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Abstract
The paper considers the production scheduling problem in a hybrid flow shop environment
with sequence-dependent setup times and the objectives of minimizing both the makespan
and the total tardiness. The multi-objective genetic algorithm is applied to solve this problem,
which belongs to the non-deterministic polynomial-time (NP)-hard class. In the structure of
the proposed algorithm, the initial population, neighborhood search structures and dispatch-
ing rules are studied to achieve more efficient solutions. The performance of the proposed
algorithm compared to the efficient algorithm available in literature (known as NSGA-II) is
expressed in terms of the data envelopment analysis method. The computational results con-
firm that the set of efficient solutions of the proposed algorithm is more efficient than the
other algorithm.
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Introduction

Scheduling is defined as the systematic process of
setting various planned activities in order to deter-
mine the start and end dates of each activity to ex-
ecute the whole work in a systematic and orderly or
sequence manner. Therefore, scheduling is an impor-
tant tool in management, manufacturing and engi-
neering to minimize production time and cost. The
structure of a production unit in scheduling problems
can be classified as single-stage single-machine prob-
lems, multi-stage single-machine problems, single-
stage multi-machine problems, and multi-stage multi-
machine problems. The production unit with the last
characteristic is referred to as the hybrid flow shop
(HFS) model.

Ruiz and Vazquez-Rodriguez (2010) described the
HFS problem in its “standard” form. In the standard
form of the HFS problem, the setup times are neg-
ligible or included in the processing times. In this
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research, we define two types of setup times: the
first type is sequence-independent setup times (SIST)
and the second is sequence-dependent setup times
(SDST). If the setup time depends solely on the job
to be processed, it is called sequence-independent. On
the other hand, in the sequence-dependent type, it de-
pends on both the job and its previous job.

The objective function is a function of planning
variables that is minimized or maximized during opti-
mization. The scheduling problems are evaluated dur-
ing optimization using the objective functions. Due
to highly competitive markets, limited resources and
just-in-time concepts, the goal of production man-
agers is usually to optimize multiple objective func-
tions. In this research, one of the scheduling objec-
tives is assumed to be the minimization of the max-
imum completion time (makespan or Cmax), which
often is a standard scheduling objective to increase
internal efficiency with the efficient utilization of re-
sources. Another scheduling objective is assumed to
be the minimization of the total tardiness, which of-
ten is a standard scheduling objective to increase ex-
ternal efficiency by reducing penalties incurred for
late jobs. In order to consider the process-based
and customer-based objectives, the minimization of
two objective functions, including maximum com-
pletion time and total tardiness, is intended simul-
taneously.
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According to the simultaneous approach in objec-
tive functions (Collette & Siarry, 2003), both criteria
are considered as primary objectives and the target is
to search a set of optimal solutions (with other titles,
Pareto front, efficient solutions, non-dominated solu-
tions, etc.). The HFS scheduling problem is a strongly
NP-hard problem (Ruiz & Maroto, 2006). To develop
a solution method, a meta-heuristic based on genetic
algorithm (GA) has been proposed to search a set of
efficient solutions for investigated problem.

The remainder of the paper is organized as follows:
Section 2 gives review of relevant literature. In Sec-
tion 3; a bi-objective GA is presented for solving HFS
scheduling problem. The parameter setting and com-
putational results are presented in Section 4. Finally,
Section 5 consists conclusions and future research.

Literature review

The literature review section refers to several in-
stances of papers on multi-objective HFS scheduling
problems solved using GA. Neufeld et al. (In Press)
presented a comprehensive review of the literature on
multi-objective HFS scheduling.

Dugardin et al. (2010) studied the scheduling prob-
lem in the reentrant HFS (RHFS) environment with
identical parallel machines. There was a queue before
each machine at each stage. These queues were man-
aged by sequence rules. In this paper, the schedul-
ing criteria include (a) minimizing the makespan
and (b) maximizing the utilization rate of the bot-
tleneck. They developed a multi-objective GA us-
ing the Lorenz dominance relationship to efficiently
solve their problem. Abyaneh and Zandieh (2012)
focused on the HFS problem with identical paral-
lel machines and two additional attributes includ-
ing limited buffer spaces and the SDST constraint.
The sequence of job was encoded in the first stage,
and for the other stages, the jobs were sequenced
in the order of their completion time in the previ-
ous stage. The first available machine rule was used
to assign jobs to machines at each stage. A meta-
heuristic approach based on GA is proposed to min-
imize the makespan and the total tardiness of jobs.
Fadaei and Zandieh (2013) considered group schedul-
ing in the HFS scheduling problem with identical par-
allel machines within the area of sequence-dependent
family setup times and two objectives of minimizing
makespan and total tardiness of jobs. They focused
on three multi-objective algorithms, multi-objective
GA, sub-population GA-II and non-dominated sort-
ing GA-II (NSGA-II), to solve the mentioned prob-

lem. The sequence of groups and jobs assigned to
each group at the first stage were determined based
on an encoding method employing random num-
bers. For other stages, groups and jobs were as-
signed to machines based on their completion time
in the previous stage. Therefore, the first available
machine rule was used to assign groups and jobs to
machines at each stage. Ebrahimi et al. (2014) in-
vestigated the HFS scheduling problem with iden-
tical parallel machines, sequence dependent family
setup time, and uncertain due dates. The sequence
of job was coded in the first stage, and for the other
stages, groups and jobs were assigned to the ma-
chines based on their completion time in the previ-
ous stage. They developed two multi-objective evo-
lutionary algorithms based on GA, namely: NSGA-
II and multi-objective GA (MOGA) to minimize
the makespan and the total tardiness of jobs. Cho
and Jeong (2017) addressed a two-level hierarchi-
cal process on production planning and scheduling
of the RHFS with identical parallel machines. The
lower level scheduling objectives were to minimize the
makespan and to minimize the total tardiness. They
developed the combination of preemptive goal pro-
gramming based production planning algorithms and
Pareto genetic based scheduling algorithms. Mousavi
et al. (2018) examined the scheduling problem in
the SDST RHFS environment with identical par-
allel machines and the learning effect to minimize
the total tardiness and the makespan. The job se-
quence was encoded in the first stage, and for the
other stages, the jobs were sequenced in the order
of their completion time in the previous stage. The
earliest completion time rule was used to assign jobs
to machines at each stage. They presented a multi-
objective GA somewhat similar to NSGA-II. Li et al.
(2019) presented the HFS scheduling problem with
identical parallel machines and common due dates.
An advanced GA-based on the NSGA-II, was uti-
lized to minimize the total waiting time and the to-
tal earliness or tardiness. Chen et al. (2020) stud-
ied the scheduling of an energy-efficient HFS with
unrelated parallel machines and lot streaming in or-
der to minimize both the production makespan and
electric power consumption. They applied NSGA-II
to obtain approximate Pareto solutions. Zheng et al.
(2021) addressed a flexible flow shop scheduling prob-
lem considering limited buffers and step-deteriorating
jobs, where there were multiple non-identical paral-
lel machines. To handle this problem, a hybrid meta-
heuristic algorithm based on GA, variable neighbor-
hood search and simulated annealing is developed to
minimize the makespan and total tardiness simulta-
neously.
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The cost-effectiveness of GA in solving the multi-
objective optimization problem (MOP) has led to the
emergence of different approaches from the develop-
ment of GA in the literature. Although much atten-
tion has been paid to multi-objective GA, still other
approaches of GA development can be proposed to
increase the performance of the algorithm. Many of
the existing literatures on HFS problems solved us-
ing GA have not considered the investigation of all
or part of the structure of the proposed solution al-
gorithm in order to increase its effective performance.
In this research, the structure of the proposed algo-
rithm has been investigated to achieve a more effi-
cient algorithm. This is the reason for different al-
ternatives have been proposed for each component
of the algorithm structure. Then computational tests
show the best alternative for each part of the algo-
rithm structure. The initial population, neighborhood
search structures and dispatching rules will be inves-
tigated in the structure of the proposed algorithm.

The proposed bi-objective genetic
algorithm

In this research, the modified GA is presented
to solve the bi-objective optimization problem. The
flowchart of the proposed bi-objective GA called
BOGA and its pseudo code are illustrated in Figures
1 and 2, respectively. In the following, the structure

and details of the proposed algorithm are described
extensively.

Step 1: Encode solutions by employing random numbers.
Step 2: Initialize 

a) Parameters related to the problem and the algorithm,
b) An initial population

Step 3: Record/Update Pareto-efficient solutions in archive
a) Calculate the value of makespan and total tardiness for 

each solution.
b) Calculate Pareto optimal solutions of this iteration and 

update the Pareto archive.
Step 4: Calculate total objective function for each solution
Step 5: Evaluate fitness function for each solution.
Step 6: Selection scheme to reproduce the next generation
Step 7: Apply reproduction based on elitist selection strategy.
Step 8: Apply crossover operator based on roulette wheel 
selection strategy.
Step 9: Apply mutation operator based on purely random 
selection strategy
Step 10: Apply neighborhood operator to the elite solution
Step 11: Replace the new population obtained from steps 7 to 10 
with the old population
Step 12: If the stopping criteria are met, it is the termination of 
algorithm, otherwise go to Step3.
Step13: Local search

Fig. 2. Pseudo-code of BOGA

Step 1: Encoding

Encoding is a step to convert a scheduling solution
into a chromosome. For our problem, a position in a
chromosome (i.e., gene) represents a job number (i.e.,

Fig. 1. Flowchart of proposed algorithm
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job based representation) and the number of positions
(i.e., chromosome size) corresponds to the number of
jobs. For example consider a problem with five jobs,
two stages, two machines at stage one, three machines
at stage two, and with the chromosome as [3 1 4 2 5]. It
is known that the machines in parallel are identical in
capability and processing rate. Therefore, the first job
(3) is scheduled on the machine 1 and second job (1)
is assigned to the machine 2 at stage one. Then, the
job 4 is assigned to the machine with the earliest com-
pletion time. This process continues like this, until all
jobs are assigned to the first stage machines. In order
to determine the sequence of jobs in the second stage,
dispatching rules are used. In this paper, dispatch-
ing rules such as first-in-first-out (FIFO) rule, arrival
time-remaining processing time (AT-RPT) rule and
slack time (SL) rule are presented as a candidate.
Consequently one of these rules should be chosen and
sequence of jobs is determined based on selected rule.
Therefore, one of the research discussions in the com-
putational results section is which of the dispatching
rules is more suitable for the sequence of jobs from
stage 2 to the last stage. The AT-RPT rule for each
job at each stage is calculated as the current time of
each job (CT) minus the arrival time of each job (AT)
plus the remaining processing time of each job (RPT),
where the arrival time of all jobs is assumed to be zero
(AT-RPT=CT-AT+RPT). The SL rule for each job
at each stage is calculated as the due date of each job
(DD) minus the current time of each job minus the
remaining processing time of each job (SL=DD-CT-
RPT). The priority of the AT-RPT is the largest first
and the priority of the SL rule is the smallest first.
In determining remaining process time, in addition to
processing time, there is setup time which related to
the sequence of jobs. Since the jobs sequence of each
stage (stage 2 to end) is not clear, the formula ob-
tained by Kurz and Askin (2003) is used to find the
approximation of the remaining process time, as fol-
lows:

p̃ti = pti + min
j∈{0,1,...,n},j 6=i

(stji)

t = 2, . . . , g; i = 1, 2, . . . , n
(1)

RPT k
i =

g∑
t=k

(
pti + min

j∈{0,1,...,n}, j 6=i
(stji)

)
k = 2, 3, . . . , g; i = 1, 2, . . . , n

(2)

where
n number of jobs
g number of serial stages
di due date for job i

St
ji dependent setup time from job j to job i at

stage t if job j is immediately before job i
St
0j independent setup time for job j at stage t

if job j is first job for scheduling
P t
i processing time for job i at stage t
P̃ t
i modified processing time for job i in stage t

(this time represents the minimum time at
a stage t that must elapse before job i could
be completed)

RPT k
i the sum of modified processing times for job
i of stage k to stage g (k = 2, . . . , g)

Step 2: Initialization

i) Initialize the algorithm parameters such as the
number of initial population (Npop), Probability of
crossover (Pc), Probability of mutation (Pm), Prob-
ability of reproduction (Pr), Probability of neighbor-
hood (Pn), Number of generation (Ng). The parame-
ters of proposed BOGA must be set. Therefore, one of
the research discussions in the computational results
section is to set the parameters of the GA with the
Taguchi method. Set the archive with the empty set.

ii) Initialize an initial population (P0). In this pa-
per, two suggestions are intended to generate an initial
population. In the stochastic method, the initial pop-
ulation is generated randomly. In the hybrid method,
a part of population is generated by constructive algo-
rithms and remaining part of population is randomly
generated. In this paper, constructive algorithms such
as earliest due date (EDD), latest due date (LDD),
shortest processing time (SPT) and longest processing
time (LPT) are presented as a constructive set that
produces 2g+4 chromosomes from the initial popula-
tion. Consequently one of these methods should be
chosen and the initial population is generated based
on selected method. Therefore, one of the research dis-
cussions in the computational results section is which
of the two hybrid and stochastic methods is more suit-
able for the sequence of jobs in stage 1 (or the initial
population).

Step 3: Record or Update Pareto-efficient
Solutions in Archive

The objective values of all chromosomes in the cur-
rent population (Pi) are evaluated, then the popu-
lation of solutions is classified into successive non-
dominated fronts. In this method, rank 1 is given to
the non-dominated solutions in the population and
they are removed from the population; then next set
of non-dominated solutions is searched and rank 2
is assigned to them. The process continues until the
entire population is ranked. Finally, record the first
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rank as the Pareto-efficient solutions in this iteration,
then the net non-dominated solutions are generated
by a set of all non-dominated solutions (in the archive
and the first rank). The old Pareto-efficient solutions
in the archive are updated with new ones (net non-
dominated solutions).

Step 4: Calculate Total Objective Function

The total objective function is constituted as the
linear combination of objective functions. Therefore,
a weight vector is needed to aggregate the two objec-
tives into a scaling function and also, different weights
vectors should be used to define different directions of
search. For a solution x, the total objective function
in the study is represented as follows:

f(x) = λ1 × f1(x) + λ2 × f2(x) (3)

where f1(x) = makespan; f2(x) = total tardiness;
λ1 + λ2 = 1.

The idea behind the λ values is to balance both ob-
jectives. For a low value ofλ1, the total tardiness prob-
lem will dominate the makespan problem, whereas for
a large value ofλ1, the makespan problem will domi-
nate the total tardiness problem.

Step 5: Evaluate Fitness

The original concept of fitness is the larger the bet-
ter because solutions with larger fitness tend to prop-
agate to the next generation. In this paper, minimiza-
tion of objectives is considered. Hence it contradicts
the original idea of fitness. A transformation should
be made to reverse the minimization to maximization.
The fitness value of a chromosome, called fitness (x),
is given by Eq. 4:

fitness(x) =
1

f(x)
, x = 1, 2, . . . Npop (4)

Step 6: Selection Scheme

Roulette wheel, elitist and purely random selections
are employed to reproduce the next generation. For
the chromosome x with fitness(x), its selection prob-
ability, called prob(x), is calculated as follows:

prob(x) =
fitness(x)

Npop∑
x=1

fitness(x)

, x = 1, 2, . . . Npop (5)

Step 7: Reproduction

Based on elitist selection, Npop×Pr solutions from
current population are selected. It means that

Npop×Pr solutions with the highest probability in the
current population are copied to the next generation.

Step 8: Crossover Operator

Based on roulette wheel selection, Npop×Pc pairs of
parents from current population are selected, and per-
formed crossover on the parents. One-Point Crossover
(1PX) is applied in this paper. To generate an off-
spring from this operator, a random number is gen-
erated and each parent is divided into two parts ac-
cording to the cut point. The offspring chromosome
is obtained from the combination of the first part of
parent 1, and the second part of parent 2. If there is a
need to modify the chromosome, it will definitely be
done. The obtained solutions are transferred to the
next generation.

Step 9: Mutation Operator

Based on purely random selection, Npop×Pm chro-
mosomes from current population are selected, and
mutated individual bits. Swap move is applied in this
paper. To generate a sequence from this operator,
choose randomly two positions for its insertion (i.e.,
i and k), insert the job found in the ith position of
sequence S in position k of sequence S, insert the job
found in the kth position of sequence S in position i of
sequence S, and adjust remaining jobs in the sequence
accordingly by not changing the relative positions of
the other jobs. The obtained solutions are transferred
to the next generation.

Step 10: Neighborhood Operator

Neighborhood search structure algorithms move
from solution to solution in the search space. The
main aim of neighborhood search structure is to pro-
duce a new solution from current solution by making
a slight change in it.

A neighborhood relation on the search space is de-
fined to generate Npop ×Pn solutions of an elite solu-
tion. It is known that solution with the highest prob-
ability is the best solution in the population. In or-
der to select the elite solution, the current population
and the solutions achieved from crossover and muta-
tion operators (steps 8 and 9) are combined. Then,
solution corresponding to the maximum probability
(Eq. (6)), called new_prob(x), is selected as the elite
solution. In this paper, several neighborhood relations
as inversion move, shift move, swap move, and neigh-
borhood swapping are presented as a candidate. Con-
sequently one of these relations should be chosen and
new solutions are produced based on selected struc-
ture. Therefore, one of the research discussions in
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the computational results section is which of the four
neighborhood relations is more suitable for this oper-
ator. Then, the solutions obtained from this operator
are transferred to the next generation.

new_prob(x) =
fitness(x)

Npop(1+Pc+Pm)∑
x=1

fitness(x)

x = 1, 2, . . . , Npop(1 + Pc + Pm)

(6)

The candidate neighborhood relations are intro-
duced as follows. A candidate solution is presented
by its configuration vector X = (x1 . . . xn) and denote
by πi a subsequence of X of arbitrary length, by (xi)
the subsequence consisting of a single configuration
xi, and by “.” the concatenation operator. In swap,
shift and inversion moves, first chooses randomly two
positions (i.e., i and j) in a solution.

Swap move (X, i, j)

= SWP (π1 · (xi) · π2 · (xj) · π3, i, j)
= π1 · (xj) · π2 · (xi) · π3 (7)

Shift move (X, i, j)

= BSH (π1 · (xi) · π2 · (xj) · π3, i, j)
= π1 · (xj).(xi) · π2 · π3, i < j

Shift move (X, i, j)

= FSH (π1 · (xi) · π2 · (xj) · π3, i, j)
= π1 · π2 · (xj) · (xi) · π3, i > j

(8)

Inversion move (X, i, j)

= Inv (π1 · (xi)(xi+1) . . . (xj−1)(xj) · π2, i, j)
= π1 · (xj)(xj−1) . . . (xi+1)(xi)π2 (9)

Neighborhood swapping (X)

=
{
X ′ : X ′ = Swap move (X, i, j),

for all i = 1, . . . , n− 1, j = i+ 1, . . . , n
}

(10)

Step 11: Replacement

Solutions obtained from the previous steps (include
steps 7 to 10) are combined as new population (Pi+1).

Step 12: Stopping Rule

If the number of generations equals to the pre-
specified number (Ng) then stop, otherwise go to
step 3.

Step 13: Local Search

The archived solutions (Pareto-efficient solutions)
are searched by local search namely random insertion
perturbation scheme (RIPS). To explain RIPS con-
siders seed sequence (S) given by {2-3-1-5-4}. The job
in the first (i.e., an extreme position) can be inserted
at any position to its right. Hence the job in the first
position is inserted at any position between 2 and n
(here n =5), and a random number generated between
2 and n is used to select the job position. Suppose the
selected position is 3. Job 2 is inserted in position 3,
yielding a new sequence, S1 as {3-1-2-5-4}. Consider
the job in the second (i.e. a non-extreme) position
of sequence S and choose randomly two positions for
its insertion. Note that this job can be inserted at
any position between (2+1)th and nth positions (i.e.
a position to its right) and between 1st and (2-1)th
positions (i.e. a position to its left). Suppose position
1 is selected to the left and position 4 is selected to
the right of job 3. The new sequences thus generated
are {3-2-1-5-4} and {2-1-5-3-4}. Call these sequences
S2 and S3, respectively. Similarly, for the jobs in po-
sitions 3 and 4, we select two positions randomly, one
to the right and one to the left, and obtain the re-
sulting sequences {2-1-3-5-4}, {2-3-5-1-4}, {5-2-3-1-4}
and {2-3-1-4-5}. Let us call these sequences S4; S5; S6
and S7, respectively. As for the job in the nth posi-
tion (another extreme position), only one position is
randomly selected towards the left of the job, i.e. be-
tween positions 1 and n-1. Let the randomly selected
position be 2 and the resulting sequence be {2-4-3-1-
5}, called S8. After performing the above procedure,
for a seed sequence with n jobs, 2× (n− 1) sequences
are generated.

The individual feature of this research is to examine
the details of the proposed algorithm in order to max-
imize the algorithm efficiency. In this research due to
the increasing amount of computations, only a limited
number of alternatives are considered for the main
sections of the algorithm, and this is a research limi-
tation.

One of the strengths of the algorithm is to give more
important to the fitness function. Because the fitness
function determines the best solution in each genera-
tion. It is known that solution with the highest prob-
ability is the best solution in the population. Also,
a new operator called neighborhood operator is de-
fined to search the neighborhoods of best solution in
each generation. Then, neighborhood operator is per-
formed to generate a part of solutions of the next gen-
eration with search the neighborhoods of best solution
in each generation. This means that the new opera-
tor is executed only on a specific solution that has
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been introduced by the fitness function. We hope to
get better results by making small changes in the best
solution (closest to the obtained solution to the opti-
mal solutions). These slight changes are done through
neighborhood operator.

Computational experiments

The required data for the investigated problem con-
sist of number of jobs, number of stages, number
of machines, the range of processing times, range of
setup times, and range of due date. In order to eval-
uate the proposed algorithm, the problems created in
Mousavi et al. (2011) have been used.

In the MOP literature, many of the performance
criteria provided to assess the quality of the non-
dominated solutions. In this paper, the introduced
method by Ruiz-Torres and Lopez (2004) (namely,
FDH approach) is used to compare several efficient
sets quantitatively.

In the rest of this section, it includes parameter set-
tings with the Taguchi method, the results of studying
the structure of the proposed algorithm, the imple-
mentation of the data sets by the proposed algorithm
and the algorithm in the literature, and then the re-
sults of the comparisons are presented.

Parameter setting

When using algorithm to achieve efficient solutions,
the values of algorithm parameters vary depending on
the type of problem. Therefore, appropriate value se-
lection has a significant effect on the performance of
the algorithm. In this paper, the parameters in the al-
gorithm are determined by the Taguchi method. The
Taguchi method implements a quality loss function for
evaluating product quality with an orthogonal array
to reduce the number of tests.

In setting the parameters, first the control factors,
their levels and an orthogonal array for these control
factors are selected. The control factors include the
inner array. In this paper, the parameters and their
levels are shown in Table 1. The square matrix with
4 parameters in 3 levels used in the Taguchi met od
is L9.

Experiments are performed several times for each
combination of control factor settings (the inner ar-
ray). The response data from each run in the outer
array is usually placed in the row corresponding to
the control factors set in the inner array. Then, the
response data in each row of the outer array is trans-
mitted as S/N values. Because the goal of the research
is to minimize the makespan and the total tardiness

Table 1
Parameters, levels and S/N ratio

A (Npop) B (Pc) C (Pn) D (Ng)

L
ev
el

S/
N

ra
ti
o

L
ev
el

S/
N

ra
ti
o

L
ev
el

S/
N

ra
ti
o

L
ev
el

S/
N

ra
ti
o

1 60 3.2318 0.50 2.9810 0.10 3.3415 80 2.6914

2 80 2.9909 0.60 3.0169 0.15 2.5634 90 2.7598

3 100 2.8596 0.70 2.7185 0.20 2.8321 100 2.8071

Delta 0.3722 0.2984 0.5094 0.1157

Rank 2 3 1 4

of jobs, S/N ratio must be calculated using lower-is-
better formula as Eq. (11).

S

N
= −10 log


n∑

i=1

Y 2
i

n

 (11)

The problem is that the response data from each
run in MOP is usually in the form of sets (efficient
solutions). Since the Taguchi function must be eval-
uated by a criterion, then a function that represents
a combination of all objectives is defined as follows
(Eq. (12)):

Yi =

ai∑
s=1

(
λ× Cs

max i + (1 − λ) × T
s

i

)
ai

(12)

where ai is the number of obtained non-dominated
solutions from i-th combinations in L9. Cs

max i and
T

s

i are, respectively, the makespan and total tardi-
ness values of the solution s in the reference set ai. λ
denotes the weight (or relative importance) given to
Cs

max i and T
s

i .
Also, Table 1 shows the data converted to S/N

value. It can also be seen in Table 1, factor C (prob-
ability of neighborhood operator) is prominent in the
implementation process of determining the parame-
ters of the GA. In addition, the effect of four factors on
minimizing makespan and the total tardiness in GA is,
in the order of: probability of neighborhood operator,
number of initial population, probability crossover op-
erator, and number of generation. The optimal factor
combination is A: 100; B: 0.7; C: 0.15; and D: 80.

Studying the initial population
in the structure of the proposed algorithm

Since the output results are strongly dependent on
the initial set and in order to achieve more efficient so-
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lutions, two suggestions (hybrid and stochastic meth-
ods) are considered to generate an initial population.
First, a part of the population is generated using con-
structive algorithms such as EDD, LDD, SPT, and
LPT (Eq. (13) to (18)) and the rest of the popula-
tion is randomly generated. This is known as hybrid
method. Second, the initial population is generated
randomly. This is known as stochastic method.

EDD : d[1] ≤ d[2] ≤ . . . ≤ d[n−1] ≤ d[n] (13)
LDD : d[1] ≥ d[2] ≥ . . . ≥ d[n−1] ≥ d[n] (14)

SPT : p1[1] + p2[1] + . . .+ pg[1] ≤ . . .

≤ p1[n] + p2[n] + . . .+ pg[n] (15)

LPT : p1[1] + p2[1] + . . .+ pg[1] ≥ . . .

≥ p1[n] + p2[n] + . . .+ pg[n] (16)

SPTt : pt[1] ≤ pt[2] ≤ . . . ≤ pt[n−1] ≤ pt[n]

t = 1, . . . , g (17)

LPTt : pt[1] ≥ pt[2] ≥ . . . ≥ pt[n−1] ≥ pt[n]

t = 1, . . . , g (18)

The FDH approach is used to evaluate the output
results of two mentioned methods above. The degree
of efficiency is calculated using equal weights for each
of the objectives (0.50). The results are shown in Ta-
ble 2. Output results indicate that the FDH has the
highest score for the hybrid method than the stochas-
tic method. Therefore, the hybrid method is more ef-
fective than the other method for generating the ini-
tial population. Also, Fig. 3 shows the average effi-
ciency of the hybrid method (case 1) and the stochas-
tic method (case 2) in different levels of the number
of jobs and stages. It can also be seen in Fig. 2, the
first case has a higher average efficiency than the sec-
ond case in all situations. This figure illustrates and
confirms the conclusion derived from the numerical
results based on the performance criterion.

Fig. 3. Average efficiency in the different levels of the num-
ber of jobs and stages

Table 2
Result of efficiency of hybrid and stochastic methods

Problem n g τ R Hybrid Stochastic

S1 15 5 0.2 0.2 0.9880 0.9857

S2 0.2 0.8 0.9458 0.9433

S3 0.5 0.5 1.0000 1.0000

S4 0.8 0.2 0.9979 0.9977

S5 0.8 0.8 1.0000 0.9945

M1 25 10 0.2 0.2 1.0000 0.9892

M2 0.2 0.8 1.0000 0.9925

M3 0.5 0.5 1.0000 0.9923

M4 0.8 0.2 1.0000 0.9873

M5 0.8 0.8 1.0000 0.9773

L1 40 20 0.2 0.2 0.9578 0.8653

L2 0.2 0.8 1.0000 0.9917

L3 0.5 0.5 0.9981 0.9977

L4 0.8 0.2 0.9993 0.9978

L5 0.8 0.8 0.9989 0.9920

Studying the neighborhood operator and
dispatching rule in the structure
of the proposed algorithm

In this subsection, the best alternatives are de-
termined for the dispatching rule and neighborhood
operator. The dispatching rules such as FIFO, AT-
RPT, and SL are selected as a candidate. In order to
find the best neighborhood operator, inversion move,
shift move, neighborhood swapping and swap move
are considered as a candidate. It is known that per-
formance measure (FDH approach) provides better
results if the number of algorithms is increased (Ruiz-
Torres and Lopez, 2004). This is the reason for com-
binations of dispatching rules and neighborhood op-
erators have been created. Table 3 shows the twelve
combinations obtained with their names and abbrevi-
ation codes. The aim of the section is to find the best
combination of dispatching rule and neighborhood op-
erator.

The degree of efficiency is calculated using equal
weights for each of the objectives. The weight of the
objectives in the total objective function, which con-
sists of a linear combination of the objective functions,
is considered equal. It is known that the evaluation
method is able to rank algorithms through numeri-
cal evaluations based on an index namely efficiency.
Table 4 represents the results of FDH approach for
various problems. In Table 4, the efficiency of GA2 is
equal to 1 (the highest efficiency) for S1 problem and
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Table 3
Candidate algorithm

No Abbreviation Neighborhood operator Dispatching rule

1 GA1 Inversion move FIFO

2 GA2 Shift move FIFO

3 GA3 Neighborhood swapping FIFO

4 GA4 Swap move FIFO

5 GA5 Inversion move AT-RPT

6 GA6 Shift move AT-RPT

7 GA7 Neighborhood swapping AT-RPT

8 GA8 Swap move AT-RPT

9 GA9 Inversion move SL

10 GA10 Shift move SL

11 GA11 Neighborhood swapping SL

12 GA12 Swap move SL

Table 4
Heuristics efficiency

Problem
Algorithm

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8 GA9 GA10 GA11 GA12

S1 0.9462 1.0000 0.9966 0.9897 0.9730 0.9706 0.9881 0.9886 0.9178 0.9906 0.9662 0.9580

S2 0.9030 0.9623 0.9757 0.9963 O.8090 0.9739 0.9744 0.9402 0.9844 0.8853 0.9917 0.9974

S3 0.9494 1.0000 0.9931 0.9832 0.9505 0.9753 0.9862 0.9889 0.9821 0.7716 0.9906 0.9923

S4 0.9941 1.0000 0.9969 0.9990 0.9944 0.9967 0.9962 0.9976 0.9906 0.9939 0.9963 0.9961

S5 0.9935 0.9973 0.9966 0.9988 0.9950 1.0000 0.9981 0.9985 0.9970 0.8984 0.9955 0.9972

M1 0.9178 0.9773 0.9437 1.0000 0.9768 0.9733 0.9833 0.9762 0.9963 0.7963 0.9999 0.8615

M2 0.9596 1.0000 0.9888 0.9987 0.9679 0.9824 0.9869 0.9940 0.995O 0.8232 0.9981 0.9955

M3 0.9783 0.9971 0.9925 1.0000 0.9745 0.9945 0.9957 0.9880 0.9934 0.8630 0.9984 0.9311

M4 0.9915 0.9957 0.9940 1.0000 0.9917 0.9924 0.9934 0.9949 0.9970 0.9944 0.9927 0.9811

M5 0.9843 0.9938 0.9910 0.9662 0.9783 0.9768 0.9912 0.9848 0.9981 0.9988 0.9977 0.7090

L1 0.6646 0.9997 0.9980 1.0000 0.7328 0.6367 0.9079 0.7202 0.9888 0.6602 0.9948 0.9976

L2 0.9736 1.0000 0.9783 0.9898 O.9809 0.9940 0.9953 0.9968 0.9949 0.9543 0.9974 0.9324

L3 0.9934 O.9990 O.9990 0.9991 0.9981 0.9935 0.9942 0.9948 0.9961 0.9974 0.995O 0.9421

l4 0.9987 0.9948 0.9976 1.0000 0.9940 0.9979 0.9962 0.9977 0.9967 0.9896 0.9971 0.9985

L5 O.9806 0.9971 0.9981 0.9975 0.9711 0.9893 0.9957 0.9943 0.9986 0.8821 0.9980 0.9989

is better than others. The highest rank (i.e., rank 1)
is assigned to GA2 in comparison to other algorithms.
Based on the codes in Table 3, GA2 was created from
the combination of FIFO and shift move. It means
that “FIFO” and “shift move” are classified in rank 1 as
the best alternative for the dispatching rule and neigh-
borhood operator respectively. Another example, the

efficiency of GA4 is equal to 1 for M4 problem and
is better than others. Based on the codes in Table 3,
GA4 was created from the combination of FIFO and
swap move. It means that “FIFO” and “swap move”
are classified in rank 1 as the best alternative for the
dispatching rule and neighborhood operator respec-
tively.
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Then, several sets of different weights vectors are
used to search different directions of space solution
(λ1 = 0.25, 0.5, and 0.75). After running the algo-
rithms for different weights and calculating the effi-
ciency of the algorithms by FDH approach, the results
are summarized in Table 5. Table 5 shows that several
times (but as percentage) each alternative (neighbor-
hood operator and dispatching rule) is classified in the
rank 1. It can also be seen in Table 5 (section I), the
FIFO rule with the highest percentage is suggested to
find the jobs sequence of the second to end stages. It
can also be seen in Table 5 (section II), the shift move
with the highest percentage is suggested to generate
a section of solutions of the next generation.

Table 5
The summarized results (%)

λ
1
=

0
.7
5

λ
1
=

0
.5

λ
1
=

0
.2
5

Alternative Section

74 74 80 FIFO I
13 6 6 AT-RPT (Dispatching

17 20 20 SL
rule)

0 0 0 Inversion
move

II74 47 57 Shift move
(Neighborhood

9 0 23 Neighborhood
swapping

operator)

20 53 23 Swap move

The efficiency of the proposed algorithm

The performance of the proposed BOGA is com-
pared with a NSGA-II algorithm in the literature
(Deb et al. 2002). It is noticeable that all of algo-
rithms are implemented in MATLAB 2009a, and run
on a PC with 2.30 GHz Intel Core and 4 GB of RAM
memory. To show the efficiency and effectiveness of
the proposed algorithm in comparison with a NSGA-
II, computational experiments were done on various
test problems (i.e. small, medium and large). Each
test problem has been executed ten times and the
“meta-heuristic efficiency” has been calculated with
the FDH approach for each algorithm.The compar-
isons are performed on the basis of the sets of non-
dominant solutions obtained by each algorithm.

The results of heuristic efficiency based on the FDH
approach for each algorithm are shown in Table 6. Ta-
ble 6 shows that FDH assigned the highest score to
proposed algorithm in comparison with the NSGA-II

algorithm in most problems. Also, Fig. 4 depicts the
average efficiency of algorithms in different levels of
number of jobs and stages. It can be seen that the
BOGA has the higher average efficiency than algo-
rithm in the literature for all sizes of the problem.
Therefore, the performance of the proposed method
is independent of the size of the problem instances.

Table 6
Heuristics efficiency

Problem n g τ R BOGA NSGA-II

S1 15 5 0.2 0.2 0.9991 0.9795

S2 0.2 0.8 0.9715 0.9344

S3 0.5 0.5 1.0000 0.9653

S4 0.8 0.2 0.9995 0.9982

S5 0.8 0.8 0.9945 0.9951

M1 25 10 0.2 0.2 0.9979 0.9968

M2 0.2 0.8 0.9953 0.9939

M3 0.5 0.5 0.9977 0.9967

M4 0.8 0.2 0.9989 0.9998

M5 0.8 0.8 0.9790 0.9782

L1 40 20 0.2 0.2 0.9508 0.9091

L2 0.2 0.8 0.9980 0.9960

L3 0.5 0.5 0.9983 0.9983

L4 0.8 0.2 0.9970 0.9991

L5 0.8 0.8 0.9985 0.9772

Fig. 4. Average efficiency of algorithms

Now, computational results are expressed in terms
of qualitative metrics. Number of Pareto solu-
tions (NPS) criterion presents the number of non-
dominated solutions obtained from each algorithm.
The larger the number, the better the performance
of the algorithm will be. Also, the net non-dominated
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solutions (NDS) are generated by a set of all non-
dominated solutions obtained from all algorithms
(whose members should be also non-dominated in re-
lation to one another). The results of NPS and NDS
are shown in the Table 7. The values of NPS of BOGA
and NSGA-II in the first row of Table 7 are equal to
8 and 6 respectively. As a result, the BOGA front has
more non-dominated solutions than NSGA-II front,
corresponding to the value of NPS. The results shown
in NPS column only evaluate the number of non-
dominated solutions found by each algorithm, not
their quality. However, the quality of solutions can
be measured by NDS. The values of NDS of BOGA
and NSGA-II in the first row of Table 7 are equal to
7 and 3 respectively. The larger value of NDS, the
better of solution quality we have. As shown in Table
7, the proposed algorithm is more effective than the
NSGA-II algorithm in terms NDS and NPS for small,
medium and large-sized problems.

Table 7
Number of efficient scheduling

Problem
NPS NDS

BOGA NSGA-II BOGA NSGA-II

S1 8 6 7 3

S2 19 15 10 10

S3 5 7 5 2

S4 10 4 8 3

S5 6 7 4 1

M1 10 6 9 4

M2 10 6 8 3

M3 9 16 8 9

M4 8 5 4 4

M5 8 9 7 3

L1 8 7 7 2

L2 6 4 5 2

L3 8 9 4 4

L4 8 8 2 6

L5 9 6 8 1

Graphical representation is provided to demon-
strate output results of the BOGA and NSGA-II.
Figure 5 represents the non-dominated solutions of
a single run by proposed algorithm and NSGA-II for
S2 problem. It is obvious that a “net non-dominated
front” is obtained the non-dominated sets of both al-
gorithms. The results indicate that the solutions ob-
tained of BOGA have relatively better quality.
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Fig. 5. The non-dominated solutions of BOGA and NSGA-
II for S2 problem

Conclusions and future work

This paper considers the problem of scheduling jobs
in a hybrid flow shop with the objectives of mini-
mizing both the makespan and the total tardiness.
A bi-objective genetic algorithm is proposed for solv-
ing this bi-objective optimization problem. Taguchi
method is applied to set the parameters of the pro-
posed algorithm. The results show that the neighbor-
hood operator is known as a prominent factor in the
process of setting parameters of the BOGA. A new
operator named “neighborhood operator” was placed
as a new idea in the structure of genetic algorithm.
In this paper, two suggested methods for generating
the initial population was also studied to improve the
quality of the non-dominant front. The results showed
that the hybrid method is more effective for generat-
ing initial population. Other results obtained from the
study of the structure of the proposed algorithm are
as follows. The FIFO rule gives better results than
the other dispatching rules for jobs sequence from the
second to the next stage. The shift move algorithm is
the best option among neighborhood structures stud-
ied for the neighborhood operator. Finally, the per-
formance of the proposed algorithm is compared with
the efficient algorithm in literature (NSGA-II). The
efficiency result has been observed that the proposed
algorithm provides more efficient solutions than the
NSGA-II algorithm. There are two main reasons for
the relatively better performance of the proposed al-
gorithm. First, the structure of the proposed algo-
rithm was examined and then it was compared with
another algorithm. Second, a neighborhood operator
placed in the structure of this algorithm (as a new
idea) has had a significant effect on increasing the effi-
ciency of the algorithm. For future research, dispatch-
ing rules can be designed based on the objectives and
assumptions in the research.
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