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Obstacle avoidance method of autonomous vehicle
based on fusion improved A*APF algorithm
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Abstract. This paper proposes an autonomous obstacle avoidance method combining improved A-star (A*) and improved artificial potential
field (APF) to solve the planning and tracking problems of autonomous vehicles in a road environment. The A*APF algorithm performs path
planning tasks, and based on the longitudinal braking distance model, a dynamically changing obstacle influence range is designed. When
there is no obstacle affecting the controlled vehicle, the improved A* algorithm with angle constraint combined with steering cost can quickly
generate the optimal route and reduce turning points. If the controlled vehicle enters the influence domain of the obstacle, the improved artificial
potential field algorithm will generate lane-changing paths and optimize the local optimal locations based on simulated annealing. Pondering the
influence of surrounding participants, the four-mode obstacle avoidance process is established, and the corresponding safe distance condition is
analyzed. A particular index is introduced to comprehensively evaluate speed, risk warning, and safe distance factors, so the proposed method
is designed based on the fuzzy control theory. In the tracking task, a model predictive controller in the light of the kinematics model is devised
to make the longitudinal and lateral process of lane-changing meet comfort requirements, generating a feasible autonomous lane-change path.
Finally, the simulation was performed in the Matlab/Simulink and Carsim combined environment. The proposed fusion path generation algorithm
can overcome the shortcomings of the traditional single method and better adapt to the dynamic environment. The feasibility of the obstacle
avoidance algorithm is verified in the three-lane simulation scenario to meet safety and comfort requirements.

Key words: obstacle avoidance; path planning; fuzzy control; tracking control.

1. INTRODUCTION
A previous study has shown that driver errors account for 90%
of the causes of collisions [1]. An intelligent vehicle is a self-
planning machine that works in a complex environment, re-
ducing traffic accidents in the future transportation system. As
a complex system that combines software and hardware, driver-
less cars require the coordination of multiple modules, such
as onboard hardware, sensor integration, perception prediction,
and control plans to ensure safe and reliable operation [2].
As for lane changes, decision, planning, and control are very
important to solve the overtaking problem by considering the
surrounding environment [3]. Various advanced driving assis-
tance systems (ADAS) were devised to reduce the probability
of crashes and enhance the safety performance of vehicles [4].
However, autonomous obstacle avoidance technology that can
adapt to various environmental conditions still needs to be stud-
ied. Lane change is a crucial issue for the stability of traffic
flow. Indiscreet operations (such as sudden insertion into adja-
cent lanes) can disrupt regular traffic and even create serious
traffic crashes [5]. Obstacle avoidance is a complex movement
process involving longitudinal and lateral speed changes and
approaching other moving vehicles [6, 7].

In the existing research, fuzzy logic considers various aspects
of overtaking and was applied to relevant research on decision-
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making [8]. In addition, a multiple-goal reinforcement learning
framework was proposed to plan over-taking maneuvers [9].
A two-step algorithm was devised for keeping the intricacy de-
gree of the partially observable Markov decision process at a
lower level for real-time decision-making when moving [10].
Due to a large amount of calculation, these methods have spe-
cific difficulties when applied to vehicles. For the problem of
path planning, work on autonomous vehicle path planning can
be traced back to the 1980s, focusing on calculating the fast,
ideal, and crash-free trajectory from the start station to the desti-
nation [11]. To plan the optimal moving path quickly and effec-
tively, the primary goal is to ensure that the intelligent vehicle
reaches its destination safely. The global planning task based
on environmental perception and the local planning task using
sensors are two significant parts of the planning task.

The A* algorithm was initially published in 1968 by Peter
Hart, an extension of the Dijkstra algorithm [12]. In a static
environment, the A* is the most effective straight search algo-
rithm for resolving the shortest path problem. To ensure an al-
gorithm suitable for curved road planning, Pang et al. proposed
a novel method with equal-step sampling [13]. LIU proposed
to combine Euclidean distance and point-to-line distance to re-
duce the number of search points [14]. By dynamically esti-
mating heuristic weights, two-stage A* can regulate the optimal
generation of the trajectory according to the complexity of the
planned request [15]. However, a single A* algorithm is hard
to apply in a dynamic environment or needs complex changes
to achieve this goal, which reduced the fast response character-
istics of intelligent vehicles. The artificial potential field (APF)
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path planning algorithm is a method using virtual force pro-
posed by Khatib [16], so the movement of the monitored object
is controlled by the resultant force where the target point gen-
erates the attraction, and the obstacle generates the repulsion.
Although the planned path is generally smooth and safe, this
method has zero points of force field [17]. Due to the simplic-
ity and elegance of this algorithm, the APF is currently still
a standard method for solving local obstacle avoidance plan-
ning problems. PBPF is a pseudo-bacterial genetic algorithm
(PBGA) and a fitness function based on the concept of a po-
tential field to construct a viable path in a dynamic environ-
ment, improving the conventional method [18]. Successful lane
change operations possess path generation and need to spread
to path tracking tasks, ensuring the vehicle is as close as pos-
sible to the present trajectory and meets the dynamics [19].
Manuel applied the fusion algorithm to the path planning of
the robot, using the A* algorithm to get the best path and the
APF controller to achieve path tracking to avoid obstacles [20].
Chunyu Ju applied the fused A* and APF algorithms to path
planning, combining the advantages of both algorithms to get
a reasonable path [21]. Tracking methods usually contain fuzzy
logic control [22], sliding mode control [23], and yaw stabil-
ity control [24]. The MPC controller is an effective tool [25],
which has better anti-interference performance and control per-
formance and is more widely used [26].

To solve the path planning problem of vehicles under the dy-
namic environment in the process of avoiding obstacles, com-
bining decision and tracking control modules, this paper pro-
poses an autonomous obstacle avoidance method, the overall ar-
chitecture of the proposed automated system is shown in Fig. 1.

The environment perception module uses multi-sensor or
wireless communication to accurately transmit the required in-
formation. The method of decision is designed based on fuzzy
control by introducing the comprehensive decision index to
consider velocity, risk warning, and safety distance. The path
planning task is based on the A*APF algorithm. First, we make
improvements to the A* and APF algorithms and then apply
the fusion of the two algorithms to the obstacle avoidance sce-
nario. A new cost function is constructed and path turns are re-

duced when the controlled vehicle does not enter the influence
range of the obstacle. The optimal path is quickly generated
with the improved A* algorithm. When the obstacle obstructs
the vehicle progress, the improved APF can generate the ob-
stacle avoidance path and optimize the trap points in time by
simulated annealing to prevent the algorithm from confusion.
Furthermore, a multi-constraint MPC controller is constructed
based on the kinematics model to guarantee the desired path has
the feasibility and stability requirements, and the vehicle state
parameters are fed to the algorithm, this process is repeated at
a fixed sample time and updated.

The remainder of the paper is as follows. Section 2 estab-
lishes the lane-changing path generation. Section 3 designs the
tracking control based on MPC. Section 4 carries on the sim-
ulation to verify the feasibility of the algorithm, and Section 5
draws the corresponding conclusions.

2. PATH PLANNING METHOD BASED ON FUSION
IMPROVED A*APF ALGORITHM

2.1. Basic A* algorithm
The A* algorithm divides the feasible area by detecting envi-
ronmental information to establish a square grid, finding the
shortest path composed of coordinate points. Since the study
of vehicle motion planning, this paper assumes that the vehicle
can accurately perceive the information of the external environ-
ment through sensors, converting path planning into an issue of
searching for barrier-free areas in a known environment model.

As the most effective heuristic search in a static environment,
the A* algorithm integrates the superiorities of the Dijkstra al-
gorithm and the breadth-first search (BFS), widely used in the
global path planning of robots or intelligent vehicles [27]. The
A* algorithm first creates an OPEN list and saves eight adjacent
grids as the nodes to be calculated, which are also named the
current nodes. Analyzing these nodes in the OPEN list through
the cost function, we select the path point with the lowest mo-
bile cost and delete it from the OPEN list. Meanwhile, a close
list is created to store all path points and obstacle points. The
picture shows the geometric implication of the cost function.

Fig. 1. Overall architectureof the automated system
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As shown in Fig. 2, the point (xs,ys) in the left figure indi-
cates the starting point and (xm,ym) indicates the current point
to be calculated. In the right figure, the point (xe,ye) denotes the
target point. The cost function is usually written as:

f (n) = g(n)+h(n), (1)

where g(n) denotes the actual movement cost from the start-
ing position to the intermediate state n, and h(n) denotes the
estimated movement cost of the best path from the intermedi-
ate state n to the target position. In the conventional algorithm,
g(n) is defined by the Euclidean distance. Manhattan distance
defines h(n).

Fig. 2. The cost function

2.2. The improved A* algorithm with the steering
constraint

However, as the shortest path planning, the traditional A* has
many turns and preferentially follows a straight line between
two points. Intelligent vehicles are constrained to drive in the
lane without changing direction at will. Ensuring the nodes par-
allel to the lane have a smaller cost value, this paper defines the
steering cost function p(n) considering the limit of steering an-
gle, such as in Fig. 3. It introduces it into f (n), reducing unnec-
essary steering:

p(n) =


θg(n)
δmax

g(n)+
θh(n)
δmax

1
h(n)

θ(n) ∈
(

0,
π

2

)
,

0 θ(n) = 0, θ(n) = ∞,

(2)

where δmax is the maximum front-wheel steering angle, θg is
the angle between the starting point and the current node, θh is

Fig. 3. The limit steering angle in A* algorithm

the angle between the current point and the goal destination:

θg(n) = arctan
(∣∣∣∣ym− ys

xm− xs

∣∣∣∣) , (3)

θh(n) = arctan
(∣∣∣∣ym− yend

xm− xend

∣∣∣∣) . (4)

Thus, the novel cost function includes moving cost and steering
cost is designed by:

f (n) = g(n)+h(n)+ p(n). (5)

In other words, vehicle motion constraints are considered to
improve the A algorithm, which is suitable for the road structure
environment, reducing path turning points, and realizing global
path planning when no obstacles are affected.

2.3. Obstacle avoidance method based on improved
APF algorithm

The improved A* algorithm can quickly plan an optimal path in
a static environment. However, in a complex dynamic environ-
ment, since the local information changes in the case of the up-
date of obstacle positions, the A* algorithm can no longer per-
form obstacle avoidance decisions well. A local path-planning
algorithm to avoid dynamic obstacles in real time is necessary
for an autonomous vehicle.

2.3.1. Basic artificial potential field algorithm
In previous research, Khatib first proposed the artificial poten-
tial field algorithm (APF), in which the spatial motion of an
object was transformed into the force motion of a particle. In
APF, the attractive potential field Uatt acts on the global envi-
ronment, and the farther the object is from the target point, the
more attractive force it receives. In the obstacle avoidance con-
trol algorithm, to ensure the vehicle complies with the desired
path from the start location to the destination, the attractive po-
tential field can be written as:

Uatt =
1
2

kattρ
2
s , (6)

where katt is the attractive constant, ρs is the distance between
the controlled object and the destination. The attractive force
acting on the controlled object is calculated as:

Fatt = kattρg . (7)

The repulsive potential field Urep merely works in a limited
range. If the object moves within this range, the repulsive force
generated by the APF will prevent it from approaching the ob-
stacle and form a collision-free motion trajectory:

Urep =


1
2

krep

(
1

ρob
− 1

ρ0

)2

ρob ≤ ρ0 ,

0 ρob > ρ0 ,

(8)

where krep is the coefficient of the repulsive potential field, ρob
is the distance calculated from the object to the obstacle, ρ0 is
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the repulsive potential field range. In the Urep, its radius defines
the scope of the repulsive force. The controlled object is at-
tracted towards the final destination by the force Fatt. If the dis-
tance ρob is minor than ρ0, the repulsive force is used to avoid
the collision. To sum up, since the principle of the APF algo-
rithm is an analog to driver obstacle avoidance behavior, the
APF is an ideal method to plan a safe local path. However, the
traditional algorithm cannot be directly applied to traffic sce-
narios and needs to be improved.

2.3.2. Safety distance model
The traditional APF algorithm sets ρ0 as a fixed value and ig-
nores the relative motion between objects. This paper considers
the safety distance between vehicles to define the potential field
radius and improves the timeliness of the algorithm under the
premise of satisfying safety. Emergency braking and steering
are essential operations for autonomous vehicles to avoid col-
lisions with the preceding vehicle. Besides, vehicles generally
do not brake at maximum deceleration in the case of comfort
considerations.

As shown in Fig. 4, when the ego vehicle changes lanes, it
needs to maintain a certain initial distance Rlcc from the vehicles
behind the adjacent lanes to prevent collisions during the entire
process. The critical collision distance in this scenario is defined
as RS1, which can be expressed as:

Rlcc +L+ xe > RS1 , (9)

where xe presents the longitudinal displacement of the ego car
(orange) during this stage, L denotes the length of the vehicle.
Namely, to ensure a smooth process, the critical collision avoid-
ance distance is defined as the assumption that the orange car
starts to change lanes and the blue car can simultaneously de-
celerate to a stop to avoid a collision:

RS1 = xe +
v2

b
2ab

+ vbt0 . (10)

Subscript b means the blue vehicle, vb presents the vehicle
speed moving in the adjacent lane, ab is the deceleration consid-
ering passenger comfort (generally limited to 0.5g), t0 denotes
the reaction time of drivers. The longitudinal distance xe during
the lane change:

xe = vet +
t∫

0

t∫
0

ae(τ)dτ dt, (11)

where ve denotes the velocity of the ego car, t presents the cur-
rent moment (t <TTC), and the relationship between speed and
TTC details in [28]. ae denotes the acceleration of the ego ve-
hicle. After formula transformation, the lane-changing check
(LCC) condition is defined as:

Rlcc >
v2

b
2ab

+ vbt0−L. (12)

In addition, if other vehicles are moving in adjacent lanes,
the accommodating spacing formed in the middle becomes the
judging factor on whether to perform a lane change. According
to previous research, after changing into the adjacent lane, the
position between the ego vehicle and the updated front obstacle
is also a fundamental problem [29]. A specific initial distance in
this scenario Rlcc is reserved to prevent collisions. The longitu-
dinal distance of the integrated lane change process and braking
distance avoid a forward collision when the controlled vehicle
updates another lane. The RS2 can be expressed as:

RS2 = xe +
v2

e

2aeb
+ vet0 , (13)

where aeb is the braking deceleration considering passenger
comfort in this scenario, when there is accommodating space
in adjacent lanes, the condition is defined as:

Rlcc > RS2 . (14)

If the autonomous lane change algorithm observes that the
vehicle fails to satisfy the LCC, it means the vehicle fails to
realize the lane change. The system will start the adaptive car-
following (ACF) mode, adaptively follow the obstacle in front
and maintain a certain safe distance. Similar to the longitudinal
braking distance model in [30], Rb can be described as:

Rb =
v2

e

2aeb
+(ve− vob)Tt −

v2
ob

2aob
, (15)

where vob is the velocity of the front obstacle, Tt is the delay
time of the braking device, aob is the braking deceleration of the
obstacle. As presented in equation (15), this paper calculates the
minimum longitudinal distance to set the dynamic field radius
of the APF. The defined LCC is used as the condition of whether
the actuator discussed in the next section can perform a lane
change:

r = Rb . (16)

Fig. 4. Lane-changing condition
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The real-time distance between the autonomous vehicle and
the obstacle can be obtained by various sensors, which is
counted as d. When d < r, the repulsive force experienced by
the autonomous vehicle can be expressed as:

Urep =


1
2

krep

(
1
d
− 1

r

)2

d ≤ r,

0 d > r,
(17)

Frep =


krep

d2

(
1
r
− 1

d

)
d ≤ r,

0 d > r,
(18)

where r denotes the influence range of the obstacle.

2.3.3. Simulated annealing algorithm optimization
In the traditional APF, the algorithm falls into a local minimum
position where the repulsive force is equal to the attractive force
with an opposite direction. The simulated annealing (SA) algo-
rithm was proposed by N. Metropolis. Because the SA algo-
rithm can jump out of the trap probabilistically at the optimal
position, it is a random optimization method [31].

When the vehicle is subjected to repulsive and gravitational
forces of equal magnitude and the opposite direction in the po-
tential field. Set the point as point x and set a relatively high
initial temperature T . At this point, the algorithm will choose
a random angle θran forward to obtain a random point x1. Then
compare the total potential field (PF) of point x with that of
point x1. If the total PF of point x1 is less than that of point x, the
algorithm accepts x1 as the next path point. Otherwise, the algo-
rithm accepts this point as the next path point with probability
P, with T decreasing in a certain way simultaneously. Finally,
the iterative calculation helps the algorithm escape the optimal
local value. In consideration of vehicle stability, the stability
coefficient K is an essential factor affecting steering stability,
which is divided into understeer, neutral steering, and excessive
steering:

δ =
r(1+Ku2)

u/l
, (19)

where r presents the yaw angular velocity, u presents the ve-
locity at the center of mass, l is the wheelbase. To make the
algorithm satisfy the smooth steering and driving safety during
local path planning, the random angle θran needs to meet certain
constraints:

δmin ≤ θran ≤ δmax . (20)

A single A* algorithm fails to avoid dynamic obstacles in
practical applications, which means path planning failure. Fur-
thermore, if APF is used alone for local path planning, it fails
to perceive global information, increasing calculated cost and
causing low efficiency. To sum up, this paper uses the A*APF
path planning algorithm based on combining the improved A*
method and the improved APF method, which is presented in
Fig. 5.

Fig. 5. Path generation process

3. FUZZY DECISION PROCESS BASED ON
COMPREHENSIVE INDEX

There are common incentives for changing lanes, such as ob-
stacles ahead or other vehicles inserted into the driving lane.
Then, the driver will determine whether the lane change is fea-
sible and safe, according to the traffic movement in the adjacent
lanes, and make the final decision. This paper introduces a com-
prehensive decision index (CDI) to evaluate whether the driver
can easily change the surrounding environment of the lane [32].
The first index is the speed advantage that drivers expect. When
ve in the original lane is lower than vb in the adjacent lane, the
driver is likely to have the motivation to change lanes. This
paper quantifies the necessity of this working condition with
speed:

Pv =
ve

vb
. (21)

The movement of autonomous vehicles needs to ensure the
safety of surrounding vehicles. The common metrics used in
its study are movement gap, time to collision (TTC), and time
gap (TG) [33]. If there are no other participants in the current
lane obstructing the controlled vehicle, its speed depends on the
driver’s intention and is within the roadway limits:

ve = vd , 0 < v < vmax , (22)

where vd denotes the intention of the driver, vmax is the max-
imum allowable speed. The second index is the car-following
advantage that drivers expect to obtain. The leading obstacle
car in the current lane decelerates, or other vehicles are inserted
in front. The spacing between the ego car and the leading partic-
ipant is shortened, and the need to change lanes is generated to
avoid collisions or obtain a more significant space margin. This
paper introduces the risk warming (rw) coefficient to quantify
this indicator [28], which can be expressed as:

Prw =
a

TWH
+

b
TTC

, (23)

where a = 1, b = 5, TWH denotes time headway, and the spe-
cific calculation method and value selection are detailed in [30].
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Through the above analysis in Fig. 4, the third index is the con-
sideration of safety distance:

Pd =
D

Rlcc
. (24)

Since lane-changing safety is most closely related to the ve-
hicle behind in the target lane, D denotes the actual distance
of Rlcc. When an autonomous vehicle is incapable of avoiding
obstacles through active steering, deceleration braking will be
another necessary maneuver [30]. So the CF condition is de-
fined as:

Rc f < Rb . (25)

As mentioned in the previous description, lane-changing is
a multi-stage process (it needs to consider whether there is suit-
able accommodation spacing in the adjacent lanes). The four-
mode autonomous avoiding process can be expressed as:

Mode 1, lane-keeping (LK): when the controlled vehicle is
obstacle-free in the front and rear directions of the current
lane, if the ego vehicle has no intention or conditions of lane-
changing, it will continue to drive along the current lane without
steering.

Mode 2, lane-changing check (LCC): if there is a feasibility
of changing lanes, perform LCC to check whether there is a safe
accommodation space in the adjacent lanes.

Mode 3, lane-changing (LC): if the LCC is satisfied, the con-
trolled vehicle generates a lane-changing trajectory under the
control of the proposed algorithm. After successfully changing
the lane, the controlled vehicle will perform appropriate safe
driving behaviors (i.e. return to the first mode).

Mode 4, adaptive car-following (ACF): if there exists an ob-
stacle in front of the controlled vehicle, the system performs
a new LCC detection and selects the LC mode when the require-
ments are met. Otherwise, it enters the CF mode to maintain the
car-following state and a suitable safe distance.

The fuzzy system realizes convenient and fast prediction or
control of uncertain reasoning, including fuzzification, fuzzy
rules, fuzzy reasoning, and anti-fuzzification. This process is
applied to human decision-making models to solve driving be-
havior characteristics that cannot be accurately expressed by
mathematical models [34].

When constructing the affiliation function, the trapezoidal
function is chosen for both the maximum and minimum inter-
vals, and the trigonometric function is chosen for the interme-
diate value interval. The fuzzy subset Pv about speed is defined
as {slow, medium, fast} and the fuzzy subset Prw is defined as
{small, medium, large}, which indicates that the degree of dan-
ger is small, medium, and large. In addition, the fuzzy subset Pd
is defined as {extremely dangerous, dangerous, medium, safe,
extremely safe}. Finally, the fuzzy subset CI is defined as NL
(negative large), NM (negative minor), Z (zero), PM (positive
minor), PL (positive large), and the corresponding fuzzy rules
are detailed in [32].

The three parameters designed are the inputs of the mod-
ule. First, obtain environmental information based on various
sensors and wireless communication technologies, and fuzz the

parameters into qualitative expressions. Then, make inferences
based on the designed fuzzy rules to obtain the possibility of
changing lanes; finally, use the center of gravity method to re-
solve the fuzziness to obtain the quantitative. The output value
is a comprehensive decision factor and Fig. 6 shows its mem-
bership function.

Fig. 6. Membership function

A positive value indicates that the driver is more likely to
change lanes, while a negative value indicates a lower possibil-
ity. In addition, since this paper studies lane-changing behavior
in a stable state, the autonomous system performs a steering op-
eration when it is safe enough. The following methods are made
for the decision-making after fuzzy control: {if CI=PL or PM,
lane-changing; if CI=NL, NM, and Z, car-following}.

Human driving behavior is an essential factor affecting vehi-
cle safety. In the autonomous vehicle control system, reflecting
the driver’s behavior and decision is vital to research. Accord-
ing to the research, driving behavior is separated into three lev-
els: strategy, tactic, and management. [35]. An automated op-
erating system based on human behavior must be constructed
at a certain level. Figure 1 shows the framework structure of
the autonomous obstacle avoidance algorithm, while Figure 7
shows the process of decision-making in the framework.

Fig. 7. The process of decision

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 2, p. e144624, 2023



Obstacle avoidance method of autonomous vehicle based on fusion improved A*APF algorithm

4. TRACKING CONTROL BASED ON MODEL
PREDICTIVE CONTROL

4.1. Vehicle kinematics model
Kinematics is the research about the movement rules from a ge-
ometric perspective, describing the position and speed changes
of objects over time. Since the actual vehicle dynamics are com-
plex, a simplified kinematics structure used in the path plan-
ning algorithm is feasible, ensuring the desired path has certain
kinematic constraints. In addition, the dynamic factors of ve-
hicle stability control are generally not considered in the case
of low speed and good road conditions. So, the tracking con-
troller based on the kinematic model has reliable control perfor-
mance. The vehicle kinematics model that satisfies Ackerman
steering is:

Figure 8 depicts the model fixed to the earth coordinate sys-
tem XOY, where ϕ denotes the heading angle, δ denotes the
front wheel steering angle, L is the wheelbase. In the center of
the axle, (xr,yr) and (x f ,y f ) are the coordinates of the rear axle
and the front axle, respectively, v is the vehicle speed of the rear
axle. Then, the motion constraint equation is as follows:

ẋ f sin(ϕ +δ )− ẏ f cos(ϕ +δ ) = 0,
ẋr sinϕ− ẏr cosϕ = 0.

(26)

The yaw rate of the vehicle can be written as:

ω =
v
L

tanδ . (27)

The relationship between the wheel angle δ and the turning
radius R is written as:

tanδ =
L
R
. (28)

The two-degree-freedom vehicle kinematics model is formu-
lated as follows:

ξ̇ =

ẋr

ẏr

ϕ̇

=

 cosϕ

sinϕ

tanδ/L

v. (29)

Fig. 8. Vehicle kinematics model

4.2. Tracking controller design
The system state ξ can be defined as [x, y, ϕ], thus the discrete
linear system is presented explicitly as:

ξ (k+1) =

xr(s+1)
yr(s+1)
ϕ(s+1)

=

 xr(s)+∆t · v(s)cos(ϕ(s))
yr(s)+∆t · v(s)sin(ϕ(s))

ϕ(s)+∆t · v(s)/L tan(ϕ(s))

, (30)

where ∆t is the discrete step, it was set to 0.05 in the experi-
ment; ξ (s+ 1) denotes the system state of step s+ 1. Restric-
tions of the variable in the MPC are designed in [36], containing
vehicle speed and front-wheel steering angle. So the equation
should be further expressed as follows:

χ(k+1) =


xr(s+1)
yr(s+1)
ϕ(s+1)
v(s+1)
δ (s+1)

=


xr(s)+∆t · v(s)cos(ϕ(s))
yr(s)+∆t · v(s)sin(ϕ(s))

ϕ(s)+∆t · v(s)/L tan(ϕ(s))
v(s)+∆v(s+1)

δ (s)+∆δ (s+1)

, (31)

where ∆u = [∆v(s),∆δ (s)]T, the increment of the control vari-
able, is vehicle speed and wheel angle at s-th step, respectively.
In the path tracking control of autonomous vehicles, this paper
uses acceleration and yaw rate as the control variables, and the
kinematics model can be converted as follows:ẋr

ẏr

ϕ̇

=

 cosϕ

sinϕ

tanδ/L

v+

0
0
1

ω. (32)

In terms of the longitudinal and lateral control of the targeted
car in the autonomous lane-changing framework, an objective
function shows the tracking manifestation of desired trajectory
and velocity:

minJ(s) =
N p

∑
i=1
‖ex(i)−S‖2

WX
+

N p

∑
i=1

∥∥ey(i)
∥∥2

WY

+
N p

∑
i=1
‖ev(i)‖2

R +
Nc−1

∑
i=0
‖∆u(s+ i,s)‖2

P, (33)

where Np is the prediction scope, Nc is the control scope and
Np<Nc, ex(i), ey(i) is the longitudinal and lateral error be-
tween the controlled object and the leading obstacle, respec-
tively. ev(i) represents the error between the current speed and
the desired speed. WX , WY , R, Q, and P are the weighting val-
ues of the optimization problem. S represents the longitudinal
distance that should be maintained between two vehicles. In ad-
dition, t + s, t indicates the predicted value at s steps after t, and
the control increment ∆u(t + s, t) needs to be minimized.

It should be noted that when the controlled object is in
a single-car state, or it has developed into the leading object,
the ex(i) and ey(i) should be zero, and the speed error indicated
by ev is transformed into the preset desired speed of the driver.
When the system is in LC mode, the longitudinal and lateral
errors (i.e. ex(i) and ey(i)) need to be calculated. The required
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speed depends on the front leading vehicle this time. The cor-
responding matrix and derivation process are detailed in [36].
Moreover, to guarantee the tracking control process stability,
the establishment of constraint conditions needs to consider the
control variable and its increment. The speed and wheel angle
control of the autonomous vehicle are:

−0.2m/s≤ v−vd ≤ 0.2 m/s,
−0.05m/s≤ ∆v≤ 0.05 m/s,

−25◦ ≤ δ ≤ 25◦,
−0.47◦ ≤ ∆δ ≤ 0.47◦,

(34)

where vmax denotes the maximum speed allowed in the lane, vd
is the expected speed, and ∆v is its increment per control cycle.
Combining the cost function and restrictions, the MPC tracking
controller must settle the below optimization complication in
each cycle:

minJ,

s.t. ∆Umin ≤ ∆Ut ≤ ∆Umax ,

Umin ≤ A∆Ut +Ut ≤Umax ,

(35)

where Ut = 1Nc⊗u(s−1),1Nc is a column vector with Nc rows,
u(s− 1) denotes the actual control variable at the former mo-
ment, ∆Ut is the predicted input increments before Nc−1 steps,
A is a special identity matrix, Umin and Umax is the minimum and
maximum set of control variable in the control scope, respec-
tively. After each control cycle, a series of input increments in
the control scope is acquired:

∆U∗t = [∆u∗t ∆u∗t+1, . . . ,∆u∗t+Nc−1]
T . (36)

Then, MPC can repeat this process after conducting the later
control cycle, achieving the trajectory tracking assignment of
the vehicle in this loop:

u(t) = u(t−1)+∆u∗t . (37)

5. SIMULATION EXPERIMENT ANALYSIS
It is necessary to build a suitable simulation scenario to verify
the lane-changing system. The effectiveness of the proposed
lane-changing algorithm is simulated in a three-lane straight
road, setting the width of each lane to 3.5 m. Active steering
and the emergency braking are both effective operations for ve-
hicles to take obstacle avoidance behaviors. In order to show
the response ability of the proposed algorithm in a complex

road environment, constructed scenario 1 describes that the in-
telligent vehicle first takes the brakes to adaptively follow the
vehicle in front, and waits, completing the process of changing
lanes and avoiding obstacles ahead.

The following Fig. 9 and Table 2 reveal the initial state of the
ego vehicle and surrounding participants. The ego vehicle is
driving in the middle lane, vehicle D is the obstacle ahead, the
three cars A, B, and C are in the left lane, and E, F, and G are
driving in the right lane. All simulation objects choose the C-
class passenger vehicle that comes with Carsim, and some key
vehicle parameters are shown in Table 1. The framework of co-
simulation is shown in Fig. 10. Vehicles can receive available

Table 1
Simulation vehicle parameter setting

Parameters Value

Overall mass 1274 kg

Height of center of mass 540 mm

Distance between center of mass and front axle 1016 mm

Wheelbase 2578 mm

Tire center height 316 mm

X-axis inertia 606 kg·m2

Y-axis inertia 1523 kg·m2

Z-axis inertia 1523 kg·m2

Table 2
Simulation environment settings in scenario 1

Vehicle X Position (m) Y Position (m) Speed (m/s)

Ego 0 0 20

A 20 3.5 20

B 80 3.5 20

C 120 3.5 20

D 50 0 10

E 0 –3.5 8

F 20 –3.5 8

G 40 –3.5 8

Fig. 9. Simulated environment in scenario 1

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 2, p. e144624, 2023



Obstacle avoidance method of autonomous vehicle based on fusion improved A*APF algorithm

Fig. 10. Co-simulation structure

information through various sensors and wireless communica-
tions.

The simulation result is shown in Figs. 11–13. The planned
lane change path is smooth in Fig. 11; the controller T can track
the desired path and generate the actual trajectory that meets the
stability requirements. Also, the steering angle and the lateral
acceleration in Fig. 12 vary within a limited range. At this time,
when the vehicle is turning left, the value is recorded as a pos-
itive value; otherwise, it is recorded as a negative value. There
will be two changes in the state of motion, and the trends of
these two changes are roughly symmetrical, and the directions
are precisely opposite, showing the production of overtaking
and returning to the original lane.

Fig. 11. Planned path and actual path in scenario 1

Fig. 12. Steering angle and lateral acceleration in scenario 1

Fig. 13. Longitudinal speed and mode selection in scenario 1

The longitudinal speed change and the mode selection of the
entire lane-changing process are shown in Fig. 13. After the
longitudinal speed of the controlled vehicle has decreased for
a period, it will accelerate when the lane change occurs and rise
to the predetermined value until the lane-changing process is
completed. In front of Ego in the middle lane, the speed of ob-
stacle D is low. At the same time, car A driving in the left lane
is closer to Ego, at this time the fuzzy decision system calcu-
lates that it cannot turn to change lanes immediately. It gets the
instruction to execute ACF mode. Currently, Ego adaptively fol-
lows D. As the vehicle state changes, the decision system per-
forms a lane change operation during the LCC check when the
distance limit satisfies Rlcc, and the Ego vehicle will return to
the original lane at a suitable position according to the proposed
path generation algorithm. Since there are no other obstacles in
the subsequent process, the Ego will maintain the driver’s de-
sired speed and perform LK driving. During this entire process,
the fuzzy decision system can calculate a reasonable obstacle
avoidance pattern based on the vehicle state. Thus, the algo-
rithm can control the vehicle to complete the change to obstacle
avoidance safely and stably.

The simulation process shows the operation of the four-mode
autonomous obstacle avoidance system. LK is a mode that can
keep driving in the current lane, without deviating from the
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Fig. 14. Simulated vehicle parameters in scenario 2

course or other operations. As can be seen, LCC is an existential
check process at the beginning of a lane change and when re-
turning to the original lane. LC and ACF, respectively, indicate
lane-changing trajectory and car-following trajectory under the
guidance of A*APF. To sum up, the decision-making part based
on the comprehensive index and fuzzy control is practical while
generating a safe and comfortable trajectory.

The obstacle avoidance process of smart vehicles includes
active steering and emergency braking. In the first structured
road scenario, this paper verifies the applicability of the algo-
rithm in dealing with complex situations. In addition, this paper
also constructed another scenario to verify the algorithm abil-
ity to adaptively follow the obstacle ahead when the steering
conditions are not met, as shown in Fig. 14. The environment
settings at this time are shown in Table 3.

Table 3
Simulation environment settings in scenario 2

Vehicle X Position (m) Y Position (m) Speed (m/s)

Ego 0 0 20

A 15 3.5 15

B 60 3.5 15

C 105 3.5 15

D 50 0 15

E 0 –3.5 10

F 20 –3.5 10

G 40 –3.5 10

This scenario mainly pays attention to the ACF function of
the algorithm to verify the ability of the autonomous vehicle
to maintain an adaptive following when it is not steerable. The
path planned by the algorithm and the actual trajectory con-
strained by the controller are shown in Fig. 15. Except for slight
changes in the starting position of the path, the planned path can
maintain the ability of the vehicle to move in a straight line.

As shown in Fig. 16, the steering angle and lateral accelera-
tion of the vehicle at this time are expressed on the same coor-
dinate axis. The trajectory after being constrained by the MPC
controller can ensure that the vehicle driving parameters change
smoothly within a certain range, which meets the comfort re-
quirements.

Fig. 15. Planned path and actual path in scenario 2

Fig. 16. Steering angle and lateral acceleration in scenario 2

In scenario 2, the vehicle longitudinal speed and mode
switching are shown in Fig. 17. This scenario verifies the lane-
keeping ability of the vehicle. Under the influence of obstacles
constructed by the safe distance, the algorithm will switch to
local obstacle avoidance planning. At this timeŁŹ the fuzzy de-

Fig. 17. Longitudinal speed and mode selection in scenario 2
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cision system gets the obstacle avoidance mode according to
the vehicle driving state and checks whether there is a possibil-
ity of steering. At this time the conditions are not met steering
for a lane change, the obstacle avoidance mode is switched from
LCC to ACF and continues to be maintained.

6. CONCLUSIONS
We propose an algorithm for automatic vehicle obstacle avoid-
ance, including fuzzy decision-making, path planning, and
tracking control. In detail, firstly, a four-mode avoiding sys-
tem is set up, CI is introduced by integrating vehicle speed, risk
warning, and safe distance factors, and fuzzy control theory is
used to define the decision-making part. Secondly, this paper
proposes a fusion A*APF algorithm. On the one hand, the opti-
mal reference path based on the improved A* algorithm intro-
duces a steering cost function, which makes the vehicle move
in the direction parallel to the lane, reducing the turning of the
path. On the other hand, the local obstacle avoidance princi-
ple is based on the improved APF algorithm, designing a safe
path by introducing braking distance and resolving the local
minimum problem by optimizing with the simulated annealing
algorithm considering steering constraint. The effectiveness of
the proposed algorithm is verified in the Matlab/Simulink and
Carsim joint simulation. In the road structure environment, the
obstacle avoidance algorithm can plan a safe path under the
premise of considering the movement of the surrounding ve-
hicles, while meeting the requirements of comfort and stability.

In the simulation, due to the error of the tracking controller,
there are certain fluctuations when the system tracks the desired
speed. In addition, this paper focuses on the obstacle avoidance
process of the autonomous vehicle in the traffic environment,
putting safety in a prior place, and the actual output is con-
trolled by the tracking module. In future work, we will compre-
hensively evaluate the balance between comfort and safety at
the planning level.
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