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 In recent years, type-II superlattice-based devices have completed the offer of the electronic 

industry in many areas of applications. Photodetection is one of them, especially in the mid-

infrared wavelength range. It is due to the unique feature of a superlattice material, which is 

a tuneable bandgap. It is also believed that the dark current of superlattice-based 

photodetectors is strongly suppressed due to the suppression of the band-to-band tunnelling 

current in a superlattice material. This argument relies, however, on a semi-classical 

approach that treats superlattice as a bulk material with effective parameters extracted from 

the kp analysis. In the paper, a superlattice device is analysed on a quantum level: the non-

equilibrium Green’s function method is applied to the two-band Hamiltonian of the 

InAs/GaSb superlattice p-i-n diode. The analysis concentrates on the band-to-band 

tunnelling with the aim to validate the correctness of a semi-classical description of the 

phenomenon. The results of calculations reveal that in a superlattice diode, the inter-band 

tunnelling occurs only for certain values of energy and in-plane momentum, for which 

electronic and hole sub-bands cross. The transitions occurring for vanishing in-plane 

momentum produce resonances in the current-voltage characteristics – the feature which was 

reported in a few experimental observations. This scenario is quite different from that 

occurring in bulk materials, where there is a range of energy-momentum pairs for which the 

band-to-band tunnelling takes place, and so current-voltage characteristics are free from any 

resonances. However, simulations show that, while not justified for a detailed analysis, the 

semi-classical description can be applied to superlattice-based devices for an ‘order of 

magnitude’ estimation of the band-to-band tunnelling current. 
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1. Introduction 

Optoelectronic devices using a broken-gap type-II 

superlattice (T2SL) attract an immense and continuously 

growing interest. It concerns mainly devices operating in 

mid- and long-infrared wavelength and is due to the unique 

feature offered by a T2SL material, i.e., the possibility of 

flexible bandgap engineering in the respectiveenergy 

range. Additional advantages include excellent wafer 

uniformity (important for pixel matrices), high absorption 

coefficient, reduced Auger-type recombination, and 

reduced inter-band tunnelling current [1]. The arguments 

behind these state-ments are both theoretical and 

experimental. The former ones are usually based on the 

semi-classical understanding of phenomena occurring in 

bulk materials. However, it is not always justified, 

especially for the phenomena of a purely quantum nature; 

Zener tunnelling is the first to mention, however, doubts 

may concern other basic components of the dark current 

resulting from diffusion, generation-recombination, and trap-

assisted tunnelling (TAT) mechanisms because, classically, 

transport is forbidden in the barrier layers that form the 

superlattice (SL).  

In this paper, the focus is on the inter-band tunnelling 

current, which in the devices devoted to mid-infrared (mid-

IR) applications is mostly (due to the materials used for 

their growth) a direct band-to-band (btb) tunnelling current. 

The belief that it is significantly reducted in an SL material 

relies on a textbook description of this process [2] which 

relates the btb transmission coefficient: 
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at energy E, and in-plane wavevector k, to bandgap energy 

Eg, electric field F, electronic charge e, and reduced Planck 

constant ℏ. Apparently, equation (1) predicts a decrease of 

the transmission coefficient with an increase of the reduced 

mass, mr. This mass is related to the effective masses of 

electrons and holes generated in the inter-band transition. 

The minibands formed in the SL material are much 

narrower than the bands in bulk materials, so the effective 

masses of the carriers travelling in the minibands are much 

larger. Therefore, tunnelling between the minibands, which 

depends exponentially on the parameter mr, is supposed to 

be significantly reduced in SL materials [3–5]. The first 

step to assess this conjecture is to verify whether the semi-

classical description applies to this quantum phenomenon. 

It can be done by comparing the results of semi-classical 

predictions and quantum analyses of electronic transport. 

As for the latter, the method used for this purpose should 

not only integrate coherent and incoherent processes but 

also could be effectively applied to real structures. One of 

few is the non-equilibrium Green’s function (NEGF) 

formalism implemented in numerical simulations [6]. In 

the paper, this method has been used to answer the question 

raised above.  

The NEGF method developed in the 1960s [7, 8] has 

only recently been used to analyse and/or model real 

electronic devices. It became possible (and necessary) due 

to (i) adaptation of the complex formalism into ‘easy to 

implement’ equations [9], (ii) intense growth of 

computational resources and development of numerical 

algorithms, both enabling the efficient use of the method, 

(iii) development of new devices whose operation relies on 

quantum phenomena. Consequently, in recent years, the 

NEGF method has been used for studying electronic 

transport phenomena in resonant tunnelling diodes [10], 

field effect [11] and tunnelling [12] transistors, carbon 

nanotube devices [13], light-emitting diodes [14–16], 

photodetectors [17–19], quantum-well solar cells [20–22], 

quantum [23–26] and inter-band [27] cascade lasers and, 

eventually, SL-based devices [28–31].  

The inter-band tunnelling was accounted for in the 

number of NEGF-involved calculations [12, 29, 32], with 

only one devoted to the SL-based device [29]. The lack of 

more works is strongly influenced by the complexity of the 

method and a huge numerical load connected with this type 

of calculations. Therefore, similarly to many others 

[14, 20, 31, 33, 34], in the following sections of the paper, 

a p-i-n T2SL diode is modelled with a two-band 

Hamiltonian – the simplest that can account for inter-band 

tunnelling. The results of such calculations could shed 

some light on the concept of approximation, in which SL 

material is replaced by an equivalent bulk material. 

However, the conjecture about a significant reduction of 

the btb tunnelling current in SL devices can hardly be 

verified with this model.  

This hypothesis was formulated for the SL devices, in 

which the tunnelling transition occurs between the first 

conduction (C1) and the first heavy-hole (HH1) miniband. 

Unfortunately, the HH1 band is not accounted for in a two-

band model. In Fig. 1, the dispersion relations calculated 

for 4-band and 2-band kp Hamiltonians are compared. The 

former was calculated for a typical SL device devoted to 

mid-IR applications, which poses a bandgap of  0.2 eV. In 

the 2-band model, a similar value of the bandgap between 

first conduction and first hole (H1) minibands can be 

obtained for much wider layers; the 6/6 nm SL period was 

assumed in order to fit the outcome from the 2-band model 

to a bandgap of 3.2/3.2 nm SL calculated with a 4-band 

model.   

When studying btb tunnelling transitions, attention 

should be paid on the imaginary branch of dispersion; the 

tunnelling current exponentially depends on the area of the 

region enclosed by an imaginary branch connecting the real 

band extremes, i.e., the action integrals [36, 37]. As can be 

seen, this area is smaller for the 2-band model, so its use 

would provide overestimated btb tunnelling currents. It can 

be also seen that, for the 4-band case, the imaginary branch 

connecting C1-H1 extremes is determined not only by  

HH1 and C1 bands but also by the first light-hole (LH1) 

miniband. Therefore, to verify the hypothesis of  

a significant reduction of btb tunnelling current in SL 

devices, a multiband (at least 4-band) Hamiltonian would 

be more appropriate, which is left for future investigations. 

2. Model and method 

The device is modelled with the two-band Hamiltonian 

[38, 39] 
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in which the band edge energies are corrected for the in-

plane kinetic energy, i.e., Ec,(z, k) = Ec,(z)±ℏ2k2/2m||c,, 

where k = k|| is the in-plane momentum modulus, and z is 

 

Fig. 1. Dispersion relation (energy E vs. Bloch wavevector q) in 

the growth direction of 3.2/3.2 nm InAs/GaSb SL 

calculated using a 4-band k·p Hamiltonian with 

parameters taken from Ref. 35 (a), 6/6 nm InAs/GaSb SL 

calculated using the 2-band Hamiltonian of (1) with 

parameter Ep = 19 eV adjusted such as to keep the same 

values of electron effective masses (b): me = 0.022/0.042 

for InAs/GaSb, in both models. Filled areas show the 

integral of action, which determines the btb tunnelling 

current in both models 
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the growth direction. The coupling of bands is described by 

the value of the Kane parameter, Ep = 19 eV, identical for 

both materials. Calculations were made for a p-i-n diode 

made of 9 × (6 nm-InAs/6 nm-GaSb) SL periods. As 

already mentioned, the widths of SL layers were adjusted 

to match up the resulting C1-H1 gap with the typical 

bandgaps of mid-IR SL-based devices. It is, however, 

important to point out that the actual bandgap of 6/6 nm 

InAs/GaSb SL is close to the estimate provided by the 4-

band kp model, Eg = EC1-HH1  47 meV.  

The SL was terminated with bulk n-InAs and p-GaSb 

materials, which extend to ± infinity. Attaching such 

‘leads’ to the structure is necessary as electronic transport 

is possible only in open quantum system [6]. In order to 

reproduce the operating conditions of the absorber, the 

leads and the parts of the SL region, adjacent to them, were 

doped to NA = ND = 1∙1018 cm−3. The band diagram of the 

simulated device is shown in Fig. 2. 

The equations of the NEGF formalism can be written in 

the matrix form [6] 

 

†
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useful for numerical solutions in real space. In (3), I is the 

unity matrix, † is the Hermitian operator, and Ʃ’s and G’s 

are self-energy and the Green’s function (GF) matrices, 

respectively. They have the structure imposed by the 

structure of the Hamiltonian matrix 
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The size of the matrices is determined by the size of a 

device Hamiltonian, i.e., H = HD, because in the NEGF 

formalism the interaction with semi-infinite leads can be 

accounted for by smart self-energies lead added to the 

device Hamiltonian [6]. In the authors’ approach, these 

self-energies are the single-value complex numbers, which 

enter the first and last diagonal element of cc [40]. On the 

contrary, scatt is a full matrix. It is the sum of phon and IR 

– the matrices related to scattering processes; namely, the 

scattering caused by phonons, both optical and acoustic, 

and the scattering caused by the interface roughness (IR). 

The formulations for the elements of the self-energy 

matrices phon, IR were adapted from Ref. 9. It should be 

noted that phonon scattering was not limited to the intra-

band process, but also accounts for inter-band transitions; 

however, only when bands are separated by less than LO-

phonon energy, ELO = 30 meV. Other inter-band processes, 

like Shockley-Read-Hall, Auger, and radiative 

recombination were not included in the calculations.  

The NEGF equations were solved self-consistently with 

the Poisson’s equation. Establishing the latter got into some 

problems as, in a T2SL structure, free carriers above/below 

the band edge cannot be always considered as carrying 

negative/positive electric charge. This issue was solved by 

defining the virtual band edge localized (in E-z space) in 

the middle between H1 and C1 minibands. 

The band diagram in Fig. 2 is imposed onto the built-in 

potential, which was evaluated for the unbiased device. The 

observed band bending (resulting from the doping strategy) 

made the whole-contact terminations used in the model 

carrier-selective (p/n-type lead may only feed H1/C1 

minibands), which is crucial for the photovoltaic operation 

[41]. This functionality makes these terminations a reason-

able model of the contact region in a real device. 

It follows from (2) and (3) that the GF matrices are 

functions of two parameters, i.e., the total energy E and the 

in-plane momentum modulus k; G = G(E, k). The DOS, 

densities of electrons (DOE), and currents, which are 

related to the elements of G’s [20, 34] are then the energy-

momentum-resolved quantities. For example, in Fig. 2, the 

local DOS at k = 0 is shown as a function of the total energy 

E. It is clear that in the central part of the device, the built-

in field breaks the minibands into the ladder of the localised 

WS states [42]. It can be also observed that the built-in field 

makes the H1 and C1 minibands cross, which is necessary 

for the btb tunnelling. This situation resembles well the 

situation in real devices (with a much lower built-in field), 

in which Zener tunnelling is likely to occur under a large 

reverse bias.  

3. Results 

3.1. Inter-band quantum tunnelling 

As demonstrated in Fig. 2, at the sufficiently high 

electric field F, the minibands break into WS states. They 

act as resonant centres for the btb tunnelling process; each 

time the WS state in the conduction band aligns 

energetically with the WS state in the valence band, the 

 

Fig. 2. Band diagram of the p-i-n SL device imposed onto the 

built-in potential. Doped regions are textured. The 2D 

colour map illustrates the local density of states for the 

vanishing in-plane momentum, k = 0. Short horizontal 

scars in the map emerge at energies of the Wannier-

Stark (WS) states. Their spatial extend corresponds to 

the lengths of the scars, while their colour intensity to 

the densities of states magnitude. Dashed line is drawn 

at the energy of one of the WS states. The attached solid 

line shows DOS at this energy.  
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tunnelling current is enhanced. The effect was observed as 

oscillations in the current-voltage characteristics in devices 

made of high-quality materials, in which defect-assisted 

tunnelling did not hide the direct btb tunnelling current 

[43–47]. The authors’ simulations presented in Fig. 3 

confirm the oscillatory structure of the I-V curve.  

The maxima of the current coincide with the resonance 

condition 

 
1

2
geF m d E

 
+ = 

 
 () 

where d is the SL period, Eg is the C1-H1 bandgap, and 

m + 1/2 is the number of SL periods spanned by the 

tunnelling process. Number m can be identified not only 

from the position of current maxima in Fig. 3, but also 

directly from the spatially resolved current spectrum like 

that presented in Fig. 4(c).  

Fixing the position (z) and limiting the integration to a 

certain energy window, individual btb transitions can be 

studied. The data series labelled m = 2 and m = 3 in Fig. 3 

correspond to the transitions between the WS states, which 

are separated by m + 1/2 lattice periods. They are observed 

in different ranges of the electric field. The z-resolved 

current spectrum in Fig. 4(c) was calculated for a field of 

81 kV/cm, which maximizes the current for m = 2. The 

maxima of individual btb transitions occur when the WS 

states in conduction and valence bands align for the 

vanishing in-plane momentum. In this case, the barriers for 

the tunnelling process are the lowest. As E(k) dispersions 

for the H1 and C1 minibands have opposite curvatures, the 

alignment of the states may also take place for non-zero k-

values. In this case, the barriers for the tunnelling process 

increase by the sum of the in-plane energies 

ℏ2k2/2m|| + ℏ2k2/2m||c, which makes the transmission 

coefficient decrease exponentially with k2 increasing. 

Consequently, the right-hand slope of the current spectrum 

for an individual transition decreases exponentially. For the 

same reason, transitions at higher k, e.g., at k2  0.06 nm−2 

and 0.12 nm−2, are invisible in the momentum-resolved 

current density spectrum in Fig. 4(d). This scenario applies 

only to fields larger than the field that maximizes the inter-

band current (makes the WS states align for k = 0), as only 

in this case the WS sub-bands may cross. For lower fields 

(voltages), the sub-bands do not cross for any (real) k, so a 

direct btb transition is impossible. The phonon-assisted 

tunnelling is still possible, provided that the gap between 

the WS sub-bands is less than the LO-phonon energy. This 

effect tempers the left-hand cut-off of the current spectrum 

of an individual transition. All these issues are illustrated in 

Figs. 3 and 4.  

3.2. Virtual material approximation  

 In simplified drift-diffusion (DD) approaches, the SL 

material is often replaced with some equivalent (bulk) 

material that has parameters derived from SL properties 

[48–51]. Namely, its bandgap is defined as the energy 

difference between the lower edge of miniband C1 and the 

 

Fig. 3. Current-voltage (I-V) characteristics calculated with the 

NEGF method for the reverse-biased T2SL p-i-n diode 

(lines+symbols). Arrows indicate the position of 

resonances, calculated with (7) for m = 2 and m = 3. Data 

series correspond to: circles – total current, squares – 

individual btb transition between WS states. Line with 

no symbols depicts I-V characteristics calculated with the 

Wentzel-Kramers-Brillouin (WKB) method for the 

virtual bulk material with effective parameters: 

Eg = 0.17, mc = mC1 = 0.026, m = mH1 = 0.0173. 

 

 

Fig. 4. Band diagram and DOS for the vanishing in-plane momentum k = 0, for the device reverse-biased to U = −0.235 V  (a). 

Spatially-averaged DOS as the function of k2; brighter lines show the hole and electron sub-bands formed by the WS states (b). 

The z-resolved energetic spectrum of the total current density (c). Momentum-energy-resolved current density at z = 63 nm 

(device centre) (d); current flows at k for which WS sub-bands of electrons and holes in (b) cross; transitions for subbands 

crossing at large k-values are invisible because respective currents are much lower (due to higher barriers). 
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upper edge of miniband H1, while the effective masses are 

calculated from the curvature of the dispersion relation in 

the minibands as mc/ = mC1/H1 = ℏ2/[2E(q)/q2|q = 0]. For 

the cosine dispersion relation, E(q) = ½W[1 − cos(qd)], 

valid approximately for the minibands (in the growth 

direction), the masses can be further related to miniband 

widths, WC1/H1. Namely, mC1/H1 = 2ℏ2/(d2WC1/H1).  

For the SL under consideration, the values of ‘virtual’ 

material parameters, Eg = 0.17 eV and mc/ = 0.026/0.0173, 

were evaluated from the simulation performed for the 

conditions that flatten the minibands so that their widths 

can be easily read out (see Fig. 5). This can be achieved, 

e.g., by dismissing the need of self-consistency with the 

Poisson’s equation.  

The btb tunnelling current can be calculated as [36] 

2

2
[ ( ) ( )] ( , )

(2 )
BTB L R

e d k
J dE f E f E T E k

 
= −   () 

where fL,R are the Fermi factors in the leads, and the 

integration is limited to the range of energies, for which the 

virtual bands cross. Equation (1) for the transmission 

coefficient is valid only for the constant electrical field. 

When the field is non-uniform, the coefficient T can be 

calculated in the WKB approximation from the action 

integral [2, 36]  
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where z1, z2 are the classical turning points, and i is the 

solution of the eigenvalue problem in the forbidden gap. 

For the band structures, in which the electrons and holes 

have different effective masses (the case here), the simple 

two-band Hamiltonian of (2) may not be sufficient. In this 

case, the integration over the complex band needs to be 

divided into two elliptic branches [37] 

 
2 2

1 1

1 2

q

q
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z z z
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which join in the branch point zq. It is defined in such a way 

that, 

               ( , ) c
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.                (11) 

For electrons travelling toward a negative direction (the 

case here – see Fig. 2)  

  
1 0

1
2 ( )[1 ( ) / (2 2 )],c c c g qm m E E E E E E = − − − −   (12) 

       
2 0

1
2 ( )[1 ( ) / (2 )],qm m E E E E E   = − − −       (13) 

where both band edges, Ec and E, are the functions of 

position z and momentum modulus k. The results of these 

calculations have been included in Fig. 3. In general, the 

WKB approximation agrees well with quantum 

calculations in the sense that the differences are within an 

order of magnitude. As expected, there are no features on 

the I-V curve because the WKB approximation assumes 

tunnelling between the continuous domains of electronic 

states whereas, as shown in Fig. 4(d), in a superlattice, the 

btb transitions occur only at certain points of the E-k space. 

4. Conclusions 

Theoretical issues related to electrical transport in T2SL 

devices in many aspects need to be solved with the use of 

quantum methods. One of them is the inter-band tunnelling 

because, in general, the DD approach cannot account for 

this quantum phenomenon. The analysis made by means of 

the NEGF method performed in this paper reveals that a 

direct btb tunnelling in T2SL devices is very different from 

that in bulk devices. The difference mainly concerns the 

number of states, available for the tunnelling event. Their 

population is described by the overlap of DOSs on both 

sides of the tunnelling transition. In bulk devices, there are 

plenty of such states; they fill the whole range of energies 

in which the bands on the opposite side of the junction 

cross. In an SL material, there are few of such states; their 

number equals the number of electronic WS sub-bands on 

the n-side of the junction that cross hole-WS sub-bands on 

the opposite p-side of the junction (see Fig. 4). Due to the 

above difference, semi-classical approximations usually 

employed to estimate the btb tunnelling current in the bulk 

junction, for SL devices, can only be used for an ‘order of 

magnitude’ approximation.  

To put the work in a proper context, one needs to 

mention that electronic transport in SL-based devices, used 

in mid-IR applications, can be also influenced by inter-

band currents other than direct btb tunnelling. Of these, the 

trap-assisted tunnelling is the most important. In particular, 

this current may dominate over btb current in the SL 

devices doped below 1∙1017 cm−3 [48]. So, the oscillations 

in the current-voltage characteristics predicted by the 

analyses performed in this paper can be observed only in 

the devices made of high-quality materials, in which the 

trap-mediated tunnelling components are lower than the 

direct btb component [43–47]. 

 

Fig. 5. Band diagram of the p-i-n SL without built-in 

potential. The 2D colour map depicts the local DOS 

for vanishing in-plane momentum, k = 0. The widths 

of the minibands: WC1 = 0.04 eV, WH1 = 0.06 eV and 

bandgap EC1-H1 = 0.17 eV have been read out from 

this plot. 
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