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1. Introduction

General aim of any design process in civil engineering may always be considered as
an optimization task regarding chosen objective and constraints – most commonly, it is
minimizing the total cost of construction while meeting all building code requirements. In
practice, it is usually done by designers with the use of a conceptually simple approach
of “trial and error”. Automatization of such a process enables analysis of huge number of
possibly optimal solutions. Yet, still an uncertainty is preserved weather the determined
solution is truly optimal or not.
As opposed to the heuristic methods described above, optimization problems stated

within specific mathematical framework – e.g. Euler – Lagrange equations, Bellman equa-
tion, Pontryagin’s Maximum Principle – provide a solution about which it is possible to say
that it fulfils optimality conditions. Mentioned formalisms provide only necessary and not
sufficient condition for optimality, however, under certain convexity conditions imposed on
objective and constraints functions the Pontryagin’s Principle may provide also a sufficient
condition [1, 2].
Both approaches, the (meta)heuristic as well as “analytical” ones, are successfully ap-

plied in the problem of structural optimization. The problem of optimal design of steel
structures has been extensively investigated with the use of multiple different methods. A
comprehensive study of the problem of optimization of steel structures – involving not only
material consumption but also cost of fabrication, construction of joints etc. – may be found
in [3]. Moving asymptotes algorithm was used in [4] in topology optimization of plane
frame structures. The problem of relatively higher cost of construction works regarding
structural joint motivated the introduction of a joint penalty, which results in lowering the
number of joints in optimized layouts. Evolutionary algorithms were used in [5] in the task
of topology optimization of perforated I-section steel beams. Genetic algorithms (GA) are
also commonly used in structural optimization: both topology and element size optimiza-
tion of tall buildings was performed in [6], optimization of a moment-resisting steel frame
reducing the joint manufacturing costs according to a number of trade-off curves was per-
formed in [7]. Combining fuzzy logic with GA enables reduction of computational time [8].
In [9] truss-shaped steel frames’ layouts were optimized with respect to minimization of
either compliance or maximal stress, making an account for both global and local stability
requirements – gradient-based methods are used for topology optimization. Generalized
Reduced Gradient method was used in [10] in the task of optimization of cross-section of
Cold-Formed Steel channel sections being the primary load-carrying sections of a portal
frame. Also Particle Swarm Optimization (PSO) algorithms emerged to be efficient the
design of CFS sections [11]. Comparing PSO with Non-dominated Sorting GA suggested
that PSO may emerge more efficient in optimizing 2D and 3D moment resisting steel
frames [12]. PSO algorithm emerged also to be faster in optimization of steel frame than
differential evolution algorithm, even despite lower convergence rate [13]. Combining PSO
with appropriate cellular automata was used in layout optimization of steel trusses [14].
A very comprehensive survey on the application of metaheuristic population-based opti-
mization algorithms may be found in [15]. The method used in current research is derived
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from the control theory problems in which there is only a single independent variable
– time. Proposed approach is based on observation that plane bar structures may be de-
scribed with a single spatial variable. The dependent state variables describe both axial
and transverse displacements of each cross-section as well as corresponding internal forces
according to the Bernoulli-Euler beam theory. It was shown that the formalism of Pon-
tryagin’s Maximum Principle emerges to be a useful tool in optimization of bar structures.
It enables finding optimal dimensions of an assumed bar section [16–19] as well as the
layout of the whole structure (arch curvature control) [20]. Control theory approach is also
capable of making an account for both multiple construction and operation phases [21,22]
as well as the global stability [23]. Recently it was also shown that the method of partial
discretization (one-dimensional discretization, commonly referred to as “method of lines”)
of a two-dimensional problem of bending of a thin elastic problem enable application of
Pontryagin’s Maximum principle in order to find optimal plane distribution of thickness of
such plate [24].
If obtained solution is to have any practical meaning and value, it must be erectable

and so it must satisfy all code requirements. Some examples of optimization procedures
making an account for standard design rules may be found in [25, 26] in which gradient-
based methods were used to solve optimization task.
The aim of this paper is to contribute to the methods of solving of an optimization

task making an account for requirements imposed by chosen structural design standards
(Eurocodes). Appendices B and C of EN 1993-1-5 [27] explicitly mention only the Finite
Element Analysis as an admissible method for the design of plated structural elements of
variable cross-sections. The technique proposed in this article may be considered an add-on
for hybrid algorithms, which performs preliminary optimization in determining the first
approximation of optimal solution.
One specific aspect of this aim is the EN 1993-1-1 [28] requirements regarding ver-

ification of local and global stability. A common approach is to use the buckling length
coefficients – for more complex structural systems their values cannot be easily deter-
mined, so they are often overestimated for safety. An optimal approach regarding this issue
is to perform the second-order analysis with initial imperfections – then the bearing ca-
pacity of the cross-section is no longer reduced, however, refined static analysis must be
performed.

1.1. Assumptions on performed analysis

The problem considered in this paper is minimizing the total structural volume of
material used in design of structure of assumed class. The plane deformation of one-
dimensional structure is analysed with an account for second order effects within the
framework of linear elasticity. Plastic deformation is disregarded in the design process. It
is assumed that due to the constructional solution, the girder is not susceptible to out of
plane buckling and lateral torsional buckling. Structural connections of members and their
parts are not the subject of this analysis.
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2. General description of the structure
The structure under consideration is a symmetric three-span I-section steel beam

(Fig. 1). All span lengths are assumed to be equal 𝐿 = 6 m.

Fig. 1. Layout of designed steel beam

Global stability analysis of a plane or spatial structure would require non-local problem
formulation which is beyond the scope of applicability of presented approach – for this
reason only girder is analysed and its interaction with posts is modelled with the use of
flexible supports the stiffness of which is equal to:

(2.1) 𝑘𝜙 =
4𝐸𝐼col
𝐻

where height of the column 𝐻 = 3 m, and flexural rigidity 𝐸𝐼col is assumed to be the same
as the rigidity of the joist connected with it:

𝐸𝐼col,left = 𝐸𝐼beam (𝑥 = 0)

𝐸𝐼col,right = 𝐸𝐼beam (𝑥 = 3𝐿)

The beam is made from steel S235 (according to EN 10025-2) of Young modulus
𝐸 = 210 GPa, Kirchhoff modulus 𝐺 = 81 GPa, Poisson ratio 𝜈 = 0.3 and characteristic
yield strength 𝑓𝑦 = 235 MPa. Material density is assumed to be 𝜌𝑠 = 7850 kg/m3.

3. Actions on the structure
Following loads are assumed to be applied to the structure: Structure’s and finishing

elements’ (trapezoidal sheet metal coating on cold-bent steel section purlins) dead load
(DL), snow load (SN) and several levels of axial compressive force (N). Snow load is
determined according to EN 1991-1-3 (with Polish national annex) [29], for building
located in Krakow, Poland. The optimization is performed for of uniform axial load.
The assumed magnitudes of axial force are assumed to be in relation with the critical

buckling force, which is estimated for the beam with rigid supports and constant cross-
section as a minimum root of the following secular equation:

(3.1)
(
19𝜅4𝜅3

)
sin3 𝜅 +

[(
6 − 16𝜅2

)
cos(𝜅) + 10𝜅2 − 6

]
sin2 𝜅

+
(
20𝜅 cos(𝜅) + 3𝜅3 − 20𝜅

)
sin(𝜅) + 6𝜅2 cos(𝜅) − 6𝜅2 = 0
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Fundamental value of the critical force is equal to 𝑁crit = 3.8567𝐸𝐼/𝐿2. Variation of
flexural rigidity 𝐸𝐼 in obtained solutions determine the range of predicted value of critical
force as (10 kN;189 kN).

4. Load combinations

The limit states are considered: ULS STR and SLS according to EN 1990 with Polish
national annex. As to ULS STR state an alternative of combinations (6.10a/b) of EN
1990 [30] is considered. As to SLS state a characteristic combination (6.14b) of EN 1990
is considered. Preliminary analysis indicate that it is the combinations given by (6.10b)
that is less favourable. Following combinations are analysed:
– Design combinations (DC) (6.10b): 𝜉𝛾𝐺DL + 𝛾𝑄SN + 𝛾𝑄𝜓0𝑁

– Characteristic combination (CC) (6.14b): DL + SN + 𝜓0𝑁

where: 𝜉 = 0.85, 𝛾𝐺 = 1.35, 𝛾𝑄 = 1.50, 𝜓1 = 0.20, 𝜓0 = 0.6. There are six decisive live
load combinations (Fig. 2).

Fig. 2. Considered load combinations

Each design combination is analysed for 5 design values of an axial load {0,−25,−50,
75,−100} kN. Combinations C2 and C4 are decisive with respect to maximum deflection
in the middle and in the edge span respectively. As a result 8 load combinations are
considered 6 design combinations (DC1, DC2, DC3, DC4, DC5, DC6) and 2 characteristic
combinations (CC2, CC4).
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5. Mathematical formulation of the problem

5.1. State variables

For each 𝑗-th load combination ( 𝑗 = 1, 2, . . . , 8) a set of 6 state variablesmay introduced
for a general 2D frame element:

𝑋
[ 𝑗 ]
1 (𝑥) = 𝑢 [𝑖, 𝑗 ] (𝑥)

𝑋
[ 𝑗 ]
2 (𝑥) = 𝐸𝐴(𝑥) d

d𝑥
𝑢 [ 𝑗 ] (𝑥) = 𝑁 [ 𝑗 ] (𝑥)

𝑋
[ 𝑗 ]
3 (𝑥) = 𝑤 [ 𝑗 ] (𝑥)

𝑋
[ 𝑗 ]
4 (𝑥) = d

d𝑥
𝑤 [ 𝑗 ] (𝑥) = 𝜙 [ 𝑗 ] (𝑥)

𝑋
[ 𝑗 ]
5 (𝑥) = −𝐸𝐼 (𝑥) d

2

d𝑥2
𝑤 [ 𝑗 ] (𝑥) = 𝑀 [ 𝑗 ] (𝑥)

𝑋
[ 𝑗 ]
6 (𝑥) = −𝐸𝐼 (𝑥) d

3

d𝑥3
𝑤 [ 𝑗 ] (𝑥) = 𝑄 [ 𝑗 ] (𝑥)

(5.1)

where 𝑢 [ 𝑗 ] , 𝑤 [ 𝑗 ] , 𝜙 [ 𝑗 ] are longitudinal and transverse displacement and deflection angle
of beam due to 𝑗-th load combination respectively and 𝑁 [ 𝑗 ] , 𝑀 [ 𝑗 ] , 𝑄 [ 𝑗 ] are axial force,
bending moment and shear force due to 𝑗-th load combination respectively.

5.2. State equations

State equations are derived for a linear-elastic bar making an account for initial imper-
fections and second-order effects. Constitutive law between curvature and bending moment
is as follows:

(5.2) 𝜅(𝑥) ≈ d
2𝑤(𝑥)
d𝑥2

= − 𝑀 (𝑥)
𝐸𝐼 (𝑥)

The bending moment distribution is expressed as follows (see Fig. 3):

(5.3) 𝑀 (𝑥) = 𝑀𝐵 −𝑄𝐵 · (𝐿 − 𝑥) + 𝑁𝐵 · (𝑤𝐵 − 𝑤(𝑥) − 𝑤0 (𝑥))

−
𝐿∫

𝑦=𝑥

𝑞(𝑦) · (𝑦 − 𝑥) d𝑦 +
𝐿∫

𝑦=𝑥

𝑛(𝑦) · (𝑤(𝑦) + 𝑤0 (𝑦) − 𝑤(𝑥) − 𝑤0 (𝑥)) d𝑦

where 𝑤0 (𝑥) is the initial deflection due to imperfection. Eurocode 3 suggests to consider
the imperfection of member’s axis as a sum of sway and bow imperfection, the magnitudes
of which depend on geometry of structure.
Eq. (5.2) and Eq. (5.3) lead to the integro-differential equation. The formalism of

Pontryagin’s Maximum Principle requires the problem to be stated as a system of the first
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Fig. 3. Deformation and nodal loads for a beam element with global sway imperfection
and local bow imperfection involving the second-order effects and load’s tracking

order ordinary differential equations. The use of general Leibniz formula

(5.4)
d
d𝑥

𝑏 (𝑥)∫
𝑎 (𝑥)

𝑓 (𝑥, 𝑦) d𝑦 =

𝑏 (𝑥)∫
𝑎 (𝑥)

𝜕

𝜕𝑥
𝑓 (𝑥, 𝑦) d𝑦 + 𝑓 (𝑥, 𝑏(𝑥)) 𝜕𝑏

𝜕𝑥
− 𝑓 (𝑥, 𝑎(𝑥)) 𝜕𝑎

𝜕𝑥

lead us to the following state equations for a single member:

d3𝑤
d𝑥3

= − d
d𝑥

[
𝑀 (𝑥)
𝐸𝐼

]
(5.5)

=
1
𝐸𝐼

−𝑄𝐵 −
𝐿∫

𝑦=𝑥

𝑞(𝑥) d𝑦 +
©­­«𝑁𝐵 +

𝐿∫
𝑦=𝑥

𝑛(𝑦) d𝑦
ª®®¬ ·

(
d𝑤
d𝑥

+ d𝑤0
d𝑥

)
d4𝑤
d𝑥4

=
1
𝐸𝐼

𝑞(𝑥) +
©­­«𝑁𝐵 +

𝐿∫
𝑦=𝑥

𝑛(𝑦) d𝑦
ª®®¬ ·

(
d2𝑤
d𝑥2

+ d
2𝑤0

d𝑥2

)
− 𝑛(𝑥) ·

(
d𝑤
d𝑥

+ d𝑤0
d𝑥

)(5.6)

Assuming that distributed normal load is constant along member’s axis allow us to
write:

d3𝑤
d𝑥3

=
1
𝐸𝐼

−𝑄𝐵 −
𝐿∫

𝑦=𝑥

𝑞(𝑥) d𝑦 + [𝑁𝐵 + 𝑛 · (𝐿 − 𝑥)] ·
(
d𝑤
d𝑥

+ d𝑤0
d𝑥

)(5.7)

d4𝑤
d𝑥4

=
1
𝐸𝐼

[
𝑞(𝑥) + [𝑁𝐵 + 𝑛 · (𝐿 − 𝑥)] ·

(
d2𝑤
d𝑥2

+ d
2𝑤0

d𝑥2

)
− 𝑛 ·

(
d𝑤
d𝑥

+ d𝑤0
d𝑥

)]
(5.8)
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The above fourth order differential equation may be rewritten as a system of the first
order equations of the following form:
d𝑤
d𝑥

= 𝜑,
d𝜑
d𝑥

= − 1
𝐸𝐼

[𝑚 + 𝑀𝐵 + 𝑁𝐵 · 𝑤𝐵]

d𝑚
d𝑥

= 𝑡 +𝑄𝐵 +
[
[𝑁𝐵 + 𝑛(𝐿 − 𝑥)]

d𝑤𝜙

d𝑥

]
d𝑡
d𝑥

= −
[
𝑞 + [𝑁𝐵 + 𝑛(𝐿 − 𝑥)]

(
− 1
𝐸𝐼

[𝑚 + 𝑀𝐵 + 𝑁𝐵𝑤𝐵] +
d2𝑤𝑒

d𝑥2

)
− 𝑛

(
𝜑 + d𝑤𝑒

d𝑥

)]
Derivatives of the initial deflection according to EN 1993-1-1 are as follows:

d𝑤𝑒

d𝑥
= ± 4𝑒

𝐿2
(2𝑥 − 𝐿), d2𝑤𝑒

d𝑥2
= ± 8𝑒

𝐿2
,

d𝑤𝜙

d𝑥
= 𝜙

In the present analysis no account for sway imperfection 𝑤𝜙 as well as axial distributed
load 𝑛 is made and end-node deflection 𝑤𝐵 is assumed 0 for each span. For each 𝑗-th
load combination ( 𝑗 = 1, 2, . . . , 8) a following system of governing equations must be thus
satisfied:

(5.9)



d
d𝑥

𝑋
[ 𝑗 ]
1 (𝑥) = 1

𝐸𝐴(𝑥)

[
𝑋

[ 𝑗 ]
2 (𝑥)

]
d
d𝑥

𝑋
[ 𝑗 ]
2 (𝑥) = 0

d
d𝑥

𝑋
[ 𝑗 ]
3 (𝑥) = 𝑋

[𝑖, 𝑗 ]
4 (𝑥)

d
d𝑥

𝑋
[ 𝑗 ]
4 (𝑥) = − 1

𝐸𝐼 (𝑥)

[
𝑋

[𝑖, 𝑗 ]
5 (𝑥)

]
d
d𝑥

𝑋
[ 𝑗 ]
5 (𝑥) = 𝑋

[𝑖, 𝑗 ]
6 (𝑥)

d
d𝑥

𝑋
[ 𝑗 ]
6 (𝑥) = −

[
𝑞(𝑥) + 𝑁𝐵 ·

(
− 1
𝐸𝐼 (𝑥) 𝑋

[𝑖, 𝑗 ]
5 (𝑥) + d

2𝑤𝑒

d𝑥2

)]
𝑗 = 1, . . . , 8

Axial displacements and forces are determined uniquely by assumed axial load and
thus they are excluded from the problem formulation. Total number of state variables is 32
(Table 1).

Table 1. Layout of designed steel beam

Load combination

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7 𝑗 = 8

𝑤 [ 𝑗 ] 𝑋1 𝑋5 𝑋9 𝑋13 𝑋17 𝑋21 𝑋25 𝑋29

𝜙 [ 𝑗 ] 𝑋2 𝑋6 𝑋10 𝑋14 𝑋18 𝑋22 𝑋26 𝑋30

𝑀 [ 𝑗 ] 𝑋3 𝑋7 𝑋11 𝑋15 𝑋19 𝑋23 𝑋27 𝑋31

𝑄 [ 𝑗 ] 𝑋4 𝑋8 𝑋12 𝑋16 𝑋20 𝑋24 𝑋28 𝑋32
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5.3. Control variables

We introduce following control variables (Fig. 4): 𝑈1 – width of flanges, 𝑈2 – height
of web,𝑈3 – thickness of flanges,𝑈4 – thickness of web.

Fig. 4. Dimensions of I-section as control variables

5.4. Cross-sectional forces

Transverse shear force 𝑄 and bending moment 𝑀 – in 𝑖-th section of the beam in the
𝑗-th load combination may be expressed as follows:

𝑄 [ 𝑗 ] (𝑥) = 𝑋4( 𝑗−1)+4 (𝑥)

𝑀 [ 𝑗 ] (𝑥) = 𝑋4( 𝑗−1)+3 (𝑥)
(5.10)

Geometrical characteristics of the I-profile cross-sections are as follows:

𝐴(𝑥) = 2𝑈1 (𝑥)𝑈3 (𝑥) +𝑈2 (𝑥)𝑈4 (𝑥)(5.11)

𝐼 (𝑥) = 𝑈4 (𝑥) [𝑈2 (𝑥)]3

12
+ 2 · 𝑈1 (𝑥) [𝑈3 (𝑥)]

3

12
+ 2𝑈1 (𝑥)𝑈3 (𝑥)

(
𝑈2 +𝑈3
2

)2
(5.12)

5.5. Boundary and compatibility conditions

Boundary conditions for each 𝑗-th load combination ( 𝑗 = 1, . . . , 8) are:
𝑤 [ 𝑗 ] (0) = 0

𝜙 [ 𝑗 ] (0) = − 1
𝑘𝜙

𝑀 [ 𝑗 ] (0)
(5.13)


𝑤 [ 𝑗 ] (3𝐿) = 0

𝜙 [ 𝑗 ] (3𝐿) = 1
𝑘𝜙

𝑀 [ 𝑗 ] (3𝐿)
(5.14)



80 P. SZEPTYŃSKI, L. MIKULSKI

Displacement and force compatibility conditions between spans for each 𝑖-th load
combination (𝑖 = 1, . . . , 8) are:

𝑤 [𝑖 ] (𝐿−) = 0 zero deflection at support

𝑤 [𝑖 ] (𝐿+) = 0 zero deflection at support

𝜙 [𝑖 ] (𝐿−) = 𝜙 [ 𝑗 ] (𝐿+) angle of deflection continuity

𝑀 [𝑖 ] (𝐿−) = 𝑀 [ 𝑗 ] (𝐿+) bending moment continuity

(5.15)


𝑤 [𝑖 ] (2𝐿−) = 0 zero deflection at support

𝑤 [𝑖 ] (2𝐿+) = 0 zero deflection at support

𝜙 [𝑖 ] (2𝐿−) = 𝜙 [ 𝑗 ] (2𝐿+) angle of deflection continuity

𝑀 [𝑖 ] (2𝐿−) = 𝑀 [ 𝑗 ] (2𝐿+) bending moment continuity

(5.16)

We have 32 boundary conditions and 64 compatibility conditions in total.

6. ULS code requirements in form of inequality constraints
Anaccount for design requirements of EN1993 ismade in the formalismof Pontryagin’s

Maximum Principle by introduction of proper set of inequality constraints.

6.1. Class of the cross-section

Class 3 cross-section is assumed, as no account for plastic deformation is made in the
mathematical formulation of the problem. It must be noted, however, that the use of class 1
or class 4 sections may potentially provide a more favourable solution to the problem. In the
considered load combinations no tensile axial force occurs so it may be assumed that ratio
of edge stresses in web 𝜓 > −1. Under this assumption following inequality constraints
must be satisfied in order to consider the cross-section as being class 3:

𝑈2
𝑈4

≤ 42𝜀
0.67 + 0.33𝜓(6.1)

𝑈1 −𝑈4
𝑈3

≤ 28𝜀(6.2)

where 𝜓 = 𝜎max/𝜎min, 𝜀 =
√︁
235 MPa/ 𝑓𝑦 and 𝜎max, 𝜎min are the signed values of normal

stress at web edges – maximal and minimal, respectively (𝜎max ≥ 𝜎min).

6.2. Shear lag effect

Eurocode 3 part 1–5 [27] allow for neglecting the shear lag effect if

(6.3)
𝑈1 −𝑈4
2

<
𝐿𝑒

50
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where 𝐿𝑒 is the effective span length: 𝐿𝑒 = 0.85𝐿 for edge span, 𝐿𝑒 = 0.7𝐿 for intermediate
span and 𝐿𝑒 = 0.5𝐿 for supported cross-section. It is assumed that large rigidity of cross-
section fixed to the column in corner joint prevents the occurrence of the shear lag effect.

6.3. Web instability due to shear stresses

Stability of a not-ribbed web against shear stresses is provided if only:

(6.4)
𝑈2
𝑈4

< 72𝜀
1
𝜂

where 𝜂 is a coefficient depending on grade of steel. For chosen steel S235 𝜂 = 1.2.

6.4. Bending with shearing and axial force – point strength verification

Limit state condition for class 3 cross-sections under combined load is given by equa-
tions: (

𝜎𝑥

𝑓𝑦/𝛾𝑀0

)2
+ 3

(
𝜏𝑥𝑧

𝑓𝑦/𝛾𝑀0

)2
≤ 1, 0(6.5)

𝜎𝑥 (𝑥, 𝑧) =
𝑁𝐸𝑑 (𝑥)

𝐴
+ 𝑀𝐸𝑑 (𝑥)

𝐼
𝑧(6.6)

𝜏𝑥𝑧 (𝑥, 𝑧) =
𝑆(𝑧)𝑉𝐸𝑑 (𝑥)

𝑏(𝑧)𝐼(6.7)

Design values of cross-sectional forces 𝑁𝐸𝑑𝑀𝐸𝑑𝑉𝐸𝑑 are in general functions deter-
mined by state variables according to Eq. (5.1). Partial safety factor for material 𝛾𝑀0 = 1.0.
Instead of line search along 𝑧-axis for maximum equivalent stress, the limit state condition
will be checked only at 7 characteristic points denoted in the Fig. 4 as 𝑧𝑘 (𝑘 = 1, 2, . . . , 7).

7. SLS code requirements in form
of inequality constraints

SLS is verified by limiting instant reversible elastic deformation according to National
Annex to EC 3 part 1–1. Allowable deflection of beam is equal to:

(7.1) 𝑢max = 𝑤 [ 𝑗 ] (𝑥) ≤ 𝐿

250
, 𝑗 = 7, 8

where index 𝑗 corresponds with characteristic combinations CC2, CC4. Long-term actions
constitute a small fraction of total load no rheological effects need to be accounted for.
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8. Optimization task structure

8.1. Objective function

The volume minimization was assumed to be an optimization criterion. The total
structural volume of material used may be expressed as follows:

(8.1) 𝑉 =

3𝐿∫
0

𝐴(𝑥) d𝑥

An additional state variable 𝑋33 (𝑥) = 𝑉 (𝑥) and state equation was assumed:

(8.2)
d
d𝑥

𝑋33 (𝑥) = 𝐴(𝑥)

The optimization problem of the Lagrange functional in the form:

(8.3) 𝐽 (X(𝑥),U(𝑥)) =
3𝐿∫
0

𝐴(𝑥) d𝑥

where X(𝑥), U(𝑥) are vectors of state variables and controls respectively, is transformed
into a Mayer problem with functional

(8.4) 𝐽 (X(𝑥),U(𝑥)) = 𝑋33 (X(3𝐿),U(3𝐿))

and initial condition 𝑋33 (X(0),U(0)) = 0.

9. Results
The optimization task described above was solved with the use of Dircol software [31].

Performed calculation were convergent for the design vales of axial load not greater than
approximately 100 kN. In the first stage of optimization all 4 controls were considered
variable. Plate thickness was assumed to be not less than 3 mm. Range of variation of
considered controls in obtained solutions determined an approximate optimal constant
value. Then, thickness of flanges𝑈3 as well as thickness of web𝑈4 were assumed constant
according to results obtained from multiple tries. The result of performed analysis was to
assume common dimensions 𝑈3 = 4.5 mm and 𝑈4 = 3 mm for all considered magnitudes
of axial force. This determines 𝑒0 = 𝐿/250. Web height and flange width changes along
beams length are presented in Fig. 5–9 for five chosen values of axial force.
In Table 2 resulting total material volume of the girder corresponding with each value

of the compressive force is presented.
Obtained solutions give an insight into the structure of optimal solution, in particular it

is possible to observe which one of the prescribed constraints is decisive in determining the
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Fig. 5. Flange width and web height distribution in optimized girder –
compressive force 𝑁 = 0 N

Fig. 6. Flange width and web height distribution in optimized girder –
compressive force 𝑁 = −25 N

Fig. 7. Flange width and web height distribution in optimized girder –
compressive force 𝑁 = −50 N
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Fig. 8. Flange width and web height distribution in optimized girder –
compressive force 𝑁 = −75 N

Fig. 9. Flange width and web height distribution in optimized girder –
compressive force 𝑁 = −100 N

Table 2. Considered load combinations

𝑁 [kN] 𝑉 [m3]

0 0.011468

–25 0.011750

–50 0.0122183

–75 0.012869

–100 0.013130

optimal control. Equality or inequality constraint is termed to be “active”, if the equality
holds. Such an active constraint is the one which shapes the optimal solution Constraint
activity diagram is presented in Fig. 10.
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Fig. 10. Constraint activity diagram

Obtained solutions are obviously unconstructible – determined optimal controls need
to be regularized. Actual dimensions of optimized girder may be determined as a piece-
wise linear upper-bound envelope of controls (see: Fig. 11). It is also important to note,
that – unless the girder is a subject of a large-scale repetitive fabrication – high cost
of construction of a section of variable dimensions thwarts any possible savings due to
smaller consumption of material. In such cases a more efficient solution is to use girders
with constant height of web and width of flanges.

Fig. 11. Symmetric upper-bound envelope determining actual dimensions
of optimized girder
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As it was emphasized in the introduction, obtained solution cannot be considered an
optimal design of steel girder unless the SLS andULSare verified.According toAppendices
B and C of EN 1993-1-5, it may be done with the use of Finite Element Method. Such
a verification need to take into account finite-strain deformation, imperfections, global
buckling modes as well as assumed connections (welding, bolting). Such a verification is
beyond the scope of this research. Determined solution may be also used as a first try for
iterative topology optimization algorithms.

10. Summary and conclusions

The article deals with the problem of first-step approximation in the problem of opti-
mization of a steel girder according to the Eurocode regulations. For the sake of simplicity
of examples of application of the presented preliminary optimization technique it has been
assumed that deformation is plane and interaction with vertical structural elements has
been modelled with flexible supports. An optimization task was formulated within the
framework of control theory. It was solved with the use of Pontryagin’s Maximum Princi-
ple in Dircol software. Thicknesses of flange and web, which were assumed to be constant
for the whole girder, were first estimated assuming that corresponding control may vary
within certain range. Then variable flange width and web’s height were determined. Total
required volume of material is obviously the smaller, the smaller is the axial compressive
force applied to the beam. The formulated optimization task is characterized by following
specific features:
– It is an autonomous optimization problem. In such cases resultingHamiltonian should
be piece-wise constant, what was indeed observed up to precision of a numerical
solution.

– Boundary conditions for the considered BVP may be classified as the 3rd type (or
Robin type) boundary conditions. They depend on controls which are not known in
advance.

– Numerical solutions of the considered formulation are very sensitive to initial values
in iterative solution procedures – this regards in particular the range of admissible
values of controls.

Regarding the obtained solutions, one may conclude that obtained solutions satisfy
the optimality condition with precision 10−4 and feasibility condition with precision 10−5.
Finding optimal solution required approximately 4000–5000 iterations with total compu-
tation time approximately 10–40 seconds. The statement of the problem is symmetric, so
should be the optimal solution. The symmetry of the solution was not imposed in advance.
It can be seen that it is only approximately preserved. Satisfying necessary condition
for optimality by non-symmetric solutions may be explained either by finding a saddle
point (sufficient condition is violated) or by finding only a local optimum. Regarding the
determined optimal shape and constraint activity diagram one may notice that:
– Magnitude of compressive force does not influence themaximum andminimum sizes
of height of web and width of flange in considerable way. For larger magnitudes of
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axial force, larger dimensions are required in larger parts of the section, compared
to the solutions obtained for smaller magnitudes of force.

– Second-order effects may significantly influence the distribution of cross-sectional
forces, amplifying their extremal values. Magnitude of this amplification depends on
magnitude of axial force and on load combination. Maximum value of compressive
force amplified the maximum transverse shear force with 0–10%, compared to beam
without axial force. Maximum bending moments were similarly amplified with 0–
30%.

– The dominant role in determining the optimal shape of the girder plays the ULS
condition regarding the strength against normal stress (top and bottom fibres) as well
as the condition regarding web stability due to normal stress.

– The greater is the magnitude of compressive force, the larger is the zone in which
the ULS and stability constraints are active.

Obtained solutions, however, do determine the girder’s geometry which may be then
directly verified with the use of FEA. These solutions may also provide a first guess try
in topology optimization tasks, speeding up the process of optimization with the use of
more sophisticated methods. Proposed method may be generalized for the case of three-
dimensional structures, however, complexity and size of the optimization task becomes
significantly larger.
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Metoda wstępnej optymalizacji w projektowaniu dźwigarów
stalowych zgodnie z Eurokodem 3

Słowa kluczowe: efekty drugiego rzędu, Eurokod, imperfekcje, konstrukcje stalowe, optymalizacja,
zasada maksimum Pontriagina

Streszczenie:
Rozważany jest problem optymalnego projektowania blachownicy stalowej zgodnie z Euroko-

dem 3. Zapisy normowe dopuszczają stosowanie Metody Elementów Skończonych (MES) w projek-
towaniu blachownic o zmiennym przekroju poprzecznym. Przedstawiono metodę wyznaczania przy-
bliżonego rozwiązania zagadnienia optymalizacji. Jest ono wyznaczane jako rozwiązanie problemu
optymalizacyjnego teorii sterowania, w którym wymagania Eurokodu dotyczące Stanu Granicznego
Nośności (nośność, lokalna i globalna stateczność) i Stanu Granicznego Użytkowalności (sztywność
giętna) wykorzystane są jako ograniczenia nierównościowe. Analiza statyczna przeprowadzona jest
w ramach liniowej teorii sprężystości dla modelu belki Bernoulliego – Eulera z uwzględnieniem
efektów drugiego rzędu z uwagi na zadane imperfekcje. Uzyskane rozwiązania, po stosownych
modyfikacjach, mogą podlegać weryfikacji z wykorzystaniem MES lub mogą zostać wykorzystane
jako pierwsze przybliżenie w iteracyjnych algorytmach optymalizacji topologicznej. Wymagania
normowe rządzące wyznaczaniem optymalnego kształtu zostały zwizualizowane na schemacie ak-
tywności ograniczeń, który proponowany jest jako narzędzie analizy procesu optymalizacji.
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