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SPECIAL SECTION

Influence of rotary flexibility of joints
on the statics and dynamics

of the arch structures
Magdalena ŁASECKA-PLURA ∗∗∗ , Zdzisław PAWLAK , and Martyna ŻAK-SAWIAK

Poznan University of Technology, Institute of Structural Analysis, ul. Piotrowo 5, 60-965 Poznań, Poland

Abstract. The paper presents arch structures modeled by finite elements in which the nodes can be flexibly connected. Two-node curved
elements with three degrees of freedom at each node were used. Exact shape functions were adopted to obtain stiffness and consistent mass
matrices but they were modified by introducing rotational flexibility in the boundary nodes. Calculations of statics and dynamics of arches with
different positions of flexible joints and different values of rotational stiffness of the joints were carried out.
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1. INTRODUCTION
With technical progress, the requirements for the span of the
structure increase for functional and utility reasons. Hence the
increasing use of arched structures, which are used in public
buildings, industrial constructions, bridge engineering, and un-
derground constructions.

Analytical solutions of arches require a solution of a sixth-
order differential equation. Different calculation models of arch
structures were adopted. The simplest model is the one in which
the effects of shear deformation and compressibility of the axis
are ignored, and in the case of dynamics, the influence of ro-
tational inertia is also neglected. In many cases, such a model,
also known as the Euler-Bernoulli arch, is sufficient. However,
for thick and shallow arches, it is necessary to extend the solu-
tion with the influence of shear deformation, axial extensibility,
and rotary inertia. It is the so-called Timoshenko arch. Solutions
for all combinations of the above cases can be found in [1, 2].

In the case of using the finite element method for analysis,
the simplest model is the approximation of the arch curvature
with straight elements [3]. However, this approach does not take
into account the coupling of differential equations in curved
beams and requires a division into a significant number of ele-
ments. This is eliminated by using curved elements that can ac-
curately model the geometry. Different functions of interpolat-
ing displacements are assumed. Fifth-order polynomials were
used in [4], cubic ones in [5], and three different polynomial in-
terpolating functions were used in [6]. Trigonometric functions
as interpolating functions were used in [3] and [7]. The exact
shape functions (see [7]) obtained in this way make it possi-
ble to obtain exact solutions in the nodes in the case of a static
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problem. The obtained finite elements are free from the effects
of shear and membrane locking.

Different types of arches (parabolic, sinusoidal and ellipti-
cal) are presented in [4]. The dynamic analysis of arches with
variable cross-sections was considered in [8,9]. Arches of an ar-
bitrary curve are very often analyzed by using the isogeometric
approach. This approach is presented in [10, 11].

In the literature, arch structures with different boundary con-
ditions are considered, also with flexible supports. The closed-
form solution to the dynamic problem of the circular arch is
presented in [12]. Flexible supports were also taken into ac-
count in [13], where the authors presented that flexible supports
reduce the frequency of natural vibrations. In [14], the authors
proved that the use of flexible supports significantly reduces the
damage to underground arch structures.

In this paper, the exact stiffness matrix and consistent mass
matrix for a curved element with rotational flexibility of nodes
are derived. A similar solution was shown in [15, 16], but for
straight elements. The starting point is the well-known solu-
tion for a curved element with fixed supports, while the flexible
supports are modeled as elastic springs. Nodal displacements
and rotations are selected as the primary unknowns, while dis-
placements and rotations at the element ends are eliminated.
According to the authors’ knowledge, such a solution has not
yet been presented for a curved element. Real structures are
usually modeled as supported on rigid or pinned supports. In
fact, most connections, including internal ones, have some lim-
ited flexibility. The solution presented by the authors allows for
the analysis of arch structures with flexible external and internal
joints.

The derived formulas made it possible to write a computa-
tional program, which was used to solve the problem of statics
and the eigenproblem of dynamics of arch structures with flex-
ible connections. Then, parametric studies were performed to
show the influence of flexibility joints on solutions.
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2. FORMULATION OF THE CURVED BEAM ELEMENT
WITH ROTATIONAL FLEXIBILITY OF NODES

2.1. Stiffness and mass matrices for curved beam element
A plane two-node curved finite element with six degrees of free-
dom is considered (Fig. 1) with the radius of curvature R, the
angle α , and the length of the element le (le = Rα). Exact shape
functions [7] are used, based on which an exact stiffness ma-
trix [7] and a consistent mass matrix [17] are obtained for the
element with non-flexible nodes. The matrix coefficients take
into account the influence of shear flexibility and compressibil-
ity of the arch. The stiffness and mass matrices and all the co-
efficients needed to compute them are given in Appendix A1.

Fig. 1. Curved finite element with flexible connections

The considered element is described by the following prop-
erties: E – Young modulus, G – Kirchhoff modulus, I – the
moment of inertia and A – area of cross-section. The effect of
shear and axial deformation is described by two dimensionless
parameters:

d =
EI

κGA
· 1

l2
e
=

2(1+ν)

κ

(
i
le

)2

, e =
EI
EA
· 1

l2
e
=

(
i
le

)2

,

(1)
where ν is the Poisson’s ratio, κ is the shear factor, and i is the
radius of gyration.

2.2. Introduction of flexible joints
The rotational flexibility of element nodes is represented by the
stiffnesses k0 and kl (Fig. 1). The considered element is con-
nected to the nodes by flexible rotational elements of infinite
stiffness and infinitesimal length. Displacements for an element
are marked with an asterisk, while displacements in supports
can be written as:

q3 = q∗3 +q3s , q6 = q∗6 +q6s (2)

for rotations, and

q1 = q∗1, q2 = q∗2, q4 = q∗4, q5 = q∗5 (3)

for tangential and radial displacements. q3S and q6S denote ro-
tations in flexible supports and can be expressed as follows:

q3s = Q∗3l2
e/k0 , q6s = Q∗6l2

e/kl , (4)

where Q∗3 and Q∗6 are the bending moments at the nodes of the
curved element.

The relationship between forces and displacements for
a curved element is written as:

Q∗ = Kq∗, (5)

where

Q∗ =
[
Q∗1 Q∗2 Q∗3 Q∗4 Q∗5 Q∗6

]T
,

Q∗3 = m1 = M1/le, Q∗6 = m2 = M2/le

is a vector of forces at the ends of the element,

q∗ =
[
q∗1 q∗2 q∗3 q∗4 q∗5 q∗6

]T
,

q∗3 = φ1 = ϕ1le , q∗6 = φ2 = ϕ2le

is a vector of displacements at the ends of the element and K is
the stiffness matrix given in Appendix A1.

Based on equation (5), the following relationship can be writ-
ten: [

Q∗3
Q∗6

]
=

EI
l3
e

[
k31 k32 k33 k34 k35 k36

k61 k62 k63 k64 k65 k66

]
q∗, (6)

where ki j are the elements of the stiffness matrix K.
After substituting equations (2) and (3) into (6) the following

formula is obtained:
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, (7)

where

KZ =

[
k31 k32 k33 k34 k35 k36

k61 k62 k63 k64 k65 k66

]
.
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After using equation (4) and performing some transformations,
the following expression is obtained:[

Q∗3
Q∗6

]
= A q, (8)

where

A =
EI
l3
e

B−1KZ , B =

1+
EI
le

k33
1
k0

EI
le

k36
1
kl

EI
le

k63
1
k0

1+
EI
le

k66
1
kl

 .
Then, it is possible to write matrix A in the following form:

A =
[
ai j
]

2×6 . (9)

Vector qS can be expressed as:

qs =



0
0
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0
0

q6s
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, (10)

and after substituting Q∗3 and Q∗6 calculated from equation (8)
into equation (10), it is possible to describe rotations in flexible
supports in the matrix form:

qs = D q, (11)

where

D =



0 0 0 0 0 0
0 0 0 0 0 0

d11 d12 d13 d14 d15 d16

0 0 0 0 0 0
0 0 0 0 0 0

d21 d22 d23 d24 d25 d26


,

d1i =
a1il2

e

k0
=

1
Ω

[
k3i
(
Kl + k66

)
− k36k6i

]
,

d2i =
a2il2

e

kl
=

1
Ω

[
k6i
(
K0 + k33

)
− k63k3i

]
, for i = 1, . . . ,6,

Ω = K0Kl + k33Kl + k66K0 + k33k66− k36k63 ,

K0 =
lek0

EI
, Kl =

lekl

EI
.

The displacement field for a curved beam with flexible nodes
can be approximated by the following functions:

w(x) = N(x)q∗ = N(x)(I−D)q, (12)

where N(x) is the set of the exact shape function for a curved
beam element fixed at both ends [7] and I is an identity matrix.

Then using the theory of minimum potential energy, the fol-
lowing stiffness matrix for the curved element with flexible
nodes can be obtained:

K = (I−D)T K(I−D)+DT S D, (13)

where

S =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 k0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 kl


.

Based on the previous derivation, a consistent mass matrix can
be calculated using the following formula:

M = (I−D)T M(I−D) , (14)

where M is mass matrix given in Appendix A1.
The static problem is formulated as follows:

K q = Q, (15)

where K is the stiffness matrix described by equation (13), q is
an unknown vector of displacements and Q is a vector of nodal
forces. In the case of dynamic problem, the eigenproblem is
analyzed for an undamped system:(

K−ω
2M
)

v = 0 (16)

and for damped system:

(L1− sL2)v = 0, (17)

where

L1 =

[
−K 0

0 M

]
, L2 =

[
C M
M 0

]
. (18)

K is the same as in equation (15) and M is the mass matrix
described by equation (14), v is an eigenvector, and ω is natural
frequency. In the case of damped systems, C is the damping
matrix described as C = a1K+ a2M, where a1 and a2 are the
coefficients of Rayleigh damping. The natural frequency and
nondimensional damping ratio can be calculated as:

ω = µ
2 +η

2, γ =−µ/ω, (19)

where µ = Re(s) and η = Im(s).

3. NUMERICAL EXAMPLES
For numerical analyses, a circular arch with a span B = 20 m
was selected (Fig. 2). Several arches of different heights H were
analyzed, each time adjusting the radius of curvature R so that
the arch span B was always the same.
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Fig. 2. Circular arch structures with span B supported in various ways:
a) clamped-clamped, b) flexible-flexible, c) pinned-pinned

In all analyses, a rectangular cross-section with dimensions
b×h = 0.4×0.6 m was used and it was assumed that the struc-
ture was made of C25/30 concrete, for which Young’s modulus
E = 31.0 GPa. The considered structures had elastic supports
at both ends, for which the values of the rotational stiffness co-
efficients were changed. The values of the rotational stiffness
coefficients were determined in relation to the bending stiff-
ness of the analyzed element EI. Therefore, when the stiffness
of the flexible supports tends to infinity, the obtained solution
corresponds to the clamped-clamped system, while when the
stiffness tends to zero, a solution for the pinned-pinned struc-
ture is obtained. The proposed approach was also used to ana-
lyze arches with internal connections, in which the variable was
elastic rotational stiffness.

3.1. Solution convergence analysis
First, the convergence of the solution obtained with the use of
curved elements was carried out and compared with the solution
obtained with the use of straight elements.

The solution convergence analysis was carried out for a cir-
cular arch with a height of H = 10 m and a span of B = 20 m,
in which various division into finite elements were used. Both
supports were assumed to be clamped C–C (k0 = kl = ∞), flex-
ible F–F (k0 = kl = 0.4EI) or pinned P–P (k0 = kl = 0).

The results of dynamic calculations were used for the tests,
i.e., the first three natural frequencies for systems supported in
different ways (Table 1). The results obtained for the arch di-

Table 1
Natural frequencies ωi [Hz] of arch structure for different numbers

of finite elements

Type of
supports

Mode
i

n = 4
Error
[%]

n = 8
Error
[%]

n = 64
Reference

1 4.2309 0.12 4.2267 0.02 4.2257

C–C 2 9.2793 0.65 9.2336 0.15 9.2198

3 17.7317 3.99 17.1371 0.50 17.0516

1 3.3021 0.08 3.3001 0.02 3.2996

F–F 2 7.8253 0.52 7.7929 0.11 7.7845

3 15.2528 3.16 14.8449 0.40 14.7853

1 2.1945 0.04 2.1939 0.01 2.1937

P–P 2 6.6992 0.42 6.6767 0.08 6.6713

3 13.7717 2.68 13.4601 0.35 13.4129

vided into 64 elements were adopted as the most accurate, i.e.,
the reference solution.

The relative error was calculated as the difference in the solu-
tions related to the reference solution. The use of a curved finite
element in the dynamic analysis of arch structures allows for
a significant reduction in the number of finite elements without
deteriorating the results. Even when the system is divided into 4
elements, the first natural frequencies differ from the reference
solution by less than one percent.

A similar analysis of the convergence was performed for the
arch discretized with straight finite elements. Also, in this case,
the first three natural frequencies were determined for the sys-
tems supported in different ways (Table 2).

Table 2
Natural frequencies ωi [Hz] of arch structure for different numbers

of finite elements n – straight finite beam element

Type of
supports

Mode
i

n = 4
Error
[%]

n = 10
Error
[%]

n = 50
Reference

1 4.5294 6.50 4.3023 1.16 4.2529

C–C 2 9.8736 5.91 9.4336 1.19 9.3222

3 23.1914 33.78 17.5650 1.33 17.3350

1 3.5954 8.49 3.3592 1.36 3.3141

F–F 2 8.7945 12.09 7.9920 1.87 7.8456

3 20.918 39.77 15.2590 1.96 14.966

1 2.5129 14.20 2.2471 2.12 2.2004

P–P 2 7.8109 16.37 6.8694 2.35 6.7119

3 19.1890 41.60 13.8610 2.28 13.5520

In the case of modeling the arch with straight elements, the
convergence of the solution is slower.
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3.2. System with a number of flexible joints
The proposed approach makes it possible to solve the static and
dynamic problems of arch structures with any number of flexi-
ble joints that can be freely distributed along the system (Fig. 3).

Fig. 3. Circular arch with four flexible joints

Table 3 compares the results of dynamic calculations, i.e., the
first three natural frequencies for the systems: without flexible
nodes (C–C), with two flexible joints in the supports (F–F) and
for the system with four flexible joints shown in Fig. 3. The
value of the rotational stiffness coefficient was the same in all
flexible joints, i.e., k = 0.4EI.

Table 3
Natural frequencies ωi [Hz] of arch structure with different numbers

of flexible joints

Mode i C–C F–F Four nodes

1 4.2267 3.3001 3.0262

2 9.2336 7.7929 7.7830

3 17.1371 14.8449 13.6697

The most visible change in the solution was achieved after
introducing a flexible joint to the arch structure (the difference
between solution ω1 for a structure with flexible supports and
the solution for an arch with rigid nodes is over 20%) while
increasing the number of flexible joints slightly changes the so-
lution.

4. PARAMETRIC STUDY AND DISCUSSION
4.1. Influence of axial and shear forces
The circular arch with a span of B = 20 m and a height of
H = 4 m was loaded in the middle of the span with a con-
centrated force of P = 10 kN (Fig. 2). The Kirchhoff modulus
is G = 11.654 GPa. Moreover, taking into account the length
of finite element le (division into 8 elements) and the cross-
section factor κ = 5/6, the coefficient expressing the influence
of shear forces d = 0.0062096 and the coefficient expressing the
influence of axial forces e = 0.0019454 were determined. Ta-
ble 4 shows the results, vertical displacements caused by a point
force, obtained for the arch structures depending on the type of
support, with (d 6= 0,e 6= 0) or without (d = 0,e = 0) taking into

account the influence of shear or axial forces. Dimensionless
displacement values were given in relation to the arch length,
i.e. δ = δ/L · 105, where δ is the vertical displacement in the
center of the arch and L is the length of the arch.

Table 4
Vertical dimensionless displacements δ in the center of the arch for

various supports

Type of
supports

d 6= 0
e 6= 0

d = 0
e 6= 0

d 6= 0
e = 0

d = 0
e = 0

SBE

C–C 0.9660 0.9373 0.7639 0.7344 0.9059

F–F 1.1487 1.1226 0.9805 0.9542 1.0669

P–P 1.2900 1.2648 1.1457 1.1205 1.1926

In addition to the results obtained with the use of curved fi-
nite elements, Table 4 also shows the results for an arch mod-
eled with straight beam elements (SBE). For each type of struc-
ture support, higher values of displacements were obtained af-
ter taking into account the influence of shear or axial forces in
the calculations. For the SBE model, the displacements are also
smaller than for a curved element in which all influences are
included. This suggests the necessity to use an approach that
takes into account these influences.

Then, the arches supported in various ways were subjected
to dynamic analysis. Table 5 presents the results, the first three
natural frequencies obtained with or without taking into account
the influence of shear or axial forces.

Table 5
Natural frequencies ωi of arch structures [Hz]

Type of
supports

Mode
i

d 6= 0,
e 6= 0

d = 0,
e 6= 0

d 6= 0,
e = 0

d = 0
e = 0

SBE

1 11.0519 11.1691 11.0577 11.1795 11.2118

C–C 2 19.9160 20.2265 20.8715 21.2688 20.4545

3 36.5374 36.5403 37.3457 38.3654 37.9407

1 8.6859 8.7401 8.6914 8.7481 8.7855

F–F 2 17.1742 17.3446 17.5776 17.7797 17.6028

3 32.2394 32.7299 32.1069 32.6837 32.9887

1 6.7922 6.8176 6.7966 6.8235 6.8665

P–P 2 15.6148 15.7341 15.8145 15.9512 15.9766

3 29.9394 30.3168 29.8120 30.2600 30.5839

Then the damped system is considered and in Table 6 the
nondimensional damping ratio for different supports is shown.
The Rayleigh coefficients are a1 = 0.0001 and a2 = 0.001.

Tables 5 and 6 show the effect of introducing the flexibility
of supports on the results.
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Table 6
Nondimensional damping ratio γi of arch structures

Type of
supports

Mode
i

d 6=0,
e 6=0

d =0,
e 6=0

d 6=0,
e =0

d =0
e =0

SBE

1 0.0382 0.0386 0.0382 0.0386 0.0387

C–C 2 0.0688 0.0699 0.0721 0.0735 0.0708

3 0.1263 0.1263 0.1291 0.1326 0.1339

1 0.0300 0.0302 0.0300 0.0302 0.0303

F–F 2 0.0593 0.0599 0.0607 0.0614 0.0609

3 0.1114 0.1131 0.1110 0.1129 0.1133

1 0.0235 0.0236 0.0235 0.0236 0.0237

P–P 2 0.0540 0.0544 0.0547 0.0551 0.0553

3 0.1035 0.1048 0.1030 0.1046 0.1059

4.2. The influence of rotational elasticity
This analysis covered arches in which only one support node
has a given rotational elasticity. The rotational stiffness coeffi-
cient k0 = β1 ·EI, where EI is the bending stiffness of the bar,
and β1 is the parameter, was gradually increased, starting from
zero. Figure 4 shows the selected results, vertical displacements
caused by a concentrated force, obtained for arch structures of
different heights H but the same span B. The results can be sum-
marized that, regardless of the height of the arch H, for a rota-
tional stiffness twice as high as the bending stiffness of the bar
element (k0 = 2 ·EI), the solutions correspond to the structure
with rigid supports.

Fig. 4. Vertical displacement δ [×10−4 m] as a function of the rota-
tional stiffness coefficient k0 = β1 ·EI for arches of different heights

A similar analysis, i.e., the influence of the arch height and
the rotational stiffness of the support node on the solution, was
performed for the dynamic problem. Figure 5 shows the dia-
gram of changes in the natural frequency ω1, for arches of dif-
ferent heights, as functions dependent on the rotational stiffness
coefficient of one support k0 = β1 ·EI.

Fig. 5. The first natural frequency ω1 depending on the coefficient of
rotational stiffness of the support k0 = β1 ·EI

For all analyzed arch heights H, when the rotational stiffness
of the node exceeds twice the bending stiffness of the element
(β1 = 2), the change in solution is relatively small and the struc-
ture can be considered as rigidly supported.

4.3. The position of the flexible joint
In this part, circular arches with constant height H = 10 m and
span B = 20 m were analyzed, in which there was only one
flexible joint, but its location in the structure was freely chosen.
The position of the joint with a given rotational elasticity was
determined by the angle α1, which was between the radius pass-
ing through the flexible node and the radius passing through the
support node (Fig. 6).

Fig. 6. Circular arch with one flexible joint

The value of the rotational stiffness coefficient k was grad-
ually increased until the change in the solution was relatively
small.

Figure 7 shows the results of static calculations, vertical dis-
placements caused by the vertical force, obtained for different
positions of the flexible node, i.e., different values of the an-
gle α1.

On the basis of the obtained results, it can be concluded that
when the flexible node is located at the angle α1 = 3π/8, the
value of the vertical displacement caused by the force applied
in the center of the arch is the same regardless of the value of
the rotational stiffness coefficient k. Figure 8 shows the results
of dynamic calculations, the values of the first natural frequency
ω1, obtained for different positions of the flexible node, for the
increasing value of the rotational stiffness coefficient k0.
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Fig. 7. Vertical displacement δ [×10−4 m] versus the rotational stiff-
ness coefficient k = β1 ·EI for different flexible node positions

Fig. 8. The first natural frequency ω1 versus the rotational stiffness
coefficient k = β1 ·EI for different elastic node positions

The results of dynamic calculations show that the value of
the first natural frequency is almost constant for the elastic joint
located at the top of the arch, for any value of the rotational
stiffness coefficient k.

5. CONCLUSIONS
The paper presents an analysis of arch structures that were
modeled with the use of curved finite elements. The proposed
method makes it possible to take into account the influence of
shear and axial forces, as well as to consider the influence of
rotational flexibility of joints on the static and dynamic parame-
ters of the considered structures. The presented approach allows
for the analysis of the structure in which there are flexible nodes
not only in the supports but also at any point along the consid-
ered system and their number can be arbitrary. Based on the
analyses performed, the following conclusions can be drawn.

Taking into account the influence of shear or axial force in
the static or dynamic analysis of the considered arches leads to
a slight increase in the value of the displacements and natural
frequencies.

Regardless of the arch height, for the rotational stiffness co-
efficient of a flexible joint at least twice as much as the bending

stiffness of the structure bar itself, solutions corresponding to
structures with rigid supports are obtained.

The conducted analyses have shown that for the considered
arches there are certain positions of the elastic joint for which
the static or dynamic results are almost constant, regardless of
the value of the joint rotational stiffness coefficient.

APPENDIX 1
The stiffness matrix for the circular curved element is as fol-
lows:

K =
EI
l3
e

[
ki j
]

6×6 , (A1)

where

k11 = α
4 (D′+D′′c

)
, k12 = α

4D′′s,

k13 =−α
3 (D′+D′′c

)
+

2α2s
D1

, k14 =−α
4 (D′c+D′′

)
,

k15 = α
4D′s, k16 = α

3 (D′c+D′′
)
− 2α2s

D1
,

k22 = α
4 (D′−D′′c

)
, k23 =−α

3D′′s+
2α2(1− c)

D1
,

k24 =−k15 , k25 =−α
4 (D′c−D′′

)
,

k26 = α
3D′s− 2α2(1− c)

D1
,

k26 = α
2 (D′+D′′c

)
+1+

4(1− c−αs)
D1

,

k34 = k16 , k35 =−k26 ,

k36 =−α
2 (D′c+D′′

)
−1− 4(1− c−αs)

D1
,

k44 = k11 , k45 =−k12 , k46 = k13 ,

k55 = k22 , k56 =−k23 , k66 = k33 ,

where

s = sinα, s0 = sinα0, c = cosα, c0 = cosα0 ,

d1 = α
2d, e1 = α

2e, α = 2α0 ,

D1 = α(α + sinα)(1+d1 + e1)

− 2 [2(1− cosα)+αd1 sinα] ,

D2 = α(α + sinα)(1+d1 + e1)−2α sinα (1+ e1) ,

D′ =
1

D1
+

1
D2

, D′′ =
1

D1
− 1

D2
.

The consistent mass matrix for the circular curved element is
the following:

M = ρR [mi j]6×6 , (A2)

where

mi j = m1
i j +m2

i j +
i2

l2
e

m3
i j .
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Components m1
i j and m2

i j can be determined by the following
formulas:

mk
i j = 2α0Ck

0iC
k
0 j +2s0

(
Ck

0iC
k
3 j +Ck

3iC
k
0 j

)
+ 2(s0−α0c0)

(
Ck

0iC
k
4 j +Ck

4iC
k
0 j +Ck

1iC
k
2 j +Ck

2iC
k
1 j

)
+

2
3

α
3
0Ck

1iC
k
1 j +(α0− s0c0)Ck

2iC
k
2 j +(α0 + s0c0)Ck

3iC
k
3 j

+ 2
(
α

2
0 s0 +2α0c0−2s0

)(
Ck

1iC
k
5 j +Ck

5iC
k
1 j

)
+

[
α0

(
1
2
− c2

0

)
+

1
2

s0c0

]
·
(

Ck
2iC

k
5 j +Ck

5iC
k
2 j +Ck

3iC
k
4 j +Ck

4iC
k
3 j

)
+

[
1
2

α
3
0 −α

2
0 s0c0 +α0

(
1
2
− c2

0

)
+

1
2

s0c0

]
Ck

4iC
k
4 j

+

[
1
3

α
3
0 +α

2
0 s0c0−α0

(
1
2
− c2

0

)
− 1

2
s0c0

]
Ck

5iC
k
5 j ,

where:

C1
01 =C1

04 =−
αs
D2

, C1
11 =−C1

14 =−
2s
D1

,

C1
21 =−C1

24 =−
A2αc0

2
(
D′c+D′′

)
+

2c0

D1
(α + s)− A1α2s0

2D2
,

C1
31 =C1

34 =
A2αs0

2
(
D′c+D′′

)
+

2αs0

D2
+

A1α2c0

2D1
− 2s0s

D1
,

C1
41 =C1

44 =
A1αs0

D2
, C1

51 =−C1
54 =−

A1αc0

D1
,

C2
01 =−C2

04 =−
2s
D1

, C2
11 =C2

14 = 0,

C2
21 =C2

24 =−
A1α2c0

2D1
− D′A2c0αs

2
+

2s0s
D1

,

C2
31 =−C2

34 =−
A1α2s0

2D2
− D′A2s0αs

2
+

2c0s
D1

,

C2
41 =−C2

44 =
A1αc0

D1
, C2

51 =C2
54 =

A1αs0

D2
,

C3
01 =C3

04 =−
α2s
D2

, C3
11 =−C3

14 =−
2αs
D1

,

C3
21 =−C3

24 =
2α2c0

D1
, C3

31 =C3
34 =

2α2s0

D2
,

C3
41 =C3

44 = 0, C3
51 =−C3

54 = 0,

C1
02 =−C1

05 =
α(1+ c)

D2
, C1

12 =C1
15 =−

2(1− c)
D1

,

C1
22 =C1

25 =−
D′A2c0αs

2
+

2
D1

[αs0 +(1− c)c0]+
A1α2c0

2D2
,

C1
32 =−C1

35 =
D′A2s0αs

2
−2
[
(1− c)s0

D1
+

αc0

D2

]
+

A1α2s0

2D1
,

C1
42 =−C1

45 =−
A1αc0

D2
, C1

52 =C1
55 =−

A1αs0

D1
,

C2
02 =C2

05 =−
2(1− c)

D1
, C2

12 =−C2
15 = 0,

C2
22 =−C2

25 =
A2αc0

2
(
D′c−D′′

)
− A1α2s0

2D1
+

2(1− c)s0

D1
,

C2
32 =C2

35 =
A1α2c0

2D2
− A2αs0

2
(
D′c−D′′

)
+

2(1− c)c0

D1
,

C2
42 =C2

45 =
A1αs0

D1
, C2

52 =−C2
55 =−

A1αc0

D2
,

C3
02 =−C3

05 =
α2(1+ c)

D2
, C3

12 =C3
15 =−

2α(1− c)
D1

,

C3
22 =C3

25 =
2α2s0

D1
, C3

32 =−C3
35 =−

2α2c0

D2
,

C3
42 =−C3

45 = 0, C3
52 =C3

55 = 0,

C1
03 =C1

06 =
s

D2
+

1
2α

,

C1
13 =−C1

16 =
2

α2

[
αs
D1
− 1

2
− 2(1− c)

D1

]
,

C1
23 =−C1

26 =
A2c0

2

(
D′c+D′′− 2s

αD1

)
+

2
D1

(
2
α

s0− c0

)
+

A1αs0

2D2
+

c0

α2

(
4−4c−2αs

D1
+1
)
,

C1
33 =C1

36 =−
A2s0

2

(
D′c+D′′− 2s

αD1

)
− A1

2D1
(αc0−2s0)−

2s0

D2
− s0

α2

(
4−4c−2αs

D1
+1
)
,

C1
43 =C1

46 =−
A1s0

D2
, C1

53 =−C1
56 =

A1 (αc0−2s0)

αD1
,

C2
03 =−C2

06 =−
1

α2

(
4−4c−2αs

D1
+1
)
,

C2
13 =C2

16 = 0,

C2
23 =C2

26 =
A2c0

2

(
D′s− 2(1− c)

αD1

)
+

A1

D1

(
αc0

2
− s0

)
+

s0

α2

(
4−4c−2αs

D1
+1
)
,

C2
33 =−C2

36 =−
A2s0

2

(
D′s− 2(1− c)

αD1

)
+

A1αs0

2D2
+

c0

α2

(
4−4c−2αs

D1
+1
)
,

C2
43 =−C2

46 =−
A1 (αc0−2s0)

αD1
,

C2
53 =C2

56 =−
A1s0

D2
, C3

03 =C3
06 =

αs
D2

+
1
2
,

C3
13 =−C3

16 =−
1
α

(
4−4c−2αs

D1
+1
)
,

C3
23 =−C3

26 =
2(2s0−αc0)

D1
, C3

33 =C3
36 =−

2αs0

D2
,

C3
43 =C3

46 = 0, C3
53 =−C3

56 = 0.
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