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Robot grasping and regrasping kinematics using Lie
algebra, the geodesic, and Riemann curvature tensor

Haydar SAHIN

Differential geometry is a strong and highly effective mathematical subject for robot grip-
per design when grasping within the predetermined trajectories of path planning. This study
in grasping focuses on differential geometry analysis utilizing the Lie algebra, geodesic, and
Riemann Curvature Tensors (RCT). The novelty of this article for 2RR robot mechanisms lies in
the approach of the body coordinate with the geodesic and RCT. The importance of this research
is significant especially in grasping and regrasping objects with varied shapes. In this article,
the types of workspaces are clarified and classified for grasping and regrasping kinematics.

The regrasp has not been sufficiently investigated of body coordinate systems in Lie algebra.
The reason for this is the difficulty in understanding relative coordinates in Lie algebra via the
body coordinate system. The complexity of the equations has not allowed many researchers to
overcome this challenge. The symbolic mathematics toolbox in the Maxima, on the other hand,
aided in the systematic formulation of the workspaces in Lie algebra with geodesic and RCT.

The Lie algebra se(3) equations presented here have already been developed for robot
kinematics frommany references. These equationswill be used to derive the followingworkspace
types for grasping and regrasping. Body coordinate workspace, spatial coordinate workspace
with constraints, body coordinate workspace with constraints, spatial coordinate workspace
with constraints are the workspace types. The RCT and geodesic solutions exploit these four
fundamental workspace equations derived using Lie algebra.

Key words: body coordinate workspace, spatial coordinate workspace, regrasp planning,
mechanism, differential geometry

1. Introduction

Differential geometry is a strong and highly effective mathematical subject
for robot gripper design when grasping within the predetermined trajectories of
path planning. This study in grasping focuses on differential geometry analysis
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utilizing the Lie algebra, geodesic, and Riemann Curvature Tensors (RCT). Con-
tinuum robots are investigated for grasp purpose [1]. Prior efforts on Lie algebra
concentrated on spatial coordinate workspace analysis with constraints [2]. I will
look at how the 2R robot’s regrasp mechanism affects the relative motions be-
tween joints via Lie algebra. The realization of the relative joint motions is made
possible by the body coordinate formulation based on Lie algebra se(3).
The relative motion will cause the object to move so that it can be regrasped in

a new pose. The relative workspaces of the Lie algebra will also be used to build
the trajectories. The analytical outcomes of the geodesic and RCT are exploited
to produce these trajectories. The body coordinate workspaces can be used to
specify the objects maneuvered and to generate new poses. Additionally, utilizing
the body coordinate workspace equations and the geodesic and RCT information,
these created trajectories of the regrasp move the object’s new pose.
The approach of the body coordinatewith the geodesic andRCT iswhatmakes

this article unique for 2RR robot mechanisms. The body coordinate and spatial
coordinate workspaces can be deduced using Lie algebra se(3). First, these two
coordinates are compared in terms of the grasping kinematics of the 2R robot
modular gripper mechanisms. The Lie algebra body coordinate workspace fo-
cuses on in-hand relative joint motions, whereas the spatial coordinate workspace
focuses on grasping in a fixed coordinate system at the base.
The main novelty herein is the comprehensive utilization of the derived body

coordinateworkspace equationswith the geodesic andRCT analyses for trajectory
generations of the multi-finger grippers of the 2R mechanism for grasping and
regrasping. Furthermore, the toolbox development in this paper is completed for
this purpose using Maxima, which is rare in the literature. The grasping and
regrasping kinematics have not been thoroughly studied to generate the relative
coordinate trajectories using the geodesic equations with an RCT.
The significance of this research is unavoidable, especially in grasping and

regrasping objects with varied shapes. In this article, the types of workspaces
are clarified and classified for grasping and regrasping kinematics. The regrasp
has not been sufficiently investigated in body coordinate systems in Lie algebra.
The reason for this is the difficulty in understanding relative coordinates in Lie
algebra via the body coordinate system. The complexity of the equations has not
allowed many researchers to overcome this challenge.
Maxima’s symbolic mathematics toolbox aided in the systematic formulation

of the workspaces in Lie algebra with geodesic and RCT. Therefore, explain-
ing body coordinates with the example configurations of the relative motions
for regrasping is another crucial goal of this study. Finally, these workspace
types will be used to generate trajectories using novel methods of geodesic and
RCT. These trajectories are called regrasp or grasp trajectories via RCT and
geodesic.
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2. Fundamentals of the grasping and regrasping kinematics
using Lie algebra se(3)

The grasping and regrasping define the workspaces based on the kinematics
functionality of the robot grippers. The object shape contains the required mech-
anism design of the gripper for grasping. The configuration of the mechanisms,
along with the dimensions of the limb components, determines the grasping
and regrasping kinematics. These configuration types contain the kinematics of
the spatial coordinate workspace, body coordinate workspace, constraint-based
spatial coordinate workspace, and constraint-based body coordinate workspace.
While the body’s coordinate workspace establishes the regrasping kinematics, the
spatial coordinate workspaces defines the grasping kinematics. The grasp uses
fixed (spatial) coordinates at the base and defines the remaining limb compo-
nents according to this base. These limb components are links, joints, and twists.
Meanwhile, regrasping uses determined body coordinates at the limb where the
remaining limb component position is defined relative to this determined body
coordinate.
Additionally, the constraint-based workspaces requested the ability to grasp

or regrasp the convenient object shapes with the constraints. Previously, the
angle between C-ISAs (Controllable Instantaneous Screw Axis) was used to
determine constraint-based workspaces, as completed in another article [2]. Also,
an algorithm-based workspace is composed of multiple robots using Lie algebra
se(3) [3]. The Lie algebra equations presented here have already been developed
for robot kinematics, as shown in Tables 1 and 2 from numerous references [2–6].
These equations of the adjoints and twists are utilized to derive the following
workspace types for grasping and regrasping.
Body coordinate workspace, spatial coordinate workspace with constraints,

body coordinate workspace with constraints, spatial coordinate workspace with
constraints are the workspace types. The RCT and geodesic solutions exploit
these four fundamental workspace equations derived using Lie algebra.
These known equations [2–6] are used to program and solve workspace equa-

tions, RCT, and geodesic equations in Maxima.
The following Equations of (1) and (2) [2–6] of Lie algebra are used to derive

the workspaces.

𝜉′𝑖 = 𝐴𝑑−1(
𝑒 𝜉𝑖 𝜃𝑖 ... 𝑒 𝜉𝑛 𝜃𝑛𝑔0_2 (0)

) 𝜉𝑖 , (1)

𝜉𝑠 = 𝐴𝑑𝑔𝑛 𝜉𝑏 =

(
−𝜔𝑛 × 𝑞𝑛

𝜔𝑛

)
. (2)

One example was completed with the results and drawings of all conditions for
tw(3) and tw(1), as shown in Table 3. The tables for various adjoint conditions are
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Table 1: Notations of grasp and regrasp kinematics for transformation matrix and adjoints

Twist (𝑛) 0 1 2 3 4

Indices in
between two
spatial points
for the
kinematics

Base: 0_0
Link 0
(0_0:𝑙0)

Between base and
revolute joint 1

(0_1 𝑗 : 𝑗1)

Between
revolute

joint 1 and
COG of

rigid body
Link 1

(1 𝑗_1:𝑙1)

Between revolute joint
1 and revolute joint 2

(1 𝑗_2 𝑗 : 𝑗2)

Between
revolute joint
2 and COG

of rigid body
Link 2

(2 𝑗_2:𝑙2)

Twists as
C-ISA (wn)
(se(3))

No rotation

𝝃0_0 =



0
0
0
0
0
0



Rotation with screw
theory

𝝃𝐵0_1 𝑗 =

0
0
0

cos(𝛼1) cos(𝛼2)
− cos(𝛼2) sin(𝛼1)

sin(𝛼2)


𝝃𝑆0_1 𝑗 =

0
0
0

cos(𝛼1) cos(𝛼2)
− cos(𝛼2) sin(𝛼1)

sin(𝛼2)



No rotation

𝝃1 𝑗_1 =



0
0
0
0
0
0



Rotation with screw
theory

𝝃𝐵1 𝑗_2 𝑗 =

𝑙1 sin(𝛼4)
0

−𝑙1 cos(𝛼3) cos(𝛼4)
cos(𝛼3) cos(𝛼4)
− cos(𝛼3) sin(𝛼4)

sin(𝛼4)


𝝃𝑆1 𝑗_2 𝑗 =

0
0
0

cos(𝛼3) cos(𝛼4)
− cos(𝛼3) sin(𝛼4)

sin(𝛼4)



No rotation

𝝃2 𝑗_2 =



0
0
0
0
0
0



Transfor-
mation
matrix

𝑔0_1 𝑗 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑔0_1 𝑗 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑔1 𝑗_1 =

1 0 0 0
0 1 0 𝑟1
0 0 1 0
0 0 0 1

𝑔1 𝑗_2 𝑗 =

1 0 0 0
0 1 0 𝑙1
0 0 1 0
0 0 0 1

𝑔2 𝑗_2 =

1 0 0 0
0 1 0 𝑟2
0 0 1 0
0 0 0 1

Adjoints 𝐴𝑑−1(𝑔0_1 𝑗 ) 𝐴𝑑−1(𝑔1 𝑗_1) 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝐴𝑑−1(𝑔2 𝑗_2)

defined in the following sections multiplied by twist 1 and twist 3. The Maxima
program includes the following equations, as shown in Table 3.
Twists 1 and 3 of the grasping kinematics correspond to the screw axes of joint

one and joint 2. The twists’ characteristics are described by spatially connected
points, which can be a base or a type of joint on two sides. Twist 1 is shown as
being between the base and revolutes joint 1, abbreviated as (0_1 𝑗) for the twists
and adjoints in Table 1.
Table 1 shows twist three as being located between revolute joints 1 and 2,

denoted as (1 𝑗_2 𝑗). This subscript abbreviation is similarly used for both the
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Table 2: Notations of grasp and regrasp kinematics in Lie algebra method for ISA of the
2R limb

𝑛 0_0 0_1 𝑗 1 𝑗_1 1 𝑗_2 𝑗 2 𝑗_2
Indices in
between two
spatial points
for the
kinematics

Base Between base and
revolute joint 1

Between
revolute joint
1 and COG
of rigid body
link 1

Between revolute
joint 1 and revolute

joint 2

Between
revolute joint
2 and COG
of rigid body
link 2

Joint and
COG

positions (q)
𝑞0 = 𝑞0_0 𝑞1 = 𝑞0_1 𝑗 𝑞2 = 𝑞1 𝑗_1 𝑞3 = 𝑞1 𝑗_2 𝑗 𝑞4 = 𝑞2 𝑗_2

𝑞 ©­­«
0
0
0

ª®®¬
©­­«
0
0
0

ª®®¬
©­­«
0
𝑟1
0

ª®®¬
©­­«
0
𝑙1
0

ª®®¬
©­­«
0
𝑟2
0

ª®®¬
C-ISA

𝝎0_0 =


0
0
0


𝜃0_0 = 0

𝝎0_1 𝑗 =


0
0
1


𝜃0_1 𝑗 = 𝜃1

𝝎1 𝑗_1 =


0
0
0


𝜃1 𝑗_1 = 0

𝝎1 𝑗_2 𝑗 =
cos𝛼1 cos𝛼2
− cos𝛼2 sin𝛼1
sin𝛼2


𝜃1 𝑗_2 𝑗 = 𝜃2

𝜔2 𝑗_2 =


0
0
0


𝜃2 𝑗_2 = 0

Table 3: The workspace equations

Equation
number

Expression of
the equation Maxima script Comments

1 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
1 𝑗_2 𝑗 Adgabt[3, 3]tw[3]

2 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
0_1 𝑗 Adgabt[3, 3]tw[1]

3 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
1 𝑗_2 𝑗 Adgabt[3, 2]tw[3]

4 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
0_1 𝑗 Adgabt[3, 2]tw[1]

5 𝐴𝑑−1(𝑔1 𝑗_1) 𝜉
𝐵
0_1 𝑗 Adgabt[2, 2]tw[1] 𝜉𝐵0_1 𝑗 : Joint twist in body coordinate

6 𝐴𝑑 (𝑔1 𝑗_1) 𝜉
𝑆
0_1 𝑗 Adgab[2, 2]tws[1] 𝜉𝑆0_1 𝑗 : Joint twist in spatial coordinate

7 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝜉
𝑆
0_1 𝑗 Adgab[3, 2]tws[1] 𝜉𝑆1 𝑗_2 𝑗 : Joint twist in spatial coordinate

twists and adjoints. The connection sequence of the links and joints is link 0,
joint 1, link 1, joint 2, and link 2, as seen in Table 1.
Link 1 is related to twist 2, where the transformation matrix is defined with

the rigid body’s center of gravity (COG) length as 𝑟1. The spatial points joint 1 to
joint 2 are related to twist 3, where the transformation matrix is characterized by
the rigid body length as 𝑙1. Link 2 is related to twist 4, where the transformation
matrix is defined by the rigid body’s COG length as 𝑟2.
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The abbreviations for the subscripts, for the expression of the equations in
Table 3, indicate the base and joint numbers. The base is abbreviated as 0, while
joints 1 and 2 are abbreviated as 1 𝑗 and 2 𝑗 , respectively. Where (1) and (2)
represent the link numbers in the subscripts of the adjoints and twists for Table 3.
All the equations derived from Lie algebra and Maxima in Tables 4–7 have

been published in the literature [2–6].While Adgab[3,3] is concerned with the 2R
robot mechanisms, Adgab[2,2] is concernedwith the 1R robot mechanisms. Also,
Adgab[3,3] arranges the kinematics beginning at the endpoint, while Adgab[3,2]
arranges the kinematics starting at the second joint of twist3.

2.1. Spatial coordinate workspaces using Lie algebra se(3) for grasping kinematics
of the spatial twist 1 (𝝃S

0_1j)

Throughout the article, the special cases of 𝛼1,2,3,4 as being 𝜋/2 are used
to verify the derived equations using Lie algebra with the Euclidean or plane
geometry. Additionally, this special case will simplify the derived equations via
the Lie algebra of differential geometry. Along with understanding relative body
coordinates in a simplified equation, it would be pedagogically advantageous to
explain coordinate functionality using Euclidean geometry and trigonometry.
The only coordinate used is at point B for the fixed spatial coordinate system.

The coordinates of points E and F are only used for the body coordinateworkspace
determination in Figure 1. The spatial workspace of 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝜉

𝑆
0_1 𝑗 is defined as

the position of point A relative to the fixed coordinate at point B in Figure 1. The
spatial second joint twist concerning the base is defined relative to the end of the
𝑙1 of point D, as in Figure 1.

Figure 1: The generated grasping and regrasping configuration of the 𝛼1,2,3,4 = 𝜋/2 for
varied 𝜃1 and 𝜃2 using twist 3 with adjoint of 𝐴𝑑 (𝑔1 𝑗_2) or 𝐴𝑑

−1
(𝑔1 𝑗_2)

Since the joint is directly connected to the fixed base, the body twists coor-
dinate result on point B (𝜉𝐵0_1 𝑗 ) is equal to the spatial twist coordinate result on
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point B (𝜉𝑆0_1 𝑗 ) of Figure 1. The 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝜉
𝑆
0_1 𝑗 workspace represents the spatial

second joint twist in relation to the base. The workspace of the joint 2 location is
defined with respect to the base of point B, as shown in Figure 1. The twist equa-
tions are derived using the screw axis, which is critical for designing grasping
and regrasping kinematics.
The spatial position of the COG of the first rigid body 𝑟1 is according to the

spatial coordinate on point B of the base for 𝐴𝑑 (𝑔1 𝑗_1) 𝜉
𝑆
0_1 𝑗 , as seen in Table 4

and Figure 1. The 𝐴𝑑 (𝑔1 𝑗_1) is related to the 1R robot mechanism. As shown in
Table 4, only the 𝜃1 angles exist as shown in Table 4, since both adjoint and twist
are in the range of base and COG of link 1. When 𝛼1,2 are equal to the 𝜋/2,
the workspace result is [𝑟1. cos(𝜃1), 𝑟1. sin(𝜃1), 0, 0, 0, 1], which can be verified
geometrically for 1R robot mechanism with one link one joint.

Table 4: The 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) , 𝐴𝑑 (𝑔1 𝑗_2) and 𝐴𝑑 (𝑔1 𝑗_1) adjoints for twist 1 in spatial coordinate

𝐴𝑑 (𝑔1 𝑗_2) 𝝃
𝑆
0_1 𝑗 : Adgab[3, 3].tws[1],

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­­«

𝑟2 cos (𝜃1 + 𝜃2) + 𝑙1 cos (𝜃1)
𝑟2 sin (𝜃1 + 𝜃2) + 𝑙1 sin (𝜃1)

0
0
0
1

ª®®®®®®®®®¬
see Figure 1

𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝝃
𝑆
0_1 𝑗 : Adgab[3, 2]tws[1],

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­­«

𝑙1 cos (𝜃1)
𝑙1 sin (𝜃1)
0
0
0
1

ª®®®®®®®®®¬
see Figures 1 and 4

𝐴𝑑 (𝑔1 𝑗_1) 𝝃
𝑆
0_1 𝑗 : Adgab[2, 2]tws[1]

𝛼1,2 are equal to the 𝜋/2, 1-R robot mechanism[
𝑟1 cos(𝜃1), 𝑟1 sin(𝜃1), 0, 0, 0, 1

]
The relative position of the E is described herein as in Table 4 for

𝐴𝑑 (𝑔1 𝑗_2) 𝜉
𝑆
0_1 𝑗 . Thus, the distance determination of point E is relative to the

fixed coordinates of point B, as seen in Figure 1. While tw1 or tw3 can be used
to form the body coordinate workspace, Table 1 demonstrates that tw1 and tw3
are the same for the spatial coordinate.

2.2. Spatial coordinate workspaces using Lie algebra se(3) for grasping kinematics
of the spatial twist 3 (𝝃S

1j_2j)

The matrix of body adjoint of 𝐴𝑑 (𝑔1 𝑗_2) , which is between the first joint and
the COG of the second link, transforms the second spatial joint twist (𝜉𝑆1 𝑗_2 𝑗 ).
This mathematical operation defines the spatial position of the end effector at
point E with respect to the fixed coordinate system at the base, as shown in
Figure 1. The spatial joint twist and body adjoints determine spatial configuration
manipulation where the workspace of the end-effector is determined relative to
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the base. The 𝜉𝑆1 𝑗_2 𝑗 ’s spatial twist is between revolute joints 1 and 2, where the
𝑙1 length is active for the transformation matrix, as shown in Table 1.
The body twists coordinate result on point (𝜉𝐵1 𝑗_2 𝑗 ) is not equal to the spatial

twist coordinate result on point A (𝜉𝑆1 𝑗_2 𝑗 ) of Figure 1, since the joint 2 is not
directly connected to the base, as shown in Table 1. The joint 2 of Twist 3 is
connected to link1 on one side and link 2 on the other, as in Table 1’s twist
equation. The second body joint twist transforms with the matrix of body adjoint
between the first joint and the COG of the second link, the end effector, as in
Table 1.
The different configuration manifolds for 2-RR grasping and regrasping are

created by changing the shape of the variable angles of 𝜃1 and 𝜃2. The Maxima
equations of workspaces are for spatial coordinates and body coordinates as
Adgab[3,3]tws[1] and Adgabt[3,3]tw[1], respectively.
Since the spatial twist of tws3 and tws1 are equal, as seen in Table 1, the

result in Table 5 for 𝐴𝑑 (𝑔1 𝑗_2) 𝜉
𝑆
1 𝑗_2 𝑗 is the same with Table 4 for 𝐴𝑑 (𝑔1 𝑗_2) 𝜉

𝑆
0_1 𝑗 .

The 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝜉
𝑆
1 𝑗_2 𝑗 workspace is generated with the spatial second joint twist

with respect to the fixed coordinate system at base. The equation in Table 4 can
be derived from Figure 1 for point A. The link is defined as the distance between
the rigid body’s joint and its center of gravity.

Table 5: The 𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) , and 𝐴𝑑 (𝑔1 𝑗_2) adjoints are for tw3 in spatial coordinateworkspaces

𝐴𝑑 (𝑔1 𝑗_2) 𝜉
𝑆
1 𝑗_2 𝑗 : Adgab[3,3]tws[3]

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­­«

𝑟2 cos (𝜃1 + 𝜃2) + 𝑙1 cos (𝜃1)
𝑟2 sin (𝜃1 + 𝜃2) + 𝑙1 sin (𝜃1)

0
0
0
1

ª®®®®®®®®®¬
see Figure 1

𝐴𝑑 (𝑔1 𝑗_2 𝑗 ) 𝜉
𝑆
1 𝑗_2 𝑗 : Adgab[3,2]tws[3]

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­­«

𝑙1 cos (𝜃1)
𝑙1 sin (𝜃1)
0
0
0
1

ª®®®®®®®®®¬
see Figures 1 and 4

2.3. Body coordinate workspaces using Lie algebra se(3) for regrasping kinematics
of the twist 1 (𝝃B

0_1j)

The spatial position for the twist of the 𝜉𝑆0_1 𝑗 , relative to the spatial coordinate
on point D of the base, is for the end point of the 𝑟1 or 𝑙1 relative to point D in
Figure 2. Since the connected base of the D is fixed, the relative body coordinate
of the endpoint 𝜉𝐵0_1 𝑗 equals the spatial coordinate 𝜉

𝑆
0_1 𝑗 endpoint, as shown in

Figure 2. Table 6 displays all workspace equations established using twist1 of
𝜉𝐵0_1 𝑗 for the body coordinate system. Also, Table 1 reveals the twist equations.
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Figure 2: The generated regrasping configuration of the 𝛼1,2,3,4 = 𝜋/2 for varied 𝜃2 using
twist 1 with adjoint of 𝐴𝑑−1(𝑔1 𝑗_2) where the equation in Maxima is Adgabt[3,3]tw[1]

The coordinate system is depicted at the end effector point of A as shown
in Table 1, the twist 𝜉𝐵0_1 𝑗 is located between the base and revolute joint 1. The
positional location of the end effector at point A in Figure 2 is defined relative
to twist 1 and dependent on the coordinates of D. The generalized equation of
the body coordinate workspace 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉

𝐵
0_1 𝑗 is defined as Adgabt[3,3]tw[1], as

shown in Table 3 of Maxima. The end effector positional workspace relative to
joint 1 is for the configuration of Figure 2 with substituted values of the 𝛼1,2,3,4 as
𝜋/2. Since we only have the 𝜃2 rotation, as shown in Figure 2, the configurational
workspace does not contain 𝜃1, as in the Table 6.

Table 6: The 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) , 𝐴𝑑
−1
(𝑔1 𝑗_2) and 𝐴𝑑−1(𝑔1 𝑗_1) 𝜉

𝐵
0_1 𝑗 workspaces are for tw1 in body

coordinate

𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
0_1 𝑗 : Adgabt[3,3]tw[1],

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­«

−𝑟2 − cos(𝜃2)𝑙1
sin(𝜃2)𝑙1
0
0
0
1

ª®®®®®®®®¬
see Figure 2

𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
0_1 𝑗 : Adgabt[3,2]tws[1],

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­«

−𝑙1 cos (𝜃2)
𝑙1 sin (𝜃2)
0
0
0
1

ª®®®®®®®®¬
see Figure 3

𝐴𝑑−1(𝑔1 𝑗_1) 𝜉
𝐵
0_1 𝑗 : Adgabt[2,2]tw[1],

When 𝜃1 = 𝜋, as follows
𝛼1,2 are equal to the 𝜋/2, 1-R robot mechanism
[−𝑟1, 0, 0, 0, 0, 1]

Here the body twist coordinate result on point D (𝜉𝐵0_1 𝑗 ) is equal to the spatial
twist coordinate result on point D (𝜉𝑆0_1 𝑗 ) of Figure 2 since one side of the joint
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is directly connected to the base. The joint is connected to the base on one side
and link 1 on the other side, as shown in the twist equation of Table 1. The result
is relative to the base (D) according to the body coordinate (xyz) on point A of
Figure 2. Only 𝜃2 is effective since the relative motion is only available between
points B and A. The description of point D is according to the coordinate system
of point A in Figure 2.
The 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉

𝐵
0_1 𝑗 is programmed in the Maxima as Adgabt[3,3]tw[1], which

contains the substituted values of the 𝜋/2 for 𝛼1,2,3,4. The aim herein is to generate
Euclidean geometrical analyses to explain and verify the body coordinate equation
results via Lie algebra. Also, the Lie algebra results are simplified with this
substitution for the 𝛼1,2,3,4. The position of the end-effector is described relative
to joint 1. The starting and final positions of the endpoint of the 𝑟2 determine the
body coordinate at point A.
The body coordinate workspace 𝐴𝑑−1(𝑔1 𝑗_1) 𝜉

𝐵
0_1 𝑗 is defined in terms of 𝑟1 for

specified values of the 𝛼1,2 and 𝜃1, as seen in Table 6. This body coordinate
workspace obtains the 1R robot mechanism with one link and one joint that
defines the position of the end of the 𝑟1 in Figure 3. The position of point D with
respect to the end of the 𝑟1 is calculated using this workspace equation and the
coordinates on the endpoint of the 𝑟1. The position of the COG of the first link
as 𝑟1 is defined relative to point D, which is according to the coordinates of the
endpoint of 𝑟1, as shown in Figure 2.

Figure 3: The generated regrasping configuration of the 𝛼1,2,3,4 = 𝜋/2 for varied 𝜃2
using twist 1 with adjoint of 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) which is 𝐴𝑑

−1
(𝑔1 𝑗_2 𝑗 ) 𝜉

𝐵
0_1 𝑗 of Adgabt[3,2].tw[1] in

Maxima

The body coordinate workspace equation 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
0_1 𝑗 is defined with the

inverse of the adjoint in between the joint 1 and 2. The joint 2 location on point A
of Figure 3 is defined relative to the initial location of twist 3 (joint 2). Similarly,
the body joint twists of the second joint are defined with respect to the second
link. This equation contains 𝜃2 and 𝑙1, as seen in Table 6. Only 𝜃2 is effective for
configuration in Figure 3 of the derived Lie algebra equations.
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Joint (2) position is defined in the adjoint equation 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
0_1 𝑗 with 2j

as a subscript, the equation is relative to the initial location of 𝑟2’s endpoint.
However, the spatial coordinates are considered fixed coordinates on the base.
The coordinate system start point will be established on point A of the joint to
describe location C, as shown in Figure 3. This description of point C is according
to the coordinate system of point A in Figure 3.
As shown in Figure 3, this mathematical operation defines the position of

the second joint, point A relative to point C. Body joint twist and body adjoints
determine configurationmanipulation. Two effective parameters for the definition
of point A of the second joint are 𝑙1 and 𝜃2 according to the relative coordinates
of point A of the relative coordinates, as shown in Figure 3. The joint 2 location
is defined relative to the initial location of twist 1 (joint 1). The configuration
manipulation is determined by the body joint twist and the inverse of the body
adjoints.

2.4. Body coordinate workspaces using Lie algebra se(3) for regrasping kinematics
of the twist 3 (𝝃B

1j_2j)

Second joint twist multiplies the inverse of the adjoint of the second body
joint. The configuration manipulation is determined via the body joint twist and
body adjoints. The second body joint twist transforms with the matrix of body
adjoint between the first and second joint, as seen in Table 1. This mathematical
operation defines the position of the second joint at point A with respect to point
D of twist 3, as shown in Figure 4. Body adjoints mean the inverse of the adjoint.

Figure 4: The generated regrasping configuration of the 𝛼1,2,3,4 = 𝜋/2 for varied 𝜃1 and
𝜃2 using twist 3 with adjoint of 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) which is 𝐴𝑑

−1
(𝑔1 𝑗_2 𝑗 ) 𝝃1 𝑗_2 𝑗 of Adgabt[3,2].tw[3]

in Maxima

The joint 2 location A for 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
1 𝑗_2 𝑗 is relative to the initial location of

the twist3 (joint 2) 𝜉𝐵1 𝑗_2 𝑗 of point D. This description of point D is defined relative
to the coordinate system of point A in Figure 4. While the point A coordinate
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system in Figure 4 is due to the 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) , the relative position definition of point
D is due to the multiplication with the 𝜉𝐵1 𝑗_2 𝑗 for the body coordinate workspace.
The body coordinate of Lie algebra is necessary for the in-hand motion of the
regrasp.
The next section describes the trigonometry of the geometry as well as the

verification of the Lie algebraic kinematics equations. This verified equation in
body coordinate 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉

𝐵
1 𝑗_2 𝑗 is to define the workspace owing section 2.5

from Table 7. The equation with the substitution of the 𝛼1,2,3,4 as 𝜋/2, as seen in
Table 4, is derived using Maxima for the body coordinate workspace equation of
𝐴𝑑−1(𝑔1 𝑗_2) 𝜉

𝐵
1 𝑗_2 𝑗 . The 𝐴𝑑

−1
(𝑔1 𝑗_2) 𝜉

𝐵
1 𝑗_2 𝑗 defines the link 2 of the end effector position

at point E with respect to the initial position of point F, where (2) is a subscript
for link2 in the inverse of the adjoint equation. The positioning result is for the
(D) relative to the body coordinate (𝑥𝑦𝑧) on point E of Figure 5 and Figure 1.
This mathematical operation defines the final position of the end effector, point
E, relative to the initial position of the second revolute joint location, point D, as
shown in Figure 1.

Figure 5: The fundamental equations to derive theTable 1 equations for𝛼1,2,3,4 substituted
with 𝜋/2 of 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉

𝐵
1 𝑗_2 𝑗

The difference between multiplying with twist1 or twist3 in body coordinates
is the position determination according to the twist1 or twist 3 (joint 2) relative
to the coordinate at point E, as seen in Figure 1. The positional definition of point
D relative to the coordinate at point E for the inverse of the adjoint 𝐴𝑑−1(𝑔1 𝑗_2) ,
multiplied by the twist3, is shown in Figure 1. In contrast, Figure 2 specifies point
D relative to the coordinate at point A for the inverse of the adjoint 𝐴𝑑−1(𝑔1 𝑗_2)
multiplied by the twist1.



ROBOT GRASPING AND REGRASPING KINEMATICS USING LIE ALGEBRA,
THE GEODESIC, AND RIEMANN CURVATURE TENSOR 17

One can see this difference in terms of the initial position of point F in Figure 1
and Figure 2. This description of point D is according to the coordinate system
of point E in Figure 1. If the inverse of adjoint is multiplied with twist 1, the body
coordinate workspace will result according to the twist 1 location of point B in
Figure 4. Otherwise, the body coordinate workspace will be established relative
to twist 3 of joint 2. The regrasping of the body coordinate workspace via the
inverse of the adjoint as of 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) should use twist3 to determine point D or
twist1 to determine point B relative to the coordinate on point A in Figure 4.
Also, the configurational difference between Figure 1 and Figure 2 is one

moves the second joint of twist 3 whereas the other does not move the second
joint at all. These configurations are determined based on derived equations via
Lie algebra se(3) and Maxima. The body twist will be based on how the things
in your hands are regrasped in the workspace equation’s body coordinate adjoint.
We shall multiply by the twist1 if we intend to reorient the object in relation
to the twist1 and vice versa for twist3. The derivation process is revealed using
geometry in the following Section 2.5.

Table 7: The 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) and 𝐴𝑑
−1
(𝑔1 𝑗_2) adjoints are for tw3 in body coordinate

𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
1 𝑗_2 𝑗 : Adgabt[3,3].tw[3],

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­«

𝑙1 cos (𝜃1 + 𝜃2) − 𝑟2 − 𝑙1 cos (𝜃2)
−𝑙1 (sin (𝜃1 + 𝜃2) − sin (𝜃2))

0
0
0
1

ª®®®®®®®®¬
see Figure 1

𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) 𝜉
𝐵
1 𝑗_2 𝑗 : Adgabt[3,2]tw[3]

𝛼1,2,3,4 = 𝜋/2©­­­­­­­­«

𝑙1 cos (𝜃1 + 𝜃2) − 𝑙1 cos (𝜃2)
−𝑙1 (sin (𝜃1 + 𝜃2) + sin (𝜃2))

0
0
0
1

ª®®®®®®®®¬
see Figure 4

2.5. Proof of the body coordinate of the 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
1 𝑗_2 𝑗 workspace configuration in Lie

algebra using trigonometry of the geometry for regrasping kinematics

The special case of the 𝛼1,2,3,4 with 𝜋/2 is used to arrange proof case in
trigonometry. The derived kinematic equations are verified and validated trigono-
metrically for the manifold of the shape variable angles of the 𝛼1,2,3,4 substituted
with 𝜋/2, as shown in Figure 5. The geometric result in Figure 5 is the same as
the derived equation from Lie algebra as below. The derived equations of the (3)
and (4) are proved to be the same with the Lie algebra result in Table 7.

𝑚 = −𝑙1 (sin (𝜃1 + 𝜃2) − sin (𝜃2)) , (3)
𝑘 = 𝑙1 cos (𝜃1 + 𝜃2) − 𝑟2 − 𝑙1 cos (𝜃2) . (4)
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The following eight equations are manipulated to derive 𝐴𝑑−1(𝑔1 𝑗_2) 𝜉
𝐵
1 𝑗_2 𝑗 equa-

tion on 𝑥 axis for 𝑘 , and 𝑦 axis for 𝑚.
1. cos(𝜃1/2 + 𝜃2) = cos(𝜃1/2) cos(𝜃2) − sin(𝜃2) sin(𝜃1/2),
2. a +b = 𝜃2, 3. 2b+ 𝜃1 = 180,
4. sin(𝜃1/2 + 𝜃2) = sin(𝜃1/2) cos(𝜃2) + sin(𝜃2) cos(𝜃1/2),
5. sin(𝑎) = sin(𝜃2 + 𝜃1/2), 6. cos(𝑎) = cos(𝜃2 + 𝜃1/2),
7. 2𝑙1 × sin(𝜃1/2) sin(𝑎) = 𝑚, 8. 2𝑙1 × sin(𝜃1/2) cos(𝑎) = 𝑘 .

3. Results

Only the chosen regrasp workspaces for the 2RR robot gripper will be dis-
cussed in this article after using the workspaces for various grasping and regrasp-
ing applications. These selected parameters are 𝜃1 and 𝛼1 for the body coordinate
that is related to the regrasp. The combinations of the remaining parameters are
not included due to the space limitation of the article. Finally, only the body
coordinate workspace is covered to show the doability of the generation of the
trajectories via RCT and geodesic solutions. The RCT and geodesic solutions are
based on four fundamental workspace equations derived using Lie algebra. The
parametric derivations of the geodesic with RCT are completed for any com-
binations of the selected parameters of the (𝑟1, 𝑙1, 𝑟2, 𝛼1,2,3,4, 𝜃1,2) using Lie
algebra se(3). I will only reveal the result of the combination of the 𝜃1 and 𝛼1
parameters herein.

3.1. Body coordinate workspace of the regrasp for the generation of the trajectories via
the RCT and geodesic solution results

The body coordinate workspace equation Adgabt[3,3]tw[3], which is defined
using the parameters shown in Table 8, is used in this section. As shown in
Table 8, the 𝜃1 and 𝛼1 parameters serve to solve the geodesic equations with the
initial conditions (IC).

Table 8: The 𝐴𝑑−1(𝑔1 𝑗_2 𝑗 ) and 𝐴𝑑
−1
(𝑔1 𝑗_2) adjoints are for tw3 in body coordinate

𝛼[1] 𝛼[2] 𝛼[3] 𝛼[4] Adgabt[3,3].tw[3] 𝑟1 𝑙1 𝜃2 𝑟2 𝜃1

𝛼1 𝜋/6 𝜋/2 𝜋/2 0.01 0.002 𝜋/3 0.01 𝜃1

IC IC
0.01 0.01

The RCT components of R1212, R1112, R1121, and R1211 were examined
for geodesic solutions. These sectional curvatures enable the construction of
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Figure 6: The regional sectional Riemann curvature radius of R1212 for 2RRmechanism
is in between −5 and 50000 where the angles are in radians

Figure 7: The regional sectional Riemann curvature radius of R1212 for 2RRmechanism
is in between 50000 and 1000000 where the angles are in radians

Figure 8: The regional sectional Riemann curvature radius of R1212 for 2RRmechanism
is remainings of the curvature values where the angles are in radians
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Figure 9: The geodesic trajectory generation of the 2RR robot workspace for regrasping
where the unit is in meters. The body coordinate generates path for 𝛼1, 𝜃1 parameters

spatial geometrical trajectories for regrasping. Due to space limitations, only the
R1212 result is included in the article.

4. Discussions

Precision and power grasp dependent on fingertip relative motions define
grasp kinematics. Use of the coordinates determined on the fingertip or joint
is inevitable. Finally, the body coordinate workspace of the Lie algebra is in-
vestigated for this purpose here with geodesic and Riemann curvature solutions.
Additionally, the regrasp is a uniquemotionwhere the body coordinate kinematics
of the Lie algebra is the pivotal defining in-hand motion of object re-orientations.
Therefore, planning is critical for regrasp purpose which requires kinematics well
established including the geodesic and RCT. The developed regrasped algorithms
are using the fixtures in literature [5–10] without considering in-hand kinematic
equations with Lie algebra as completed herein. Thus, the regrasp algorithms and
plannings should be redefined using the fundamental and analytical results of the
study completed herein.
The trajectories of a geodesic with a RCT are shown in Figures 6–9. The

grasp trajectories can be created using the spatial coordinate, since the object
will be at the fixed coordinate where it can be grasped by the 2R robot gripper
mechanism. The body coordinate can be used to regrasp the object in hand,
allowing the joints to be moved around to adjust the reorientation of the object.
The constraint angle between the screw axes on joint one and joint two can be used
to create modular trajectories. The multimodel planning is used for the grasping
and regrasping [5–10].
Grasp plans can be defined based on regrasping possibilities. A grasp pose

can be established between the gripper mechanism and the surface manifold of
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the object wherein the contact between them occurs. The regrasp configuration
is afterward positioned depending on where the object makes contact with the
joints, links, and twists as covered herein. Therefore, the geodesic and RCT are
based on the generated workspace of the regrasp configurations.
The regrasping kinematics can be defined using relative motions since the

object will already be in contact with the varied limbs and joints of the gripper
mechanisms. Therefore, the body coordinate system with Lie algebra is utilized
to derive the relative workspace equations, which will be relative to the joints.
Regrasp trajectories exploit the relative workspace with planning for the reori-
entation of the objects. The motions are defined using calculated geodesic RCTs
between the joints with defined relative workspace trajectories. The manifolds es-
tablished by the motion of the robot mechanism and the object surface manifolds
may intersect on the trajectories that are generated by RCT.

5. Conclusion

Grasping various shapes via robotic multi-finger mechanisms is achievable
using the kinematics of the varied definable RCT with geodesic for selected
parameters of the (𝑟1, 𝑙1, 𝑟2, 𝛼1,2,3,4, 𝜃1,2) using Lie algebra se(3). Applications of
the body and spatial twists and adjoints are proved to be convenient for regrasping
and grasping purposes using Lie algebra for gripper kinematic design. The RCT
is utilized with success using the sectional curvature components of the R1221,
R1121, R1212, and R1211 for grasping and regrasping purposes. The novel
trajectories are generated using geodesic for regrasping of the various shaped
objects.
The regrasping is defined by the body coordinate workspace of the geodesic

and RCT. Similarly, the spatial coordinate workspace of the geodesic and RCT
results in grasping. Therefore, the grasping and regrasping plans are obtainable
based on the novel method developed herein. Trajectories are determined using
geodesic and RCT.
The Maxima is programmed with the workspace equations for the spatial co-

ordinate workspace, body coordinate workspace, constraint-based spatial coordi-
nateworkspace, and constraint-based body coordinateworkspace. The substituted
values of the 𝜋/2 for 𝛼1,2,3,4 are validated and verified for the body coordinate and
spatial coordinate workspaces herein. The aim herein is to generate Euclidean
geometrical analyses to explain and verify the body coordinate results via Lie
algebra. The Lie algebra results are also simplified with this substitution for the
𝛼1,2,3,4. The rules for grasping and regrasping can be redefined and rephrased as
a result of this research article. The research on regrasping up to this point hasn’t
been as thorough as the research presented here, which combines Lie algebra,
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geodesic, and RCT. The wholistic approach for grasping and regrasping herein is
unique to lead an applicable planning for the varied shapes using them.
In the future, grasping kinematics should continue to be developed analytically

using Lie algebra, geodesics, and RCT. The surface intersections of the object
can obtain grasp and regrasp with the 2R and 1R mechanisms developed herein.
Multiple robot mechanisms integrate to design the gripper for various grasping
purposes using geodesic and RCT.

Conflict of interest: This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.
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