a tension zone appears;
4) a crack appears, but the concrete and both the steels behave elastically;
5) the concrete begins yielding and both the steels remain within the elastic region;
6) the concrete continues to yield and the steel yields in the tension zone;
7) the edge concrete fibres reach strain equal to 𝜀𝑐𝑢3, which ends the calculations.
Obviously there are many more possible paths [7]. There can be such paths in which

cracking will never occur or both the steels will yield. At each stage, using the law of
flat sections and the equations of equilibrium of forces one determines the strains and
forces in the concrete and in the reinforcement. On this basis one can already calculate
the corresponding moment and curvature. A sample of the results of such calculations,
covering the range from the compression of the entire cross section through the appearance
of tension and cracking to the yielding of the steel in tension, is presented in Table 1.
As the strain in the concrete at the more compressed edge (𝜀𝑐) continues to increase, the
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concrete yields gradually until the maximum value of 𝑚 and minimal relative strength
𝑚

𝜅𝑑
are reached. The following notations are used in Table 1: 𝜀𝑐1 – the strain in the concrete
at the less compressed edge, 𝜉 – the relative height of the compression zone, 𝜀𝑠1/𝜀𝑠2 –
the strain in the less/more compressed reinforcement, 𝑛𝑐1/𝑛𝑐2 – the relative force in the
less/more compressed concrete, 𝑛𝑠1/𝑛𝑠2 – the relative force in the less/more compressed
steel. Compressive actions and tensile actions were assumed to be respectively positive and
negative.

Table 1. Sample results of calculations of changes in cross section stiffness

𝜀𝑐 𝜀𝑐1 𝜉 𝜀𝑠2 𝜀𝑠1
𝑛𝑐1 𝑛𝑠1

𝑚 𝜅𝑑 · 103 𝑚

𝜅𝑑 Remarks𝑛𝑐2 𝑛𝑠2

[‰] [‰] [–] [‰] [‰] [–] [–] [–] [–] [–]

0.2 0.0512 0.191 0.061
0.0312 0.006

0.014 0.139 98
0.045 0.018

0.25 0.0012 0.234 0.017
0.0007 0.002

0.023 0.233 98
0.076 0.022

0.26 –0.0088 1.03 0.243 0.008
–0.0001 0.001

0.025 0.252 98
0.077 0.023

0.30 –0.0488 0.92 0.278 –0.027
–0.0021 –0.003

0.032 0.327 98
0.079 0.026

0.35 –0.0988 0.83 0.322 –0.071
–0.0066 –0.007

0.041 0.421 98
0.083 0.030

0.37 –0.1170 0.81 0.338 –0.087
–0.0086 –0.008

0.045
0.455 98

crack0.085 0.032

0.39 0.73 0.350 –0.142
–0.013

0.528 85
0.081 0.033

0.60 0.55 0.528 –0.478
–0.045

0.077 1.078 71
0.095 0.049

0.80 0.49 0.692 –0.826
–0.077

0.108 1.626 66
0.112 0.065

1.00 0.46 0.854 –1.184
–0.111

0.139 2.184 63
0.131 0.080

1.20 0.44 1.017 –1.549
–0.145

0.170 2.749 62
0.150 0.095

1.40 0.42 1.179 –1.917
–0.179

0.201 3.317 61
0.169 0.110

1.54 0.42 1.292 –2.175
–0.203

0.223 3.715 60 yielding
0.182 0.121



280 J. PĘDZIWIATR, M. MUSIAŁ

Exemplary 𝑚 − 𝜅𝑑 and 𝜅𝑑 −𝑚 dependences are shown in Fig. 6. If computer software
is used, one can obtain analytical forms of the relative moment-curvature dependence. The
forms differ depending on the cross section strength utilization. They are different at the
stage preceding cracking and different after cracking or after any of the steels yields or
after the concrete yields.

(a) (b)
Fig. 6. Exemplary 𝑚–𝜅𝑑 (a) and 𝜅𝑑–𝑚 (b) dependences

In the next step the finite difference method is used. The basic differential equation is
written as follows:

(2.1) 𝜅𝑖𝑑 =
𝑤𝑖−1 − 2𝑤𝑖 + 𝑤𝑖+1

𝑎2
𝑑 = 𝑚𝑖

𝑓𝑐𝑑𝑏𝑑
3

𝐸𝐼

The procedural algorithm can be presented as follows:
1) divide the column axis into sections each with length 𝑎 to obtain selected places
where the values of displacements 𝑤𝑖 and relative moment 𝑚𝑖 will be determined,

2) calculate the values of the relative first-order moments in these places,
3) determine the relative curvatures corresponding to the moments on the basis of the
plotted 𝑚–𝜅𝑑 dependence,

4) calculate the displacements (𝑤𝑖) of the points using appropriate dependences, the
finite difference method and the boundary conditions (for a corbel column and
a pinned-pinned column they are given in [7]),

5) calculate the moment increments caused by the displacements and the values of the
current moments,

6) repeat the procedure for new moments,
7) perform further iterations until the differences in moment increments are negligibly
small or it turns out that the load-bearing capacity has been exceeded.

The above processes can be easily automated using computer programs.
Figure 7 shows the results of consecutive iterations for a certain column [7]. Case c

differs from case b in a considerable increase in the moment in the lower node. This leads
to the failure of the whole column – its load capacity 𝑚𝑅𝑑 = 0.25 is exceeded.
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(a) (b) (c)
Fig. 7. Column loading diagram (a) and results of exemplary analysis for convergent sequence (b)

and divergent sequence (c)

3. Examples and comparison

Exemplary analyses of the second-order effects were carried out for a tall corbel column
(used in, e.g., high bay racked warehouses) and a stepped column (e.g. a column with
a cantilever for a gantry girder) with the vertical force and the horizontal force on the
intermediate cantilever.

3.1. Example 1 – tall column loaded with axial force in upper node
and uniformly distributed horizontal force

The analysed corbel column and its cross section are shown in Fig. 8. The column
was made of concrete C30/37 and reinforced with steel with characteristic yield point
𝑓𝑦𝑘 = 500 MPa. The longitudinal reinforcement is symmetrical: 𝜌1 = 𝜌2 = 1.0%. The
vertical axial load amounts to 𝐹 = 200 kN and the horizontal load uniformly distributed

Fig. 8. Loading diagram and cross section of column analysed in example 1
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along the column height amounts to 𝑞 = 3.6 kN/m. Thus the maximum first-order moment
in the column fixing is equal to:

(3.1) 𝑀0𝐸𝑑 = 0.5 · 𝑞𝑑 · 𝑙2 = 0.5 · 3.6 · 242 = 1036.8 kNm

The column’s resistance to bending is equal to 𝑀𝑅𝑑 = 1226.6 kN·m.
In the considered case the second-order effects are produced solely by the vertical force

acting at the eccentricity resulting from the column axis displacement caused by wind
pressure. According to this paper, one can consider the use of the three methods.

3.1.1. The nominal stiffness method
This method is out of the question since the second-order effects do not apply to

moments produced by wind pressure.

3.1.2. The nominal curvature method
Thismethod can be used as the column is symmetrically reinforced. The initial curvature

amounts to:

(3.2) 𝜅 =
1
𝑟0

=
𝑓𝑦𝑑

𝐸𝑠 · 0.45𝑑
=

435
200 · 0.45 · 0.75 · 10

−3 = 6.44 · 10−3m−1

If the long-term effects are disregarded, one gets:

(3.3)
1
𝑟0

=
1
𝑟
= 6.44 · 10−3m−1

The deflection of the column axis end is equal to:

(3.4) 𝑒2 =
1
𝑟

𝑙20
𝑐

= 6.44 · 10−3 · 48
2

10
= 1.48m

Thus the total moment amounts to:

(3.5) 𝑀𝐸𝑑 = 𝑀0𝐸𝑑 + 𝑁𝐸𝑑 · 𝑒2 = 1037 + 200 · 1.48 = 1333 kNm > 𝑀𝑅𝑑

Conclusion: the column will fail.

3.1.3. The general method
The graphs of the 𝑚− 𝜅𝑑 dependence together with the relevant equations are shown in

Fig. 9, while the values of the relative moment in the column fixing and the displacements
of the column’s upper node are presented in Table 2.
The ultimate value of the bending moment will amount to:

(3.6) 𝑀𝐸𝑑 = 𝑚 𝑓𝑐𝑑𝑏𝑑
2 = 0.1911 · 21.4 · 0.5 · 0.752 = 1150 kNm < 𝑀𝑅𝑑

This means that the column will bear these loads. The difference between the results
yielded by the general method and the ones yielded by the nominal curvature method is
not large (about 16%), but a decisive one. If, however, the axial force were stronger, the
difference would sharply increase.
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Fig. 9. Graphs of 𝑚–𝜅𝑑 dependence

Table 2. Results of successive iterations

Iteration
Relative fixing moment 𝑚 Tip displacement 𝑤

[–] [m]

0 0.1720 0.000

1 0.1867 0.443

2 0.1905 0.556

3 0.1910 0.573

4 0.1911 0.576

5 0.1911 0.576

3.2. Example 2 – column with variable geometry and load

The analysed corbel column, its cross sections and graphs of axial forces 𝑁𝐸𝑑 and first-
order bending moments 𝑀0𝐸𝑑 are shown in Fig. 10. The column was made of concrete
C30/37 and reinforced with steel with characteristic yield point 𝑓𝑦𝑘 = 500 MPa. The
longitudinal reinforcement is symmetrical: 𝜌1 = 𝜌2 = 1% and 0.5% respectively for the
lower and upper section of the column. The load has the form of the following concentrated
forces: vertical force applied to the tip 𝐹1 = 0.200 MN at the eccentricity of 0.1 m, vertical
force 𝐹2 = 0.350 MN at the eccentricity of 0.2 m and horizontal force 𝐻2 = 0.035 MN
applied to the cantilever. The column was divided into 2.0 m long sections. Cross section
no. 6 was doubled as an abrupt change in curvature (due to a change in cross section and
load) takes place there. First the 𝑚 − 𝜅𝑑 dependence was plotted for both parts of the
column. The results of successive iterations for relative moment 𝑚 and displacement 𝑤 are
compiled in Table 3.
Practically already after four iterations both the moments and the displacements stabi-

lized. The relative moment in the fixing (cross section 0) increased from 0.133 to 0.151,
i.e. by 13.5%. The change in moment in the upper part of the column is minimal.
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Fig. 10. Loading diagram and cross sections of column analysed in example 2 together with graphs
of axial forces 𝑁𝐸𝑑 and first-order bending moments 𝑀0𝐸𝑑

Table 3. Results of successive iterations

Cross section

Iteration

0 1 2 3 4

𝑚 𝑤 𝑚 +𝑤 𝑚 𝑤 𝑚 𝑤 𝑚

[–] [m] [–] [m] [–] [m] [–] [m] [–]

0 0.133 0.000 0.148 0.000 0.151 0.000 0.151 0.000 0.151

1 0.113 0.006 0.128 0.007 0.131 0.007 0.131 0.007 0.131

2 0.094 0.024 0.107 0.027 0.110 0.028 0.110 0.028 0.110

3 0.075 0.049 0.086 0.057 0.087 0.058 0.088 0.058 0.088

4 0.055 0.081 0.063 0.094 0.064 0.096 0.064 0.096 0.064

5 0.036 0.118 0.040 0.137 0.041 0.140 0.041 0.140 0.041

6 0.019 0.156 0.020 0.182 0.020 0.186 0.020 0.186 0.020

7 0.019 0.159 0.019 0.184 0.019 0.188 0.019 0.189 0.019

8 0.019 0.164 0.019 0.189 0.019 0.193 0.019 0.194 0.019

If this column were analysed using the method proposed in [11], one would have to
check the second-order effects only in the column’s upper part, which turns out to be false.
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4. Conclusions

In Poland the approximate methods are currently most often used in practice to de-
termine second-order effects. However, the knowledge of their assumptions, theoretical
foundations and limitations leaves a lot to be desired, which often leads to serious errors.
This also applies to the available relevant computer programs. Nevertheless, one can say
that in typical situations they perform satisfactorily.
However, in more complex cases it is necessary to use the general methods. They are

then somewhat more labour-intensive, but indispensable. Therefore they need to be better
popularized among designers and students.
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Obliczanie efektów II rzędu w słupach – zastosowania i przykłady

Słowa kluczowe: efekty 2. rzędu, mimośrodowe ściskanie, słup, wyboczenie, żelbet

Streszczenie:

W aktualnej normie do projektowania konstrukcji żelbetowych PN-EN 1992-1-1 problemom
związanym z efektami drugiego rzędu nadano znaczącą rangę, ale ograniczono się do szczegó-
łowego omówienia jedynie dwóch przybliżonych metod obliczeniowych – nominalnej sztywności
i nominalnej krzywizny. W odniesieniu do metody ogólnej przedstawiono jedynie pewne wymagania
i sugestie. W typowych sytuacjach, gdy spełnione są odpowiednie założenia, metody przybliżone
dają zadawalające rezultaty. W praktyce inżynierskiej można jednak napotkać szereg przypadków,
w których metody przybliżone będą zawodne – np. bardzo wysokie słupy i słupy ze wspornikami pod
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belki podsuwnicowe lub belki stropowe.W artykule przedstawiono i omówiono algorytm postępowa-
nia dla analizy problemu metodą ogólną. Według tego algorytmu wykonano przykładowe obliczenia
a ich rezultaty porównano z rezultatami uzyskanymi z wykorzystaniem powszechnie stosowanych
przez inżynierów metod przybliżonych. Wskazano ponadto obszary, w których metody przybliżone
mogą zawodzić. Przeprowadzone analizy potwierdziły istotną przewagę metody ogólnej nad przybli-
żonymi. Warto ją propagować, tym bardziej że można jej procedury obliczeniowe zautomatyzować
i opracować programy komputerowe.
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