
© 2023. The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution-ShareAlike International License (CC BY-SA 4.0, http://creativecommons.org/licenses/by-sa/4.0/), 
which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

gospodarka surowcami mineralnymi – mineral resources management

 Corresponding Author: Xiaoyan Luo; e-mail: lxy9416@163.com
1	Jiangxi University of Science and Technology, China
2	Jiangxi University of Science and Technology, China; ORCID iD: 0000-0002-7569-0128;  
	 e-mail: lxy9416@163.com

2023      Volume 39      Issue 1      Pages 217–233

DOI: 10.24425/gsm.2023.144626

Wencong Tang1, Fangwei Zhang1, Xiaoyan Luo2, Junliang Wan1, Tao Deng1

Method of vibration signal processing and load-type 
identification of a mill based on ACMD-SVD

Introduction

The development and utilization of mine resources play a significant role in the develop-
ment of human beings. The development of many emerging technology industries requires the 
use of mineral resources (Yun et al. 2020). As key equipment for the development and utili-
zation of ore resources, the internal load change of the mill will directly affect the production 
safety and efficiency of the entire grinding industry (Ting et al. 2021a; Xu et al. 2022). Mill 
efficiency is highest when the mill load is at its optimum; however, the mill load is difficult 
to measure directly (Yang and Cai 2021). Mill load parameters (material-ball ratio, grinding 
concentration, filling ratio, etc.) are important parameters in the ore-grinding process (Li 2020) 
which are closely related to product quality and production efficiency in the grinding process. 
The real-time detection of these parameters is one of the key factors for realizing the optimal 
control of the beneficiation process (Lu 2017).
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Researches show that the vibration signal of the mill is an important indicator to reflect 
the mill load (Luo; Cai et al. 2020). The vibration signal generated by the mill during the 
grinding process is correlated with the load, and using the vibration signal to reflect the load 
state is an effective way to identify the load of the ball mill (Wang et al. 2021b). Many in-
vestigators obtain the feature information related to the mill load through vibration signals. 

The mill vibration signal contains a lot of noise which causes non-stationarity. There-
fore, it is important to pre-process the vibration signal to extract potential features and con-
struct an identification model to predict the mill load. Many traditional feature extraction 
algorithms have been used for mill vibration signal processing, but the effectiveness of the 
processing still needs further study. Ping et al. (Ping et al. 2005), in view of the fact that it is 
difficult to obtain the load status of the mill in the actual industry, used D-S evidence theory 
and neural networks to achieve the offline load detection of the mill. Tang et al. (Tang et al. 
2014) applied empirical mode decomposition (EMD) to process the vibration and grinding 
sound signals of the mill and extracted the features of the mill load by the mutual informa-
tion method, which can determine which modal components contain abundant information 
on mill load parameters. Liu et al. (Liu et al. 2015) extracted the load characteristics of the 
mill by combining EMD and PCA methods, and their results showed the effectiveness of 
using this method to identify the load. 

Zhao et al. (Zhao et al. 2014) applied ensemble empirical modal decomposition (EEMD) 
to process the vibration signal of the mill and extracted the spectral features of modal com-
ponents by interval partial least squares (I PLS), which can remove irrelevant and redun-
dant components in the spectrum of modal components. Cai et al. (Cai et al. 2019) applied 
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to 
process the vibration signal of the mill and extracted the load features of the mill with 
cloud model feature entropy, which can eliminate the difficulties caused by parameter se-
lection and avoid the problems caused by uncertainty. Qing et al. (Qing et al. 2020) used 
adaptive variational modal decomposition (VMD) to process vibration signals and es-
timate mill load features with an improved power spectrum. The above-mentioned mill 
feature-extraction methods have achieved good results on some occasions, but there are 
also decomposition defects, such as the D-S theory requires a lot of expertise to assist in 
solving the problem, the EMD decomposition has the modal mixing problem, the EEMD 
decomposition has a  large reconstruction error, the first two order modal components of  
CEEMDAN contain a  lot of noise and the VMD decomposition effect is affected by the 
setting parameters. 

To predict the load state of the mill, Tang et al. (Tang et al. 2010) used principal compo-
nent analysis (PCA) and least squares support vector machine (LSSVM) to establish the mill 
load soft-sensing model, which can simplify the dimension of the mill load feature vector 
and ensure the prediction accuracy of the model. Luo et al. (Luo et al. 2019) used SVM to 
establish the mill load parameter-prediction model and the prediction accuracy increases 
with the increase of evidence. Gao et al. (Gao et al. 2020) used the improved stacked cyclic 
neural network to establish the mill load prediction model, which can quickly and accurately 
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identify the load state of the mill. He et al. (He et al. 2019) used multi-task least squares sup-
port vector machine (MTLS-SVM) to establish the mill load prediction model, and realized 
the effective prediction of the mill load state after changing working conditions. 

Wang et al. (Wang et al. 2015) proposed a soft-sensing method for ball mill load based on 
the least squares support vector machine (LS-SVM) and grey model (GM). The above meth-
ods have achieved good results in some aspects. However, SVM is sensitive to the selection 
of the kernel function and the recurrent neural network is prone to gradient dissipation, 
which makes it have some limitations in mill load forecasting.

ACMD is a signal-processing method with high resolution for time-frequency distribu-
tion, which can solve the problem that VMD is not effective in processing multi-component 
signals with overlapping frequencies and does not need to set the signal modal number in 
advance so it has been widely used in the field of fault diagnosis. Chen et al. (Chen et al. 
2019) used ACMD for fault diagnosis of the rotor-stator system and achieved good results. 
Ma et al. (Ma et al. 2021) used the particle swarm optimization algorithm and ACMD to 
perform fault diagnosis of variable speed rolling bearings, and the results showed that the 
method is practical. Yao et al. (Yao et al. 2022) used the ACMD algorithm with the sparrow 
search algorithm to optimize the BiLSTM network and improved the accuracy of short-term 
load prediction. Yang et al. (Yang et al. 2020) combined wavelet transform and ACMD meth-
ods to perform fault diagnosis of circuit breakers. The minimum distance classifier (MDC) 
is a classifier that classifies each input vector in the dataset by calculating the distance from 
the class centroid. The advantage of this classifier is that the feature variability is very small 
and easy to calculate, but it is not sensitive to data containing noise, which will lead to error 
classification (Liao et al. 2008). 

The standardized variable distance classifier (SVD) is an improved version of the aver-
age distance classifier. SVD is a kind of classifier that is more sensitive to data. Considering 
the influence of standard deviation and standardized variable factors on feature vectors, it 
has a good classification performance even when the feature vectors have little variability. 
Elen et al. (Elen et al. 2021) used a variety of public data sets to verify the high component 
accuracy of SVD. Wang et al. (Wang et al. 2022) proposed a bearing fault health monitoring 
method based on HSSCEn and ISVD to diagnose the bearing fault mode, the superiority of 
the scheme is verified by experiments.

Based on the above analysis, a signal-processing method combining ACMD and SVD 
is proposed. ACMD is used to extract the feature information related to the mill load state 
and compared with EMD, EEMD, and VMD to verify the processing capability of ACMD 
for mill vibration signals. Adaptive chirp mode decomposition probabilistic neural network 
(ACMD-PNN), adaptive chirp mode decomposition back propagation (ACMD-BP) neural 
network, and adaptive chirp mode decomposition K-nearest neighbor (ACMD-KNN) are 
then selected to compare with ACMD-SVD for identification of the mill load and the supe-
riority of the proposed method is verified by grinding experiments. 
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1. Materials and methods

1.1. Basic principle of ACMD

ACMD uses the recursive framework of an iterative algorithm to adaptively extract sig-
nal components one by one, and its model is as follows:
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where Ai(t), f(t), and θi respectively represent the instantaneous amplitude, instantaneous 
frequency, and the initial phase of the ith component.
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The instantaneous frequency of the signal is obtained and the vector vi is solved by m 
iterations with the following result: 

	 ( ) ( )
11 T Tm T m m m

i i i iv G G G y
−

 = Θ Θ+ a 

� (6)

where a is a weighting factor, m
iG  consists of a frequency function, and T is a transpose 

sign.
The corresponding signal components m

iy  are as follows:
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The remaining signal components are as follows:

	 1i i ir r y+ = − � (8)

When the remaining signal components are less than the threshold value, the iterative 
computation is stopped and the signal satisfies:
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1.2. Basic principle of SVD

The SVD is based on the optimization obtained on the mean distance classifier (MDC). 
Assume that the input matrix is , n

X
m

Xv Rv ×∈ . The specific description steps of SVD 
principle are as follows:
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where the output matrix m
Yv R∈ , m represents the number of samples, n represents the 

number of attributes. Each type of label is determined by the input matrix and is the value 
range of the class label.

The average of the input vectors is calculated for each class label and the obtained prime 
class matrix is: 
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where, k represents the number of labels, and mV[a,j] represents the j-th attribute of the a-th 
vector of the centroid class matrix mV.

The distance of each input vector to the center-of-mass class matrix is 
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where k represents the number of labels, X is the input vector, distance (X, mV[i,*]) can be 
solved by using Euclidean, Manhattan, Minkowski, Chebyshev or Hellinger distance methods. 

Next, calculate the standard deviation matrix of the input vector:
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where, xi,j represents the j-th attribute of the i-th sample in the input vector, represents the 
output value of the i-th sample and ca is the class label.

Finally, calculate the similarity score of each input vector:
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where i ∈ c represents the class label; Xj represents the j-th attribute of the input vector in the 
data set; n represents the number of attributes in the input vector; k represents the number of 
classes; Z represents the standard deviation from each prime vector. The standard deviation 
between Z and a certain center-of-mass vector converges to 0, indicating that the input sam-
ple converges more closely to this class of labels.
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1.3. ACMD-SVD method and implementation steps

The process of mill vibration signal processing and load-type identification based on 
ACMD-SVD is shown in Figure 1.

According to Figure 1, the concrete steps of vibration signal processing and load-type 
identification of the mill based on ACMD-SVD are as follows:

1.	 Collect the original vibration signal of the mill under different load states.
2.	 Find the optimal filter band for the vibration signal based on the kurtosis of the signal.
3.	 Set threshold, decompose vibration signal by ACMD, and obtain instantaneous am-

plitude and instantaneous frequency of each modal component.
4.	 Construct a high-resolution signal extractor (ITFR) to reconstruct the signal based on 

the instantaneous amplitude and instantaneous frequency of each modal component.
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where d represents the Dirac function and K represents the number of modal compo-
nents, Ai(t) represents the instantaneous amplitude, ϕ'i(t) represents the instantaneous 
frequency.

5.	 The frequencies corresponding to the ten largest peaks in the frequency domain of 
the reconstructed signal are extracted as feature vectors.

6.	 Input the feature vector into the SVD model for training recognition and obtain the 
mill load type.

Mill vibration signal

Determine the best filter band

by kurtosis

ACMD

Obtain frequency domain feature

vectors

SVD feature vector processing

Mill load type identification

Energy ratio greater than

threshold?

Construct ITFR to reconstruct

signal

Yes No

Fig. 1. Flow chart of mill vibration signal processing and load-type identification based on ACMD-SVD

Rys. 1. Schemat blokowy przetwarzania sygnału drganiowego młyna  
i identyfikacji rodzaju obciążenia na podstawie ACMD-SVD
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2. Results and discussion

2.1. Mill barrel vibration signal acquisition and processing

In this paper, the tungsten ore used in the experiment was selected from a mine in Gan-
zhou and a wet mill with a Bond work index was used to perform experiments to validate 
the proposed mill vibration signal processing and load identification method. The DH5922N 
dynamic data acquisition instrument and DH131 vibration acceleration sensor were selected 
as the experimental equipment. The sampling frequency was set at 10 kHz, and the shell 
vibration signals underload, normal load, and overload were collected. The length of each 
vibration signal is 10,000. Fifty groups of shell vibration signals under each mill load state 
were selected as experimental data so there was a total of 150 groups. The vibration acceler-
ation sensor and its location on the mill is shown in Figure 2.

The original shell vibration signals under three load states were selected from the grind-
ing experiments, as shown in Figure 3.

In Figure 3, the peak positions of the shell vibration signals under three load states rep-
resent the acceleration generated when the steel balls hit the liner. There are certain differ-
ences in the amplitude of the shell vibration signals in the time domain under the three load 
states. However, due to a large amount of noise in shell vibration signals, the variation law 

Fig. 2. The vibration acceleration sensor and its location on the mill

Rys. 2. Czujnik przyspieszenia drgań i jego umiejscowienie na młynie
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is not obvious and it is difficult to judge the mill load state through the time domain peak 
information. Therefore, the frequency spectrum information of vibration signals is obtained 
by Fourier transform, as shown in Figure 4.

Fig. 3. Vibration signals of the shell under three load states

Rys. 3. Sygnały drganiowe płaszcza w trzech stanach obciążenia

Fig. 4. Frequency spectrum of shell vibration signal under three load states

Rys. 4. Widmo częstotliwości sygnału drgań powłoki w trzech stanach obciążenia
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In Figure 4, there are some differences in the frequency spectrum of shell vibration 
signals under three load states. The main frequency band of a normal load is the middle fre-
quency band, the main frequency band of the overload is at the full frequency band, and the 
main frequency band of underload is at the low frequency band and the high frequency band. 
It can be seen that the frequency domain information can indirectly reflect the mill load 
state. However, due to the existence of a large amount of noise, it is impossible to accurately 
extract the frequency domain features. Therefore, the signal is processed by ACMD and the 
threshold is set by the ratio of the residual signal energy to the original signal energy. When 
the ratio is less than 1%, the operation is stopped to obtain high-resolution time-frequency 
distribution signals. The ACMD decomposition times and the ratio of the residual signal 
energy to the original signal energy are shown in Table 1.

Table 1. 	 ACMD decomposition times and the energy ratio 

Tabela 1. 	 Czasy rozkładu ACMD i wskaźnik energii

Decomposition times Energy ratio (%) Decomposition times Energy ratio (%)

1 44.8778 6 4.4621

2 20.3888 7 3.1161

3 10.0616 8 2.3263

4   8.4970 9 1.6512

5   6.2998 100 1.0849

In Table 1, each decomposition takes the peak frequency of the original signal as the ini-
tial frequency of ACMD, and the reconstructed modal components are obtained by ACMD. 
With the increase of decomposition times, the ratio of residual signal energy to original sig-
nal energy decreases continuously until it is less than the threshold value and the calculation 
is then stopped. The frequency spectrum of the reconstructed vibration signal of the shell 
under three load states after ACMD processing is shown in Figure 5.

In Figure 5, after ACMD processing, the features of the shell vibration signal in the 
frequency domain at high amplitude are strengthened, while those at low amplitude are 
weakened. ACMD effectively removes the interference of noise, which makes the frequency 
domain features of the mill vibration signal more obvious. As the frequency distribution of 
shell vibration signals is different under the three load states, the frequency domain informa-
tion of shell vibration signals processed by ACMD can be used to identify the mill load state.

To evaluate the effectiveness of ACMD, the signal-to-noise ratio (SNR) is selected as 
a quantitative comparison index, and ACMD is compared with the current mainstream sig-
nal-processing algorithms (EMD, EEMD, and VMD). According to reference (Luo 2019), 
setting the VMD parameter K = 6, the standard deviation parameter of EEMD Gaussian 
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white noise is 0.2, and the noise count parameter to 100 times. After being processed by 
four methods, the SNR results of the vibration signal of the mill shell are shown in Table 2.

Table 2. 	 Comparison of the denoising effects of mill vibration signals

Tabela 2. 	 Porównanie efektów odszumiania sygnałów drgań młyna

ACMD VMD EEMD EMD

SNR

Normal load 19.9164 16.6562 12.5185 10.6058

Overload 19.2276 16.3530 13.1190 12.3610

Underload 22.5409 17.7943 12.5934 11.1414

In Table 2, the signal-to-noise ratio (SNR) of the vibration signals of the mill shell pro-
cessed by ACMD under three load states is the highest, far exceeding the results processed 
by other methods, indicating that ACMD has better noise robustness. After ACMD process-
ing, the frequency distribution of shell vibration signals under three load states is obviously 
different, and the mill load state can be indirectly obtained through frequency spectrum 
analysis, so the frequencies corresponding to ten frequency domain peaks obtained during 
iterative decomposition are used as feature vectors. The frequencies corresponding to ten 

Fig. 5. Frequency spectrum of the reconstructed vibration signal of the shell under three load states

Rys. 5. Widmo częstotliwościowe zrekonstruowanego sygnału drgań powłoki w trzech stanach obciążenia
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frequency domain peaks of shell vibration signals obtained by ACMD under three load 
states are shown in Table 3.

Table 3. 	 ACMD obtains the corresponding frequencies at ten frequency domain peaks

Tabela 3. 	 ACMD uzyskuje odpowiednie częstotliwości w dziesięciu pikach w dziedzinie częstotliwości

Serial number Normal load Overload Underload

1 2,616.28 0,783.78 0, 893.66

2 2,712.73 3,447.68 1,880.11

3 3,032.59 4,990.84 3,845.68

4 3,212.06 6,515.68 4,310.82

5 3,329.26 6,928.33 4,685.63

6 3,497.74 7,179.83 4,755.21

7 3,789.52 7,940.42 5,141.01

8 6,834.33 8,060.06 6,629.22

9 7,277.49 8,846.29 8,655.84

100 8,199.24 9,780.24 8,752.28

In Table 3, the frequencies corresponding to the maximum peak of the normal load vi-
bration signal are mainly concentrated in the middle frequency band, the frequencies cor-
responding to the maximum peak of overload vibration signal are mainly concentrated in 
the middle frequency band and the high frequency band, and the frequencies corresponding 
to the maximum peak of under load vibration signal are mainly concentrated in the low 
frequency band and the middle frequency band. This shows that the frequency domain dis-
tribution of shell vibration signals under three load states after ACMD processing is quite 
different, and the frequencies corresponding to the ten frequency domain peaks obtained by 
ACMD can be used as the load features of the mill.

2.2. Application of the signal-processing method based on ACMD-SVD 
in mill load identification

The obtained 150 groups of mill feature parameters are input into the SVD model for 
testing. Each group of load state is trained by thirty samples and tested by twenty samples. 
These samples are processed by ACMD, and the frequencies corresponding to the ten fre-
quency domain peaks of iterative decomposition are obtained as feature vectors. The test 
results are shown in Figure 6.
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Fig. 6. Test results based on ACMD-SVD

Rys. 6. Wyniki badań na podstawie ACMD-SVD

Fig. 7. Identification results of test samples of each method

Rys. 7. Wyniki identyfikacji próbek testowych każdej metody
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In Figure 6, label 1 indicates the normal load type, label 2 indicates the overload type and 
label 3 indicates the underload type. The prediction results of mill load state show that all 
normal loads are correctly predicted, while only one prediction error is found in under-load 
and over-load states. The prediction accuracy rate of the ACMD-SVD model for the mill 
load state is 96.6667%. This shows that ACMD-SVD can better predict the load state of the 
mill. To verify the effectiveness of the method, ACMD-PNN, ACMD-BP neural network, 
and ACMD-KNN are selected for comparative study with ACMD-SVD. Among them, set 
the number of BP neural network iterations to 1,000, the expected error to 0.001, the learning 
rate to 0.01, and the KNN parameter to k = 9, and use the Euclidean distance metric. The 
prediction results are shown in Figure 7.

In Figure 7, mill load state identification can also be achieved by PNN, BP neural net-
work, and KNN, with correct prediction rates of 80%, 91.6667%, and 90% respectively, 
while the ACMD-SVD has a higher prediction accuracy of 96.6667% compared with other 
methods. Therefore, the method of mill vibration signal processing and load-type identi-
fication based on ACMD-SVD has a  good denoising effect and a  high accuracy of load 
identification.

Conclusions

In this paper, a method of mill vibration signal processing based on ACMD-SVD is pro-
posed, which is applied to identify the load state of the mill, and the following conclusions 
are obtained.
1.	 ACMD is used to extract the feature of mill vibration signals, and SNR is used as the 

evaluation index, which is compared with EMD, EEMD, and VMD signal processing 
algorithms. The results show that the frequency-domain features of the vibration signals 
under the three load states are more obvious and the denoising effect is good after ACMD 
processing, which provides a new idea for mill load feature signal extraction.

2.	 ACMD-SVD is used to predict the load state of the mill, and the accuracy rate reach-
es 96.6667%. Compared with ACMD-PNN, the prediction accuracy rate increased by 
16.6667%; compared with ACMD-BP neural network, it increased by 5.667%; compared 
with ACMD-KNN, it increased by 6.6667%. The prediction accuracy of ACMD-SVD 
shows a large degree of improvement.

3.	 The method of mill vibration signal processing and load-type identification based on 
ACMD-SVD has excellent performance, which provides an accurate and reliable basis 
for improving grinding efficiency.

This work was supported by the key R&D project of Jiangxi Provincial Science and 
Technology Department (No. 20181ACE50034), in part by the Science and Technology  
project of Jiangxi Provincial Education Department (No. 200827). The authors are very 
grateful for this generous support.
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Method of Vibration Signal Processing and Load-Type 
Identification of a Mill Based on ACMD-SVD

K e y w o r d s

feature information, mill load, ACMD, SVD, feature vector

A b s t r a c t

Green mine construction is the main melody of mining development and problems such as safe 
production, energy saving and consumption reduction need to be solved urgently. The working condi-
tions of the mill are complex in the process of grinding. Aiming at the problems existing in the feature 
extraction and load prediction of the mill, a signal-processing method based on adaptive chirp mode 
decomposition (ACMD) and a standardized variable distance classifier (SVD) is proposed. Firstly, the 
recursive framework of the ACMD method is used to obtain the initial frequency of mill vibration sig-
nals. Secondly, the initial frequency is used to reconstruct the high-resolution component of the mill 
vibration signal through the iterative frame in the ACMD method. The frequency corresponding to 
the frequency domain peak of the reconstructed signal is then selected as the mill load feature vector. 
Finally, with consideration to the influence of standard deviation and standardized variable factors on 
the feature vectors, a standardized variable distance classifier is proposed. The feature vectors of the 
mill load are input into the SVD model for training, and the state types of the mill load are obtained. 
The method is applied to the grinding experiment and the results show that the frequency-domain 
features obtained by the mill vibration signal-processing method based on ACMD-SVD are obvious, 
which has high accuracy in the identification of mill load types, and provides a new idea for the ex-
traction of mill load features and prediction of the mill load.
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Metoda przetwarzania sygnału drganiowego i identyfikacji 
typu obciążenia młyna na podstawie ACMD-SVD

S ł o w a  k l u c z o w e

informacja o cechach, obciążenie młyna, ACMD, SVD, wektor cech

S t r e s z c z e n i e

Budowa zielonej kopalni jest główną melodią rozwoju górnictwa, a  problemy takie jak: bez-
pieczna produkcja, oszczędność energii i redukcja zużycia wymagają pilnego rozwiązania. Warunki 
pracy młyna w procesie mielenia są złożone. Mając na celu rozwiązanie problemów występujących 
w ekstrakcji cech i przewidywaniu obciążenia młyna, zaproponowano metodę przetwarzania sygna-
łu opartą na dekompozycji w  trybie adaptacyjnym ACMD (Adaptive Chirp Made Decomposition) 
i  znormalizowanym klasyfikatorze zmiennej odległości SVD (Variable Distance Classifier). Po 
pierwsze, rekurencyjna struktura metody ACMD jest wykorzystywana do uzyskania początkowej 
częstotliwości sygnałów drgań młyna. Po drugie, częstotliwość początkowa jest wykorzystywana do 
rekonstrukcji wysokorozdzielczej składowej sygnału drgań młyna poprzez ramkę iteracyjną w me-
todzie ACMD. Częstotliwość odpowiadająca pikowi w dziedzinie częstotliwości rekonstruowanego 
sygnału jest następnie wybierana jako wektor cech obciążenia młyna. Na koniec, biorąc pod uwagę 
wpływ odchylenia standardowego i standaryzowanych czynników zmiennych na wektory cech, za-
proponowano standaryzowany klasyfikator odległości o zmiennej długości. Wektory cech obciążenia 
młyna są wprowadzane do modelu SVD w celu uczenia i uzyskiwane są typy stanu obciążenia młyna. 
Metodę zastosowano w eksperymencie mielenia, a wyniki pokazują, że cechy w dziedzinie częstotli-
wości uzyskane za pomocą metody przetwarzania sygnału drgań młyna opartej na ACMD-SVD są 
oczywiste, co ma wysoką dokładność w identyfikacji typów obciążeń młyna i zapewnia nowy pomysł 
na ekstrakcję cech obciążenia młyna i predykcję obciążenia młyna.
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