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Abstract
Value stream mapping (VSM) is a well-known lean analytical tool in identifying wastes, value,
value stream, and flow of materials and information. However, process variability is a waste
that traditional VSM cannot define or measure since it is considered as a static tool. For that,
a new model named Variable Value Stream Mapping (V-VSM) was developed in this study
to integrate VSM with risk management (RM) using Monte Carlo simulation. This model is
capable of generating performance statistics to define, analyze, and show the impact of vari-
ability within VSM. The platform of this integration is under Deming’s Plan-Do-Check-Act
(PDCA) cycle to systematically implement and conduct V-VSM model. The model has been
developed and designed through literature investigation and reports that lead in defining the
main four concepts named as; Continuous Improvement, Data Variability, Decision-Making,
and Data Estimation. These concepts can be considered as connecting points between VSM,
RM and PDCA.
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Introduction

Value stream mapping (VSM) is a lean manufac-
turing (LM) tool that maps a process and identifies
its main criticalities. Unfortunately, although there
are many advantages of VSM, there are some draw-
backs in using it (Schmidtke et al., 2014). One of these
drawbacks is that it fails to involve process variabil-
ity for both the current state map (CSM) and future
state map (FSM). In other words, VSM shows only
the static picture of the process at one single moment
of time, instead of the true dynamic nature of the pro-
cess. Hence, this makes VSM inaccurate as it does not
capture the real happenings of the process (Braglia et
al., 2009).

Variability can be defined as a lack of consistency
or fixed pattern or liability to variation or changes. It
refers to how spread out or closely clustered a set of
data is (Oxford English Dictionary, 2017). It is a well-
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known fact that there are different types of variabil-
ity in all processes. For example, there is variabil-
ity in customer demand and variability in processes
(Taleghani et al., 2013). The variability in this study
focuses on the variability in processes. Process vari-
ability includes all time durations that a typical pro-
cess deals with, such as cycle time (CT), lead time
(LT), changeover time (CO), takt time (TT), and
available time. It also includes variability in inventory,
which impacts the variability of all the time durations
of a process.

The sources of this type of variability could be
from all aspects of the value stream including, but
not limited to, equipment (machine failure, tool fail-
ure, etc.), processes (consumables shortage, power
outages, etc.), work force (worker fatigue and stress,
etc.) and material (low specifications, low quality,
etc.). In addition, variability is a significant noise
factor for a pull system in processes, demands, ran-
dom breakdowns and random setup times (Braglia et
al., 2009).

This type of variability leads to unstable work as
well as being unable to deliver on time, which is con-
trary to the concept of LM. In addition, the constant
change in customer demand causes the problem of
overproduction which leads to the increase in the lev-
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els of inventories and therefore it is also contrary to
the concept of LM.

Uncertainty can be defined as a lack of scientific
knowledge that is assumed to be important to make
a decision (Willows et al., 2003). All decisions are in-
tended to bring about some future benefit to some-
one or something, and involve choices. Without un-
certainty, these decisions would be straightforward.
The uncertainty in manufacturing process is typified
by reliability issues, LT uncertainty, CT uncertainty,
breakdowns, and process and/or output yield uncer-
tainty. Frequently, managers protect against the im-
pact of process uncertainty by producing larger lots
and through maintaining inventories from which their
contractual obligations were met which was clearly
not lean thinking (Kamrad & Ord, 2006).

Another related term is risk. A risk can be defined
as a type of uncertain event which itself, or its conse-
quences, is considered negative to someone in a given
context. Risk is the core of risk management (RM)
science. RM is one of the areas of knowledge that is in-
creasingly used in tandem with LM. RM is the art and
science of identifying, analysing, and reporting risks
throughout the life of a project and in the best interest
of meeting project objectives (Schwalbe, 2012).

Waste is affected by variability, and variability is
affected by uncertainty and risk. Thus, in order to
minimize or eliminate current and potential wastes,
variability, uncertainty and risk should be reduced or

removed. Risky futuristic events call for employees
to perform futuristic NVAA as potential non-value-
added activities (PNVAA). This way, all risks would
be identified, analysed and treated so that waste could
be minimized.

This study presents a way in developing a concep-
tual model that defines, analyses, and presents the
process variability through defining, analysing, and
presenting the uncertainties and risks. For this pur-
pose, tools and techniques such as Monte Carlo simu-
lation, PDCA, probability distribution, risk register,
sensitivity analysis, risk ranking matrix, and correla-
tion matrix were used.

Methodology

The conceptual model is a visual or written prod-
uct; one that explains, either graphically or in nar-
rative form, the main things to be studied (the key
factors, concepts, or variables) and the presumed re-
lationships among them (Miles & Huberman, 1994).
The methodology of this study is shown in Figure 1.
The literature review part was shown through defin-
ing the concepts of the V-VSM model. Although de-
veloping the model was achieved and explained in this
study, further future studies are needed to verify and
validate the V-VSM model.

Fig. 1. The Methodology of Designing the V-VSM Model
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Defining the concepts of the model

Understanding the development of value stream
and the action category for each step in the process is
necessary to enable the wastes to be analyzed. Other
considerations in developing the value stream include
the understanding of what will flow, what is the in-
formation needed to be gathered taking into consid-
eration the variation in time and how this variation
affects both cost and inventory.

The main building blocks of V-VSM are three com-
ponents; i.e. value stream mapping (VSM) as the most
important tool in lean manufacturing (LM), risk man-
agement (RM) as one of the important knowledge
in project management, and plan-do-check-act cycle
(PDCA) as one of the methods used in businesses
for the control and continuous improvement of pro-
cesses and products. From the literature, the PDCA
cycle has been proven to successfully integrate with
each VSM Popoola, 2000; Qassim et al., 2015; Garza-
Reyes et al., 2018; Milosevic et al., 2021) and RM
(Borkovskaya et al., 2018; Labodová, 2004; Okada,
2004; Ren et al., 2017; Qiu, H., & Du, 2021) sepa-
rately. In this study, the PDCA was used to integrate
both VSM and RM and to emphasize the connecting
concepts (characteristics) between them. The integra-
tion of these three components strengthens these con-
cepts or complements each other if one component is
lacking in one of the concepts, as shown in Figure 2.

Fig. 2. VSM, RM and PDCA Connecting Points
Relationships

Figure 2 shows the three components of the V-VSM
model and the four connecting concepts between these
components. These concepts are considered as the
characteristics of the components and are represented
by the green blocks. Meanwhile, the red blocks repre-
sent the need of the components to these characteris-

tics. Thus, the integration of these three components
in the V-VSM model will distribute their character-
istics among each other. It means all the red blocks
(need) will be replaced by the green blocks (charac-
teristics). These concepts can be explained by the fol-
lowing:

Continuous improvement

The continuous improvement for perfection is the
aim that drives both LM (Pampanelli et al., 2014;
Souza & Alves, 2018; Björnfot et al., 2011; Garza-
Reyes et al., 2018; Gill, 2012) and RM (Granerud &
Rocha, 2011; Ren et al., 2017). VSM, as one of LM
tools, is a process of continuous struggle to minimize
waste by supporting the value and offer it at mini-
mum costs (Granerud & Rocha, 2011). RM is a pro-
cess that protects the value continuously. Continu-
ous improvement is a fundamental element to treat
uncertainties. Since both RM and LM are system-
atic and data driven, the Deming’s PDCA cycle is
a structure to conduct VSM and RM in a system-
atic, repeatable and continuous cycle of improvement.
It is well known that the RM process cycle equates
to a continuous improvement process of PDCA. Fur-
thermore, LM adopts the continuous problem solving
from PDCA. Thus, this study uses the PDCA cycle
as a base to integrate both VSM and RM into one
model (V-VSM) for the purpose of strengthening the
continuous improvement characteristic.

Data variability

Both LM and RM support dynamic manufactur-
ing environment and response to changes that trans-
lates its goals (zero waste and risks, flow, and pull
through a response plan) into combined techniques
that should be implemented throughout the entire or-
ganization (Paez et al., 2004; Rasmussen, 1997). The
dynamism is represented by the data variability (time,
cost, inventory, etc.) and customer order variability.
Practitioners of VSM have challenged the problem of
data and customer variability. As a matter of fact,
data displayed by the current state map (CSM) are
average values computed by taking snapshots of the
process. Still, this simple approach prevents a thor-
ough comprehension of the process and so a comple-
mentary tool; i.e. simulation is needed in order to ac-
count for the manufacturing variability (Abdulmalek
& Rajgopal, 2007). Although risks are usually dy-
namic, their characteristics, probabilities and impacts
can vary during the application of the manufactur-
ing processes. PDCA is suitable for dynamic changes
such as customer needs, which forces the continuous
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improvement of processes and overall performances.
Since PDCA works well with each VSM and RM, the
use of it as a base to integrate both VSM and RM
will bring benefit in solving the problem of the lack
of identifying process data variability in VSM. This
variability will be represented in process times (CT,
LT, TT, etc.), inventory and cost.

Decision-making

This study emphasized the rule of decision-making
for a better choice of variable future state map (V–
FSM) by building multiple scenarios of V–FSM based
on several data collections for a realistic variable cur-
rent state map (V-CSM) which supports the decision
making process for a better VSM. VSM is known to
be useful in supporting decision making process be-
cause of its ability in identifying VA activities and
highlighting the improved efficiency in a plant. How-
ever, the traditional VSM sticks to one plan of FSM
depending on a snapshot of one CSM, thus giving no
choice for the decision maker to have many alterna-
tive plans if the FSM did not work. For RM, decision
makers are faced with uncertainty when more than
one outcome is possible for each alternative and the
probabilities of these outcomes are unknown. With-
out uncertainty, these decisions would be straightfor-
ward (Aven, 2016). PDCA helped the decision makers
establish the best possible solution for improvement
(Aven, 2016). Thus, in this study the decision mak-
ing process was supported by the integrated V-VSM
model through generating different scenarios of V–
FSM depending on V-CSM. The number of the sce-
narios and the differences between them are given by
the decision maker. Then, the decision maker will be
given the opportunity to study the differences of these
scenarios through the development of V-VSM. Fur-
thermore, many alternatives are ready to be used if
the chosen scenario does not work as planned.

Data estimation

The estimation of input data is needed when the
output data of an event, process or activity is uncer-
tain. Whenever there is futuristic uncertainty, risk,
variability, and probability, there will be an estima-
tion of data presented in a range of possibilities.

V-VSM lists all the expected risks that bring poten-
tial non-value-added activities (PNVAA) with their
probabilities and impacts by estimating them. The
impact of PNVAA on LT will be calculated and shown
in the V-VSM drawing. For the PDCA cycle, contin-
uous improvement means continuous change and the
estimation process is needed when there is always an

ambiguity and uncertainty in knowing which one of
these changes and improvements will bring benefit.
Following the PDCA cycle will help solve these un-
certainties. This will be through planning the change
and applying it or by performing an experiment. The
next step is to check the results and analyse where
the changes lead to. Finally, the last step is deciding
whether to keep the changes or redo the entire cycle
again (Choo et al., 2007).

Developing the V-VSM model

The conceptual model in this study is a logical se-
quence enhanced by quantitative tools in order to
create a continuous improving flow. The VSM helps
to observe all the areas including value-added activ-
ities (VAA) and non-value-added activities (NVAA),
as well as, helps to understand how specific processes
contribute to the overall satisfaction of the customer.
Furthermore, RM provides an additional analysis to
all inputs; VAA, NVAA and risks to prevent, mitigate
or eliminate potential wastes or PNVAA that might
happen in the future. These inputs are identified using
probability distributions through Monte Carlo simu-
lation to calculate their probability and impact on the
operating parameters. The flow of the model is shown
in Figure 3 and, as have been mentioned previously,
the PDCA cycle role is very important as a base of
integration for both VSM and RM.

As shown in Figure 3, the Plan phase is the under-
standing and identification of the expected benefits
and objectives of applying V-VSM. The goals and ob-
jectives for the selected families are represented by
the expected time delivery and quantity, which are
decided by the decision-maker. This will be through
identifying the customer Takt time (CTT). However,
the real Takt time (TT) is varied into three values
depending on the variable of available time, which in
this study is named as operational Takt time (OTT).

Collecting the available data from the decision-
maker was achieved under the Do phase. The decision-
maker is represented by the stakeholder who is any-
body directly impacted by the value (such as the spon-
sor, manager, team, support staff, customer, user, and
supplier). The data collection can be through both
primary techniques using questions, interviews, and
observations, and secondary technique using the data
of the examples from the literatures. Adding to that,
the collected data must include all the variations. This
variation is to be counted from observations, expert’s
opinions, and stakeholders. The variability inside the
processes depends on the process type itself. There-
fore, if the process is manual, it will be more exposed
to variability when compared it to an automated ones

Volume 14 • Number 1 • March 2023 75



A.S. Araibi, M.S.A. Ishak, M.H. Shadhar: Improvement of Value Stream Mapping by Integrating a Monte Carlo . . .

Fig. 3. Variable Value Stream Mapping (V-VSM) Model Structure

(Groover, 2006; Andrecioli & Lin, 2008). Thus, the
variability in time will affect work in process (WIP)
level, as well as, WIP time.

The Check phase is the application of assessment
quantitative and qualitative techniques along with
collecting additional appropriate data represented by
risks for each process or step along the production
processes. The Check phase is the summarization, an-
alyzation and review of a scenario of data through
Monte Carlo simulation. Subsequently, the V-CSM
will be drawn through this phase.

Fitting the data is needed to specify the variability
limits by using Probability Distribution. To do so, it
is important to know what type of distribution will
best fit the data. The probability distribution is a tool
to perform calculations that deal with variability and
the results of these calculations are used as a base for
business decisions. Thus, applying inappropriate tools
will bring wrong results and bad impacts.

The best-fit probability distributions were imported
to all the input data. The reasons for identifying the
input data with probability distribution are: 1 – The
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input data in the model consists of two types of data,
first is the variability of observed data, and second
is uncertain data. Both types are represented in the
probability distribution to define their range of data.
2 – To acknowledge whether the data patterns are
accurate enough to fit well in a probability distribu-
tion. 3 – Brings further analysis between correlated in-
puts, and helps to see how the variability range of one
variable can effect in incrementing and/or decreasing
the variability of other variables. 4 – The probabil-
ity destitution during the simulation helps to sample
the most convening input value considering sampling
constrains such as the best fit of the probability distri-
bution, the variance around the mean (standard devi-
ation), the correlated data, and the added time as the
impact of the risk data. It means the process of select-
ing a sample during the simulation is not a random se-
lection. 5 – Different analysis techniques that used in
V-VSM model such as Monte Carlo simulation, sensi-
tivity analysis, scenario generating, data correlation,
and risk analysis cannot be performed without the
identification of probability distribution.

The risk register was used to record all the proba-
bilities, impacts and consequences of risks with their
calculations (Mace et al., 2015). Probability refers to
how often an event occurs, and is measured in terms
of number of events per time units given in percent-
age. It is described by a discrete distribution. Impact
depends on the consequences of the event occurrence,
and is described by a continuous distribution (Normal
distribution, Gamma distribution, Exponential distri-
bution, beta distribution, etc.). Risk registers are rel-
atively simple tool for capturing risk related data like
the type of risk, probability, impact and other infor-
mation (O’Har et al., 2017).

For correlating the data, Spearman’s rank correla-
tion coefficient can be used to identify the relation-
ships between inputs (VAA, NVAA, and risks). This
will enhance the sampling process during the run of
Monte Carlo simulation to avoid nonsensical results.

The risks probabilities and impacts are anticipated
using the risk register. This step evaluates these
risks using an established semi-qualitative, quanti-
tative uncertainty analysis called “Risk Probability-
Impact Ranking Matrix technique” by ranking and
assessing the degree of seriousness of the identified
risks (Nicholas, 2018).

All input data will be simulated using Monte Carlo
simulation technique. The simulation will run with
a certain number of iteration using @Risk software.
A higher number of iterations will bring better re-
sults because it will consider all the possible outcomes,
which make it accurate and real.

After the simulation ends, all the identified inputs

and outputs were shown in a variability way as three
values (min, mean or most likely, and max). The out-
puts need to be identified in order to be collected from
simulation result, which, in this study, consists the fol-
lowing:

• The total cycle time (CT): represents the sum-
mation of the possible outcomes of the processes’
cycle times (VAA).

• The total lead time (LT): represents the summa-
tion of the possible outcomes of the VAA and
NVAA.

• Impact on time: represents the additional time
added as the risk’s impact.

• Impact on cost: represents the additional costs
added to the plan as the risk’s impact.

The simulation was followed by a sensitivity anal-
ysis, which was presented as a tornado graph. In this
study, the sensitivity analysis tornado graph was dis-
played using Spearman rank correlation coefficient. It
shows a clear image of the most significant sampled
input variables that affect the outputs. That means
any change in those inputs could directly affect the
decrease and increase of that output.

In order to give the decision-maker the permittiv-
ity in building the appropriate V-VSM with prefer-
able criteria, this step presents all the scenarios sug-
gested by the decision-maker. Each scenario concen-
trates on the variability of total CT, total LT, added
delay value, and added cost value.

Finally, the Act phase will be through communi-
cating the results with the decision maker. If the re-
sults are appropriate, then the V-CSM will be opti-
mized through building the V–FSM for the dynamic
manufacturing environment where these phases will
be continuously repeated to get continuous improved
results.

After inserting the collected input data into the
model and processing them, the expected outputs for
each phase are shown in Figure 4. The first phase will
produce one table having all the wanted data includ-
ing their variability. Each variable will have three val-
ues representing the min, most likely, and max value.
The Do phase outputs will include building the risk
register and correlate all the input variables including
all the ranked risks to know what the most effected
risk that needs to be focused on in order for it to
be minimized or eliminated. In the third phase, the
check phase will show the different scenarios of the
Monte Carlo simulation results, followed by drawing
the V-CSM by considering the selected scenarios from
the simulations. Finally, the V-CSM is used to draw
the V–FSM and then initiate a plan to implement the
V–FSM.
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Fig. 4. Expected Outcomes from Each Phase
of V-VSM Model

Results and discussion

In order to test the developed model, the Acme
Stamping Bracket value stream mapping example
from the book “Learning to See” (Rother & Shook,
2003) was considered as a partial validation in this
paper. To specify the variability limits, a probabil-
ity distribution needs to be imported for each VA,
NVA, and PNVA. To do so, it is important to know
what type of distribution will best fit the data. Since
the variables in this case are all about time and costs
which are continuous variables, symmetrical, positive,
have upper and lower limits, and relative to the mid-
dle values, thus making the Pert distribution the best
fit distribution as shown in Figure 5.

The Monte Carlo simulation ran with 100 iterations
using @Risk software. The input variables for each it-
eration were sampled according to the current needs
and identified limitations. Thus, the simulation find-
ings were not defined by certain values, but rather
they can be regarded as possible outcomes across their
minimum-maximum range. At the end of the simula-
tion, all the identified inputs and outputs were shown

in a variability way by three values (min, mean or
most likely, and max). Figure 6 shows the simulation
results of the outputs, including cycle time, lead time,
and both added time and cost as an impact of the
risks.

The simulation process was followed by a sensitivity
analysis, which was presented as a tornado graph. The
sensitivity analysis showed the most significant sam-
pled input variable affecting the outputs. The results
were displayed as a graph consisting of bars with dif-
ferent lengths. The longest bar represented the largest
effective range input variable and vice versa. Figure 7
shows the tornado graph for all the outputs while the
V-CSM with all the variabilities in the input values is
shown in Figure 8.

Producing the Takt time (TT) is the first step to-
wards drawing the future state map (FSM). The ex-
pected time delivery and quantity are decided by the
decision-maker. The decision-maker could give one
value of delivery date, which helps in calculating the
TT in one value known as customer TT (CTT). How-
ever, the real TT and the operating TT (OTT) could
vary by the three values of minimum limit, mean, and
the maximum limit depending on the varied available
time. Formula (1) was used to calculate the OTT by
having a fixed value for customer demand, and the
available time as the variable value.

OTT (min,mean,max)

=
total daily operating time(min,mean,max)

total production demand
(1)

This created three values of TT from the chosen ex-
ample. The usage of these three values of OTT served
the expected CTT in drawing the V–FSM, making the
CTT the target. The total daily operating time per
shift was (25800, 27600, and 29400) seconds as the

Fig. 5. Importing Probability Distribution into V-CSM
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Fig. 6. Simulation outputs

Fig. 7. Tornado graph for all outputs

(minimum, mean, and maximum) values respectively,
or shown as (7.5, 8, 8.5) hours respectively, per shift.
By dividing the range of the total daily operating time
by the daily customer production demand which was
460 units, the OTT was calculated to be (56, 60, and
64) seconds. The CTT was 60 seconds, which made
it a target to be achieved using the OTT. In order to
produce one product according to CTT, the minimum
and the mean value of OTT were used neglecting the
maximum value as it exceeded the CTT. Thus, the
company needed to minimize the range of CT into
equal or as close to the minimum and the mean val-
ues of OTT to reach CTT as shown in Figure 9. To
achieve the target of CTT, the focus was on the min-

imum and mean values of OTT. The maximum value
was neglected since it was larger than the target.

From Figure 9, it shows that the minimum range
of OTT is equal to 56 seconds, making the range of
assembly 1 process exceeding the CTT. Thus, the CT
of assembly 1 process needs to be reduced to be equal
or less than 56 seconds to be able to produce the min-
imum limit of OTT.

The next step was to adjust the number of the oper-
ator for the cell by adding the minimum CT of all the
combined processes and dividing it by the minimum
OTT (179.7/56) which was equal to (3.2) operators.
However, dividing the mean values of both CT and
OTT was equal to (3.1) operators. Thus, the number

Volume 14 • Number 1 • March 2023 79



A.S. Araibi, M.S.A. Ishak, M.H. Shadhar: Improvement of Value Stream Mapping by Integrating a Monte Carlo . . .

Fig. 8. The Variable Current State Map (V-CSM)

Fig. 9. Operating Takt Time (OTT) Against Process Cycle Time

of workers required was 3 in numbers. If this was not
the case, then another scenario would be built.

Since the goal here was to minimize the CT and
LT, there were 4 working operators. One for Die cut
process and three for the combined cell. By using the
minimum OTT of (56) seconds, the working time of
each worker should be less than 56 seconds. On the

other hand, each worker was spending 56 seconds as
a minimum time (169/3). Thus, the work time for
each worker was to be reduced to (50 seconds) or less,
so that the total CT of the cell would become 150
seconds as shown in Figure 10.

Figure 10 shows the flow of processes using the min-
imum CTs with the minimum OTT of (56) seconds.
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Fig. 10. CT for Continuous Flow Cells Using the Minimum Limits Comparison to Minimum OTT

This scenario could be considered as the first scenario
of V–FSM.

Figure 11 shows the mean OTT of (60) seconds with
the mean CT of the process. The work time of each
worker should be equal or less than 56 seconds to guar-
anty producing within the CTT of (60) seconds. This
scenario could be considered as the second scenario of
V–FSM.

The third scenario of V–FSM is shown in Figure 12.
It depends on the minimum limits of CT for each
worker’s work time of (50) seconds. These times were
compared to the mean value of OTT of (60) seconds.
Thus the workers have more space between CT and
OTT to guaranty producing the CTT.

After setting all the previous steps, drawing the V–
FSM was done in three scenarios considering the three

arrangements when applying the continuous flow step.
The three scenarios used minimum and mean values
of CT and OTT. The maximum values were neglected
since it exceeded the CTT.

The first scenario in Figure 13 used the minimum
CT of both the die cut process (0.9) second and the
combine cell (50) seconds, and they were compared
to the minimum OTT of (56) seconds. The minimum
OTT was set as the maximum limit for the cell CT.
However, this did not mean the workers had all the
freedom to work within that range, but rather carry-
ing on with the work with the specified CT as much as
they can despite the maximum limit. This would guar-
antee producing the OTT to reach the goal of CTT.
In the first scenario, reaching the maximum limit of
OTT was still within the CTT unless there were no

Fig. 11. CT for Continuous Flow Cells Using the Mean Limits Comparison to Mean OTT
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Fig. 12. CT for Continuous Flow Cells Using the Minimum Limits Comparison to Mean OTT

Fig. 13. The Variable Future State Map (V–FSM) Scenario 1

risks involved. Any risk occurring during the produc-
tion needs time to solve it. Thus, the benefits of these
ranges between the CT and OTT will save the prob-
lem of delaying. Identifying these ranges of variability
and the probabilities of risks, impacts, and solutions
reduce the time needed in each supermarket, subse-
quently reducing the total LT as shown in the figures
of F-VSM’s scenarios.

Since the FSM is a futuristic, predictive map, the
supermarkets’ times were given as a range of num-
bers. This brought about the flexibility in applying
the V–FSM especially in the first stages of applica-
tion. The supermarkets’ times were all the same in
the three scenarios of V–FSM since they were defined
in a range. This gave a wider space in the application
stage.
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The second scenario used the minimum CT of both
the die cut process (0.9) second and the combine cell
(50) seconds, and were compared to the mean OTT
(60) seconds as shown in Figure 14. The mean OTT
was set as the maximum limit for the cell CT which
made the range between them higher than the first
scenario of V–FSM. This gave extra space to solve
undefined risks that could occur, and for that, the
supermarkets’ times could be used as the minimum
limit.

The third scenario used the mean CT of both the
die cut process (1 second) and the combine cell (56
seconds), and they were compared to the mean OTT
(60 seconds) as shown in Figure 15. The total CT in
this scenario was considered to be the highest value
since it depended on the mean values of the CTs. The
mean OTT was set as the maximum limit for the cell
CT which made the range between them to be the
least compared to the other scenarios of V–FSM.

The outputs of the V–FSM using the developed
model was compared to the traditional future state
map (T–FSM) of the Acme example are shown in the
Table 1.

Table 1 shows the difference between the T–FSM
and the developed model V–FSM. Three scenarios
of the V–FSM were built according to the variabil-

Table 1
V–FSM Scenarios Outputs Compared to the T–FSM of

Acme Example

Model CT
(sec)

LT
(day)

Added
Time

Added
Cost

T–FSM 169 4.5 – –

V–FSM –
Scenario 1 150.9–169 1.7–3.2 0 0

V–FSM –
Scenario 2 150.9–181.1 1.7–3.2 0 0

V–FSM –
Scenario 3 169–181.1 1.7–3.2 0 0

ity in the V-CSM. Since the FSM is a predictable
plan to follow, it is important to show flexibility in
the application of it. By this, the map can reflect the
dynamic environment of the manufacturing system.
Comparing the two models of T–FSM and V–FSM,
the latter can show the ranges of values that can fit
the varied manufacturing environment. The CT in
the T–FSM gave 169 seconds, and the LT was equal
to 4.5 days. Meanwhile, the V–FSM was performed
in three different scenarios in terms of both the CT
and LT.

Fig. 14. The Variable Future State Map (V–FSM) Scenario 2
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Fig. 15. The Variable Future State Map (V–FSM) Scenario 3

As shown in Table 1, the added time and cost gave
zero points to the added time and cost, as it was as-
sumed that all the identified risks were eliminated
and controlled. The LT was also reduced in all sce-
narios because of the previous identifying, analyzing,
and solving of all the risks. Adding to that, the time
between the CT and TT can be used for fixing any
undefined risk.

Conclusions

The VSM displays a picture of the manufacturing
system in a specific day. However, manufacturing en-
vironment tends to vary depending on the state in
which the factory is in. If the variation in production
process is neglected during the preparation of current
state map, the future state map will be inaccurate.
It can affect the operating parameters such as ma-
chine cycle times as well as the measurement of the
performance such as Takt time (TT) of the manu-
facturing system. Thus, this paper has provided the

phases and steps in developing a model that can be
used to present the current and future state of a dy-
namic manufacturing environment through the inte-
gration of VSM, Risk Management (RM), and Plan-
Do-Check-Act (PDCA) cycle. The model can specify
the ranges of variability in the production processes
as well as the potential risks by generating scenarios
of current state map using Monte Carlo simulation.
The results of applying the model shows the differ-
ence between the traditional VSM where it gave 4.5
days for the lead time (LT) and the developed V-VSM
model where the LT shows in a range of (1.7–3.2) days
in three different scenarios of the future state map
(FSM). By this, the V-VSM can reflect the dynamic
environment of the manufacturing system.
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