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athematics integrates and generalizes
many image-related concepts by asso-
ciating them with a function, which matches values
of defined arguments (the domain) to corresponding
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output values (the codomain). In mathematics, there-
fore, the “image” of a function is the set of all output
values it produces.

Functions are ubiquitous, present everywhere in
our day-to-day lives. Let’s take one example: a photo
stored in your phone’s memory. Its domain is a col-
lection of pixels - tiny squares on the screen — while
its codomain is the set of possible colors, typically
defined using the additive color model of red, green,
and blue (RGB). Each pixel is illuminated with a par-
ticular combination of these colors, and they all come
together to show your photo. In simplified terms, we
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could say that the domain is the plane (phone screen)  tion for the X and Y coordinates turn out to be very Fig. 1

and the image is a 3D space where numerical values
assigned to each dimension describe the intensity of
each color. Old black-and-white photographs are eas-
ier to interpret. Their domain is, once again, a collec-
tion of pixels and the image is a palette of different
shades of gray, which can be expressed as a single
number representing the saturation of black.

Point clouds

In data analysis, functions are defined on a multidi-
mensional space. Traditionally, we use two-dimen-
sional space, placing a point in a Cartesian coordinate
system with X and Y axes, which allows us to describe
it using a pair of numerical values. But if we want
to depict a point in 12 dimensions in the same way,
we can assign it 12 values which define its individual
attributes such as height, width, length, geographical
coordinates, and any other seven characteristics we
might want to attribute to it. This full set of attributes
then describes the position of the point in a 12-dimen-
sional space. Finite sets of points, known as “point
clouds,” each have some shape, which frequently car-
ries important information. The Datasaurus Dozen
(Fig. 1) provides some excellent examples of different
2D point clouds.

The 12 point clouds shown above exhibit consider-
ably different shapes. However, descriptive statistical
values such as mean, standard deviation, and correla-

similar for all 12 of them. The example in Fig. 1 shows,
therefore, that data visualization is an extremely im-
portant element of data analysis. Here, each point has
just two coordinates, so the entire cloud has two di-
mensions, making generating an image straightfor-
ward. But what happens when the cloud under con-
sideration has dozens, hundreds, or even thousands
of dimensions? Here let’s use the Maneki-neko cat
figurine as an example (Fig. 2). Consider a series of
black-and-white photos of the figurine, each measur-
ing 128x128 pixels, all snapped from the same distance

at consecutive angles running in a circle all the way
around the object.
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The Datasaurus Dozen

— aset of point clouds that all
share very similar descriptive
statistics values, but
nevertheless exhibit very
different shapes

Fig. 2

The Maneki-neko cat
figurine. A set

of photographs of the
figurine has its own shape,
determined by the various
angles from which each
photo is taken, and we can
understand this shape from
its graph
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Fig. 3 The pixels in each photo, numbered from 1 to

The concept of the “ball
mapper” (BM) algorithm,
illustrated with the example
of a 2D point cloud

Fig. 4

Graph of vertices
corresponding to photos of
the Maneki-neko figurine in
a 16,384-dimensional space
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16,384 (128x128), can together be taken as describing
a single point in a 16,384-dimensional space - each
photo, then, represents a single “point.” The subse-
quent coordinates describing this point correspond
to the level of brightness (on a gray scale) of each in-
dividual pixel in the given photo. By collecting all the
photos and assigning them corresponding points, we
obtain a point cloud. The shape of the resulting cloud
can then be visualized using a mapper algorithm, so
as to “illustrate” the nature of the complex, multidi-
mensional dataset as an abstract graph (consisting of
vertices and edges).

How does this work? Fig. 3 shows the concept that
underlies one such algorithm, called a “ball mapper”
(BM). Itis illustrated with a Y-shaped 2D point cloud
(Fig. 3a).

In the first step of the BM algorithm, a uniform-
ly-distributed subset, marked as colored dots, is ex-
tracted from the point cloud (Fig. 3b). These colored
dots are then taken as the center of “balls” of a certain
radius, which together contain all the points in the
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cloud (Fig. 3¢). From this collection of balls, we then
build up a graph (Fig. 3d). Importantly, the vertices
in the resulting graph should not be seen as situated
in space - rather, they are abstract objects. In our ex-
ample, each vertex represents a ball shown in Fig. 3c,
and the edges connect only those balls that share some
overlap in the original Y-shaped point cloud. The pro-
cedure is easy enough to imagine in 2D, but in fact it
can be applied to point clouds of any dimension. After
applying the procedure to the photos of the Mane-
ki-neko figurine (taken as points in a 16,384-dimen-
sional space), we obtained the image below, showing
a closed-cycle graph - a path we can travel around by
hopping from one vertex to another (Fig. 4).

The dimensions and shape of the chosen graph rep-
resent the nature of our data. Each photo represents
a point in 16,384-dimensional space. Each pair of sub-
sequent photos are very similar, therefore the corre-
sponding points are close together. However, as we
start from the first photo, each subsequent image be-
comes more distinct, and after almost a full revolution
they start becoming similar again. The same happens
to the points representing each photo: they start off by
becoming more distant from the starting point only to
return to it from the other direction. This is how we
return to the starting point after completing the full
circle in a multidimensional space.

Visualizing functions

Let’s consider a situation when every pointin a cloud
is assigned an additional value, returned by a certain
function on the point cloud. The mean value of such
a function for the points covered by a given “ball” can
be visualized using a color scale on the vertices of the
graph. This can be illustrated, for instance, by a set
of banknotes, each of which is a data point described
by four different characteristics. The function then
assigns each banknote a value: it can be genuine (func-
tion value 0) or fake (1). Converting this dataset to an



image using the BM algorithm produces a Y-shaped
graph (Fig. 5).

The color of the vertices in the resulting graph con-
veys information about the nature of the banknotes it
represents (the mean value of the points falling within
the corresponding ball), with purple indicating genu-
ine and yellow fake banknotes. The two yellow arms
evident in the graph suggest that we are dealing with
two distinctly different kinds of fake banknotes: there
are two different sets of yellow vertices not directly
connected and situated a certain distance from one
another.

Multidimensional data is actually very common,
and its visualization is crucial in many fields. As a last
example, let us consider a dataset collected by the
Netherlands Cancer Institute, describing the activity
of various genes in a group of breast cancer patients.
The multidimensional points in the dataset represent
the activity of a thousand different genes in each pa-
tient. Our aim is, based on this data, to provide a prog-
nosis and propose effective targeted therapy for each
patient. The classic mapper algorithm (developed at
Stanford in 2007) produces a graph that represents
an image of the activity of a thousand genes, with the
function being patient survival rates.

Like in the case of the banknotes, the resulting do-
main turns out to be Y-shaped. Of particular interest
are the two arms on the left side of the graph (Fig. 6).
The arm pointing downwards represents “triple-neg-
ative” cancers with a poor prognosis and low survival
rates. The arm pointing upwards is more positive: the
end shows (in red) a previously unknown subgroup
of patients with high survival rates. Further analysis
reveals that this subgroup is characterized by cancers
that are Estrogen Receptor-positive (ER+), with high

www.czasopisma.pan.pl P N www.journals.pan.pl

-

POLSKA AKADEMIA NAUK

levels of c-MYB and low levels of innate inflammato-
ry genes. The combination of these three parameters
is currently being used to devise therapies. This sub-
group of patients was identified by imaging multidi-
mensional data.

There are many other examples of multidimen-
sional data and its analysis. Although state-of-the-art
machine learning and AT methods make it possible to
analyze data blindly, the ability to effectively visualize
data and directly analyze the resulting images can pro-
vide an additional level of understanding of a given
phenomenon (as in the above examples), and it can
help scientists posit rational, objective explanations.
Mathematical methods need to be supplemented with
effective and user-friendly implementations, acces-
sible to anyone. These and other methods are often
a source of new discoveries in many fields, stretch-
ing from the humanities, through chemistry, physics,
and medicine, all the way to pure mathematics. Its
myriad applications go to show that contemporary
computational mathematics truly is the “queen of the
sciences.” m
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Fig.5

Four-dimensional space
showing the characteristics
of genuine (purple) and fake
(yellow) banknotes

Fig. 6

Image of the activity

of a thousand genes for
breast cancer patients.

The highlighted red branch
in the upper left corner
represents a previously
unknown subgroup with

a high survival rate

Further reading:

Explanation of the Ball Mapper
Algorithm, https://www.
youtube.com/watch?v=
M9Dm1nl_zSQ&ab_channel
=Pawe%(5%82D%(5%820tko
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