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Improved Two-Dimensional Double Successive
Projection Algorithm for Massive MIMO Detection

Sourav Chakraborty, Nirmalendu Bikas Sinha, and Monojit Mitra

Abstract—In a massive multiple-input multiple-output
(MIMO) system, a large number of receiving antennas at the
base station can simultaneously serve multiple users. Linear
detectors can achieve optimal performance but require large
dimensional matrix inversion, which requires a large number
of arithmetic operations. Several low complexity solutions are
reported in the literature. In this work, we have presented
an improved two-dimensional double successive projection
(I2D-DSP) algorithm for massive MIMO detection. Simulation
results show that the proposed detector performs better than
the conventional 2D-DSP algorithm at a lower complexity. The
performance under channel correlation also improves with
the I2D-DSP scheme. We further developed a soft information
generation algorithm to reduce the number of magnitude
comparisons. The proposed soft symbol generation method uses
real domain operation and can reduce almost 90% flops and
magnitude comparisons.

Keywords—massive MIMO; MMSE; ZF; 2D-DSP; QAM;
LLR; I2D-DSP

I. INTRODUCTION

DEMAND for a high data rate in wireless systems moti-
vates the design of efficient techniques. Massive MIMO

is one of the key techniques for beyond 5G and future
6G applications [1]. The massive MIMO systems can serve
several dozens of users simultaneously using a large number
of antennas at the base station [2]. It has been shown in the
literature that massive MIMO systems have higher spectral
efficiency, energy efficiency and can achieve higher link reli-
ability [3], [4]. However, the complexity of detection is also
increasing as the number of users increases [5]. It has been
shown in the literature that linear detectors such as minimum
mean square error (MMSE) or zero forcing (ZF) method can
achieve optimal performance for massive MIMO detection [4].
However, the computation of MMSE/ZF requires exact matrix
inversion, which has a complexity order of O(N3

t ). Therefore,
for massive MIMO systems, the complexity is significantly
high [2]. The low complexity solutions in literature are catego-
rized in two sections: approximate matrix inversion (AMI) and
other is solution vector estimation through iteration. In the case
of AMI, such as Neumann method [6], [7], Newton-Schultz
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[8] iteration, etc. the inversion is required per channel update
and relatively higher computational complexity. The AMI is
essential for channel matrix precoding in downlink data trans-
mission [9], [10]. On the other hand, estimation of MMSE/ZF
solution vector through iteration works on per received signal
vector. Our works fall in this category of detection. Several low
complexity iterative MMSE detection algorithms are reported
in literature such as Richardson iteration (RI) [11], Gauss-
Seidel (GS) [12], [13], SOR [14], conjugate gradient (CG)
[15], [16], Chebyshev (CHEBY) [17], [18], Jacobi iteration
(JI) [5], steepest (ST) [19] etc. However, in massive MIMO
system, performance of these algorithms are evaluated based
on several conditions like rate of convergence, modulation
order, number of required iterations, computational complexity
etc [5].

For example, Richardson and Jacobi’s method have lower
complexity per iteration. Still, its convergence rate is also low,
and many iterations are required to achieve the exact MMSE
result. On the other hand, the Chebyshev method shows a
higher convergence rate at the cost of higher complexity.
Gauss-Seidel and SOR are examples of a one-dimensional
projection method and show good detection performance, and
it requires almost three to four iterations to achieve the optimal
solution. But computation of GS and SOR are sequential.
Therefore existing algorithms trade off between performance
and complexity. Recently reported two-dimensional double
successive projection (2D-DSP) [20], [21] method shows good
detection performance and is also suitable for higher-order
modulations.

The performance of iterative algorithms is critically depen-
dent on selecting the initial solution vector. Several algorithms
have addressed this issue earlier by using a hybrid method
where the first iteration is replaced by the first iteration of
any higher convergent method. For example, in [19], a higher
convergent Steepest-Jacobi (ST-JA) method is used to improve
the performance of the conventional Jacobi method. In [22],
the initial solution is replaced by a higher convergent Newton
method to improve the detection performance of the conven-
tional Richardson method. In [23] Richardson and Chebyshev
methods are combined to achieve better performance with
lower complexity. Motivated by this fact, in this work, we
have introduced an improved 2D-DSP method where the first
iteration is replaced by the steepest-Jacobi method to achieve
better performance.

After getting the MMSE estimate of the received signal
vector, the bit-wise log-likelihood ratio (LLR) of soft values

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


140 S. CHAKRABORTY, N. B. SINHA, M. MITRA

is essential for the channel decoder. However, the exact LLR
generation method [6] involves matrix inversion and matrix-
matrix multiplications. In a massive MIMO system, matrix
dimensions are very large, and the exact LLR generation is
not a good choice for practical application. A low complex-
ity approximate LLR generation method is shown in [12]
by utilizing the channel hardening phenomenon. Still, the
complexity of LLR generation is high, and especially in
higher-order modulations, it is significantly large. Therefore,
in this work, we have proposed a low complexity approximate
LLR generation method, which requires less number of real
operations in lower-order and higher-order modulations. Our
contributions in this work are summarized as follows:

1) We have developed an improved performance 2D-DSP
algorithm. The proposed algorithm has lower complexity
and better detection performance than the conventional
2D-DSP algorithm.

2) We have proposed a low complexity bit-wise LLR gen-
eration scheme for the channel decoder. The proposed
method significantly reduces the number of arithmetic
operations and the number of comparisons required per-
bit LLR generation. Especially in higher-order modula-
tion like the 256-QAM system, it significantly reduces
the number of comparisons.

Outline: Section II will describe the system model and
background. Section III will present the proposed method. A
soft symbol generation scheme is presented in section IV. The
simulation results and complexity analysis discussed in section
V. Section VI concludes the work.

Notation: We have considered bold face upper case and
lower case letters as matrices and vectors respectively. The real
and imaginary part of any complex number z denoted by ℜ(z)
and ℑ(z) respectively. The matrix inverse, conjugate transpose
and transpose denoted by (.)−1, (.)H and (.)T respectively.
The (i, j)th element in any matrix G represented by gij . ⟨x,y⟩
defines an inner product operation of x and y.

II. SYSTEM MODEL AND BACKGROUND

A. System model

In this work we consider an uplink transmission where
Nt single antenna users served simultaneously by Nr re-
ceive antennas at the base station where Nr >> Nt. The
information bits in each transmitter is mapped to a M-QAM
constellation point in the finite alphabet Ã with size M . The
average transmit power is Ẽs per symbol. The symbols then
transmitted through a fading channel. The received signal
vector at the base station can be expressed as

ỹ = H̃x̃+ ñ (1)

Where, ỹ ∈ CNr×1 denotes the received vector and x̃ ∈
CNt×1 denotes the transmitted vector. ñ ∈ CNr×1 is the
additive white Gaussian noise (AWGN) where each of its
entries distributed as N (0, σ̃2) and σ̃2 is the noise variance.
H̃ ∈ CNr×Nt is the channel matrix. The (i, j)th entry of
H̃ denotes as h̃ij and defined as the complex channel gain
between jth transmit antenna and ith receive antenna. The

entries of H̃ are assumed to be zero mean and unit variance
and perfectly known at the receiver.

The complex received signal model in (1) can be converted
into equivalent real equation by real valued decomposition
(RVD) method. Thus (1) can be expressed as:

y = Hx+ n (2)

Where, y = [ℜ(ỹ) ℑ(ỹ)]T , x = [ℜ(x̃) ℑ(x̃)]T , n =
[ℜ(ñ) ℑ(ñ)]T and H ∈ R2Nr×2Nt is the real equivalent
channel matrix and can be expressed as:

H =

[
ℜ(H̃) −ℑ(H̃)

ℑ(H̃) ℜ(H̃)

]
(3)

The symbols in x are selected from real equivalent constella-
tion set A. For example, real equivalent constellation set for
64-QAM is A = {−7,−5,−3,−1, 1, 3, 5, 7}. Therefore num-
ber of elements in A is

√
M for M-QAM constellation. The

average symbol energy and noise variance for real equivalent
model are Es = Ẽs/2 and σ2 = σ̃2/2 respectively. Number
of bits per complex symbol are Q = log2 M .

B. MMSE detection

As mentioned earlier, MMSE detection can achieve optimal
performance in massive MIMO application. The conventional
approach of MMSE detection can be expressed as

x̂ = (HTH + σ2I2Nt)
−1HTy = A−1b (4)

Where, b = HTy is the matched filter output of y and A =
HTH+σ2I2Nt = G+σ2I2Nt is the MMSE filtering matrix.
G = HTH is the Gram matrix and x̂ is the MMSE estimated
solution vector.

III. PROPOSED ALGORITHM

It has been shown in literature that 2D-DSP [21] algorithm
is an efficient way of solving linear equations iteratively. In
this section, we shall present an improved version of 2D-DSP
(I2D-DSP) algorithm which have relatively lower complexity
and improved detection performance. For massive MIMO
system, matrix A is diagonally dominant and this allows us
to estimate the initial approximate solution as x(0) ≈ D−1b,
where, D is a diagonal matrix whose diagonal elements are
identical to G. Now, as we know, in any iterative detection
algorithm, initial solution plays critical role in determining the
detection performance. Recently reported joint steepest-Jacobi
[19] based initialization method shows good performance
improvement in conventional Jacobi based iteration. Hence,
in this work we have considered the first iteration of proposed
algorithm as

x(1) = x(0) + ur(0) +D−1(r(0) − up(0)) (5)

Where, r(0) is the residual term and determined as r(0) =
b − Ax(0). Also, p(0) = Ar(0) and u = r(0)T r(0)

p(0)Tp(0) . Using
(5) as the initial solution, rest of the iterations in proposed
algorithm will follow the same steps as conventional 2D-DSP
method [21]. Lets consider, K and L be the search subspace
and constrained subspace [20]. Then by using Petrov-Galerkin
condition, we can determine the approximate solution x(k) ∈
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x(k−1) + K such that the residual r(k) = b − Ax(k) ⊥ L.
Gauss-Seidel method is an one dimensional projection method
where, K = L = span{ei}, where, ei denotes ith column of
the identity matrix. In case of 2D-DSP method, we choose
K = L = span{em, en}, i.e. two successive projections are
required. With this, the approximate solution vector at kth

iteration can be expressed as:

x
(k)
i+1 = x

(k)
i + α

(k)
i em + β

(k)
i en (6)

The scalars, α(k)
i and β

(k)
i computed as

α
(k)
i = (gijp

(k)
j − gjjp

(k)
i )/λi (7)

β
(k)
i = (gijp

(k)
i − giip

(k)
j )/λi (8)

The components in (7) and (8) can be determined as: λi =

giigjj −g2ij , p(k)i = ⟨gi,x(k)
i ⟩− bi and p

(k)
j = ⟨gj ,x(k)

i ⟩− bj .
It is mentioned in [21] that m and n are related by f = m−n.
Where, f is a constant and choice of f is critical in detection.
A typical value f = 3 can produce good result. When, m ≤ f ,
then the value of n can be selected as n = m− f + 2Nt.

Algorithm 1 shows the detailed steps for proposed I2D-
DSP algorithm. Initialization performed in line 2. After ini-
tialization phase is over, first iteration is performed using joint
steepest-Jacobi method (line 4-5). In phase 2, conventional 2D-
DSP steps are performed for K − 1 iterations.

Algorithm 1 Proposed I2D-DSP algorithm
1: Input: H,A,G,y, σ2,K, f ; Output: x̂
2: Initialization: D = diag(G)
3: Phase 1: Steepest based iteration
4: r(0) = b−Ax(0), p(0) = Ar(0), u = r(0)T r(0)

p(0)Tp(0)

5: x(1) = x(0) + ur(0) +D−1(r(0) − up(0))

6: Phase 2: 2D-DSP iteration; d(1)
1 = x(1)

7: for k = 1 to K − 1 do
8: for i = 1 to 2Nt do
9: j = i− f

10: if i ≤ f then
11: j = i− f + 2Nt

12: end if
13: λi = gii gjj − g2ij
14: pki = ⟨gi,d(k)

i ⟩ − bi ; pkj = ⟨gj ,d(k)
j ⟩ − bj

15: αki =
gij pkj−gjj pki

λi
; βki =

gij pkj−gjj pki

λi

16: d
(k)
i+1 = d

(k)
i + αkiei + βkiej

17: end for
18: d

(k+1)
1 = d

(k)
2Nt+1

19: end for
20: x̂ = d

(K)
2Nt+1

IV. PROPOSED SOFT SYMBOL GENERATION

After estimation of transmitted signal vector using MMSE
method, bit-wise soft information is required to generate for
channel decoder. However, generation of soft information
requires first the computation of equivalent channel gain and
noise-plus-interference (NPI) variance. Lets consider E =
A−1G and U = A−1GA−1. Then the equivalent channel

gain at ith level is expressed as µi = ei,i and the NPI variance
computed as [6]

v2i =

2Nt∑
n=1,n̸=i

e2ni + uiiσ
2 (9)

The computation of LLR at ith level of bth bit can be
expressed as [6]

LLRi,b = γi

(
min
a∈S1

b

∣∣∣∣ x̂i

µi
− a

∣∣∣∣2 − min
a′∈S0

b

∣∣∣∣ x̂i

µi
− a′

∣∣∣∣2
)

(10)

Where, γi =
µ2
i

v2
i

is signal to interference noise ratio at ith

level. S1
b and S0

b are the set of symbols whose bth bit is
’1’ and ’0’ respectively. However, computation of µi and
γi involves large dimension matrix inversion and matrix-
matrix multiplication. Thus, exact LLR generation method is
infeasible for massive MIMO detection. Fortunately channel
hardening phenomenon can be used to estimate inverse of
A as A−1 ≈ G−1 ≈ D−1. Thus, the matrices required to
compute mean and variance are approximated as E ≈ D−1G
and U ≈ D−1GD−1 [12]. As D−1 is a diagonal matrix,
significantly low complexity is required to compute E and U .
However, even if the diagonal matrix approximation reduces
the complexity, computation of (9) for all levels is almost
equivalent to multiplication of two 2Nt × 2Nt matrices and
have computational complexity O(N3

t ). Using simulation, we
noticed that

∑2Nt

n=1,n̸=i e
2
ni << uiiσ

2 in (9) for massive
MIMO system. We also observed that, the expected value of∑2Nt

n=1,n̸=i e
2
ni is converges towards Nt/Nr. Hence, we can

simplify (9) as:

v2i ≈ Nt

Nr
+ uiiσ

2 (11)

This approximation significantly reduces the number of arith-
metic operations for LLR computation. After computation of
mean and NPI, next step is to determine the LLR values
for each bit. As seen from (10), two minimum values re-
quired to compute LLR for each bit. In case of complex
domain operation, searching complexity is significantly high
as searching is performed over M/2 terms. For example, in
256-QAM system, 128 comparisons as well as 128 number

of z =
∣∣∣ x̂i

µi
− a
∣∣∣2 terms required to compute for each mini-

mum value computation in (10). Therefore, for higher order
modulations, conventional complex domain method is not a
good choice. In real valued system, the number of comparisons
reduces to

√
M/2 which is much lower than complex domain

computation. Thus, in proposed method, we shall consider
real valued system for bit wise LLR computation. In spite
of all these approximations and simplifications, computation
of (10) still have redundancy in its operation. Hence, we shall
now present an efficient method for LLR generation in this
section. Table I and table II shows the real equivalent symbols,
corresponding gray coded bit pattern and index for each
symbol for 64-QAM and 256-QAM modulations schemes.
Same can be done for other modulations also. Based on table I
or table II, we can generate two look-up tables I(0) and I(1),
containing index values for each modulation scheme. The ith

row of I(0) indicated the symbol indices which have ith bit
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TABLE I
MAPPING OF SYMBOL BIT AND INDEX FOR REAL EQUIVALENT

CONSTELLATION OF 64-QAM

Symbol Bit pattern index Symbol Bit pattern index
−7 000 1 7 100 7
−5 001 2 5 101 8
−3 011 4 3 111 6
−1 010 3 1 110 5

TABLE II
MAPPING OF SYMBOL BIT AND INDEX FOR REAL EQUIVALENT

CONSTELLATION OF 256-QAM

Symbol Bit pattern index Symbol Bit pattern index
−15 0000 1 15 1000 9
−13 0001 2 13 1001 10
−11 0011 4 11 1011 12
−9 0010 3 9 1010 11
−7 0110 7 7 1110 15
−5 0111 8 5 1111 16
−3 0101 6 3 1101 14
−1 0100 5 1 1100 13

’0’. Similarly, ith row of I(1) indicated the symbol indices
which have ith bit ’1’. For example, in a 64-QAM modulated
system, I(0) and I(1) can be represented as:

I(0) =

1 2 4 3
1 2 6 5
1 3 7 5

 , I(1) =

7 8 6 5
4 3 7 8
2 4 8 6

 (12)

I(0) and I(1) for other modulation schemes can be con-
structed in a similar way. Now, if we look at the LLR
expression in (10) carefully, we can notice that for each
real symbol, one of these minimum value is common to
all of its bits. Therefore, at ith level (i = 1, 2, . . . , 2Nt)

we shall compute all the possible values of z =
∣∣∣ x̂i

µi
− a
∣∣∣2,

where a ∈ A. Next, minimum value of z is determined
and corresponding symbol bit pattern is evaluated. Hence,
at ith level,

√
M terms required to compute. Note that, in

conventional method,
√
M values of z required to evaluate per

bit LLR generation. Whereas, proposed method requires
√
M

values of z per log2
√
M bits. For each bit LLR generation only

one minimum required to determine out of
√
M/2 terms. The

algorithm 2 shows the detailed steps for LLR generation. At
the preprocessing step, all mean and NPI values are computed.
Note that, these values required to update only once per
channel update. Next is detection phase where, the MMSE
estimation is performed using either exact or any iterative
method. Last LLR computation is performed.

V. SIMULATION RESULTS

This section will show the analysis of the proposed al-
gorithm and compare it with existing state-of-art methods.
First, we shall examine the uncoded bit error rate (BER)
performance. Next, the performance in the coded MIMO
system is presented. In all cases, the performance of the exact
MMSE detector is considered optimal and referenced to other
methods. Last, the complexity analysis is presented.

Algorithm 2 Proposed low complexity LLR generation
1: Input: A, x̂ ; Output: LLR
2: Initialization: D = diag(A); E = D−1G; U = ED−1

3: for i = 1 to 2Nt do
4: µi = eii; v2i = Nr

Nt
+ σ2uii; γi =

µ2
i

v2
i

5: zj = | xi

µi
− a|, Where, j = 1, 2, . . .

√
M and a ∈ A

6: Find the minimum value of z, denoted by zmin and
corresponding index izmin.

7: Obtain bit pattern d corresponding to index izmin using
either table I or II

8: for b = 1 to Q/2 do
9: if di == 1 then

10: L1 = zmin

11: L0 = min
i∈I

(1)
b

zi

12: else
13: L0 = zmin

14: L1 = min
i∈I

(0)
b

zi

15: end if
16: end for
17: LLRj = γi(L0 − L1); j = j + 1
18: end for

A. Uncoded MIMO performance
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Fig. 1. BER performance of 32 × 128 MIMO system with 16-QAM, 64-
QAM and 256-QAM modulation with perfect channel state information

Fig. 1 shows the uncoded BER performance for different
modulation scheme where, K = 3 for 16-QAM and 64-
QAM, and K = 4 for 256-QAM. In the case of the 16-QAM
modulated system, all the methods except CG perform close to
the exact MMSE detector. In the case of the 64-QAM system,
GS, 2D-DSP, I2D-DSP achieve close to optimal performance.
We notice that I2D-DSP performs slightly better than 2D-DSP
in 64-QAM modulated system. Considerable performance
degradation can be noticed for CG, CHEBY, OCDBOX and
ST-JA in 256-QAM modulated systems. However, in this case,
also proposed detector outperforms other algorithms.
The effect of the number of iteration K on BER performance is
presented in Fig. 2. We can observe that the proposed I2D-DSP
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method can achieve near exact MMSE performance with only
two iterations for 16-QAM modulation. As the modulation
order increases, more iterations are required to achieve exact
MMSE performance. In all the cases, the proposed I2D-DSP
performs slightly better than the 2D-DSP method. In the 256-
QAM modulated system, GS and OCDBOX require almost
five iterations to achieve optimal performance, whereas CG,
CHEBY and ST-JA failed to converge near-optimal solutions.
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1 2 3 4 5
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Fig. 2. Effect of algorithm iteration on bit error rate performance for 16×64
MIMO system with 16-QAM, 64-QAM and 256-QAM modulation

Fig. 3 shows the BER variation with the receive antennas
keeping Nt = 16 and SNR = 13dB. The modulation scheme
is 64-QAM, and the number of iterations is set to K = 3. We
can see 2D-DSP and proposed I2D-DSP performance matches
to exact MMSE performance when Nr ≥ 4Nt. For other
algorithms, a performance gap with exact can be noticeable.
Further, the performance of all the algorithms improves as
Nr increases. Next, we have considered the effect of spatial
correlation on BER performance as it plays a critical role in
massive MIMO systems. We have considered the Kronecker
model for correlated channel matrix, which can be defined as
[24]:

Hc = ϕ1/2
r Hiidϕ

1/2
t (13)

Where, ϕ1/2
r ∈ CNr×Nr and ϕ

1/2
t ∈ CNt×Nt are the receive

and transmit correlation matrices respectively. A well known
exponential model [25] is adapted for correlated matrices. In
this work we have considered Hiid = H̃ . After determining
Hc, we convert the complex model to real equivalent model
through RVD as defined in (3).
The entries of ϕr and ϕt determined by correlation factor ζ
(0 ≤ ζ ≤ 1). Where, ζ = 0 defines no correlation and ζ = 1
is fully correlated channel scenario. For single-antenna users,
transmit correlation matrix can be replaced by an identity

matrix. Fig. 4 shows the SNR versus BER performance of
MMSE, GS, 2D-DSP, and I2D-DSP algorithms for different
correlation factors. At the higher correlated channel, where
ζ = 0.7, we notice algorithms diverge more from the optimal
solution. Overall proposed I2D-DSP shows more robustness in
correlated channels than other iterative methods. The signifi-
cance of correlation magnitude variation on BER performance
at a certain SNR is shown in Fig. 5. The SNR is set to
14dB and 18dB for 16-QAM and 64-QAM modulate systems.
At lower correlation, GS, 2D-DSP, and I2D-DSP maintain
optimal performance with 64-QAM modulation.
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Fig. 3. Effect of receive antenna variation on BER performance
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Fig. 4. Effect of correlation on BER performance for 32×128 MIMO system
with 64-QAM modulation

However, significant performance loss can be observed at
a higher correlation for all methods. Also, compared to 16-
QAM, performance loss in 64-QAM is more. I2D-DSP shows
better immunity than 2D-DSP against correlation magnitude
variation in both cases.
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Fig. 5. Effect of correlation magnitude variation on bit error rate performance
for 32× 128 MIMO system with 16-QAM and 64-QAM modulation

B. Coded MIMO performance
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Fig. 6. BER performance of LDPC coded, 32 × 128 MIMO system with
64-QAM and 256-QAM modulation

Fig. 6 shows the BER performance of 32 × 128 MIMO
system with 64-QAM and 256-QAM modulation for different
algorithms. An LDPC code with code length 64800 and code
rate 1/2 is utilized for simulation purposes. The number of
iterations for all detectors is set to K = 3. For LLR generation,
we have considered algorithm 2. The resulting plot shows
that all the methods except CG can achieve optimal perfor-
mance. However, in the 256-QAM system, the performance
of CHEBY, CG, ST-JA significantly degrades. In this case,
I2D-DSP, 2D-DSP, and GS also show optimal performance.
In all cases, the proposed I2D-DSP performs relatively better
than 2D-DSP. Fig. 7 compares the performance of different
LLR generation methods in 32× 128 MIMO system with 64-
QAM modulation scheme.We can notice that the proposed
LLR generation method and the approx1 LLR generation
[12] performs almost identically. However, the performance of
approx2 LLR [26] is relatively poor compared to the proposed
method.
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Fig. 7. BER performance comparison between different LLR generation
methods

C. Complexity analysis

This section will compare the complexity of the proposed
detection and LLR generation with the existing method. All
the comparisons are performed in the real domain. We have
considered each real arithmetic operation like addition, sub-
traction, multiplication and division as a flop. Therefore each
complex addition and multiplication is equivalent to two and
six flops, respectively. For all methods, we have assumed
that Gram matrix G = HTH is available, and hence its
complexity is not included in our complexity comparisons.

In proposed algorithm 1, first matched filter output is
computed which requires 8NtNr − 2Nt flops. Computing
initial residue term r(0) = b − Ax(0) requires 8N2

t flops.
The number of flops required in phase 1 of algorithm 1 are
16N2

t +18Nt. In phase 2 of algorithm 1, (K−1) iterations are
performed using conventional 2D-DSP method and it requires
total 2(K− 1)Nt(8Nt+15) flops. In table V we summarized
total flops required by different algorithms. From table V we
notice that proposed I2D-DSP requires slightly less number
of flops than conventional 2D-DSP method. Fig. 8 shows the
number of required flops with transmit antenna variation for
different detection methods.

Next, we shall discuss the LLR generation complexity
with existing methods. The number of operations required for
LLR generation can be separated into two parts. First is the
computation of approximate mean and variance. The second is
bit-wise LLR computation. We notice from algorithm 2 that
µi and γi do not depend on the received signal vector and
are only dependent on the channel matrix. Hence, µi and γi
need to be updated only once per channel update, and it is a
part of preprocessing. Thus, total 2Nt flops are required for
all µi computations. Similarly, the variance terms determined
using U ≈ D−1GD−1 ≈ ED−1 and requires additional 2Nt

multiplications. Further, computation of (11) need 4Nt flops.
Therefore, total 8Nt flops are required in the precomputation
phase of the proposed algorithm, which is significantly lower
than other computations.
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TABLE III
NUMBER OF FLOPS AND COMPARISONS REQUIRED FOR LLR PREPROCESSING AND BIT-WISE LLR COMPUTATION

Method LLR preprocessing flops LLR flops Comparisons
Proposed 8Nt 6Nt

√
M + 4Nt

Nt
2
(4
√
M +Q

√
M − 1)

approximate1 [12] 4N2
t (Nt − 2) Nt(11QM + 2) NtQM

approximate2 [26] Nt Nt(11QM + 2) NtQM

TABLE IV
NUMBER OF FLOPS AND REAL VALUE COMPARISONS REQUIRED FOR 32× 128 MIMO SYSTEM LLR GENERATION

Method LLR preprocessing flops 16-QAM 64-QAM 256-QAM
LLR flops Comparisons LLR flops Comparisons LLR flops Comparisons

Proposed 256 896 496 1.664× 103 1.264× 103 3.2× 103 3.056× 103

approximate1 [12] 1.228× 105 2.259× 104 2048 1.352× 105 1.228× 104 7.209× 105 6.553× 104

approximate2 [26] 32 2.259× 104 2048 1.352× 105 1.228× 104 7.209× 105 6.553× 104
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Fig. 8. Number of flops required with transmit antenna variation

In bit-wise LLR computation phase, only arithmetic com-

putation required to evaluate the term
∣∣∣ x̂i

µi
− a
∣∣∣2 for

√
M

real symbols. Therefore, total 3
√
M flops are required at

ith level of algorithm 1. The total flops required for whole
received vector LLR generation are 6Nt

√
M + 4Nt. Apart

from the arithmetic operations, LLR computation involves
a large number of magnitude comparisons to determine the
minimum values as indicated in (10). In the proposed method
of LLR generation, we first find one minimum per level (line
11 and 14, algorithm 2), which requires

√
M−1 comparisons.

Next, for each bit, only one minimum is needed, and in
this case, only

√
M/2 number of comparisons are required.

Therefore total comparisons required by the proposed LLR
generation are

Ncomp = Nt(4
√
M +Q

√
M − 1)/2 (14)

Table III shows the number of arithmetic computations
(flops) and comparisons required for different LLR generation
methods. It can be noticed that proposed and approximate2
[26] requires an almost negligible number of flops at prepro-

TABLE V
NUMBER OF FLOPS REQUIRED FOR DIFFERENT DETECTION METHODS.

Method Number of flops
GS [12] 8NtNr + 4Nt + 8KN2

t
CG [16] 8NtNr − 2Nt + 8KNt(Nt + 3)

ST-JA [19] 8NtNr + 8N2
t + 16Nt + 2KNt(4Nt + 1)

Chebyshev [18] 8NtNr + 8N2
t + 4Nt + 2KNt(4Nt + 5)

OCDBOX [27] 8KNt(2Nr + 1)
2D-DSP [21] 8NtNr + 2KNt(8Nt + 15)

I2D-DSP (prop.) 8NtNr − 12Nt + 2KNt(8Nt + 15)

TABLE VI
NUMBER OF FLOPS AND SNR REQUIRED TO ACHIEVE A BER OF 10−3

FOR 32× 128 MIMO SYSTEM

Method Number of 16-QAM 64-QAM
flops (×104) SNR (dB) SNR (dB)

GS [12] 5.747 12.3177 19.7304
CG [16] 5.958 16.1408 −

ST-JA [19] 6.624 13.2567 −
Chebyshev [18] 6.662 12.8407 25.0030
OCDBOX [27] 19.737 12.0518 23.6379
2D-DSP [21] 8.480 11.9825 19.0982

I2D-DSP (prop.) 8.441 11.9582 18.9495

cessing stage. In case of bit-wise LLR generation phase, arith-
metic complexity of proposed method is O(Nt

√
M). Whereas

other two methods in table III have arithmetic complexity
O(NtQM). The number of comparisons required for NtQ
bits (i.e. the number of bits per transmitted symbol vector)
LLR generation is significantly less in the proposed method.
The searching complexity of the proposed method is the
order of O(NtQ

√
M) whereas in the conventional method,

it is O(NtQM). Table IV shows the number of operations
required for LLR generation in a 32 × 128 MIMO system
with 16-QAM, 64-QAM and 256-QAM modulations. In all
cases, proposed LLR generation can reduce more than 90%
arithmetic operations and comparisons.

Table VI shows the number of flops required in different
detection methods for 32 × 128 MIMO system with three
iterations. Also, we have shown the required SNR to achieve
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a BER of 10−3 for different algorithms. CG and ST-JA failed
to converge for 64-QAM modulation. We notice that number
of required flops in I2D-DSP is slightly lower than 2D-DSP.
Performance-wise, I2D-DSP also requires lower SNR than
other methods in the case of both 16-QAM and 64-QAM
modulation. The proposed I2D-DSP required 0.024dB and
0.1487dB less SNR than 2D-DSP in 16-QAM and 64-QAM
modulations.

VI. CONCLUSIONS

In this work, we have proposed an improved performance
I2D-DSP algorithm. The complexity analysis shows that the
proposed method requires fewer arithmetic operations than the
conventional 2D-DSP method. Performance analysis shows
that the proposed method outperforms 2D-DSP and other
existing algorithms in uncoded systems. Furthermore, the
proposed I2D-DSP shows better immunity against correlation
magnitude variation under spatially correlated channel sce-
narios. Further, a low complexity LLR generation method is
developed in this work. The proposed LLR generation method
reduces almost 90% of flops and numerical comparisons. Also,
detection performance in a coded MIMO system using the
proposed LLR generation method is close to the conventional
method.
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