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Abstract. The paper concerns steel domes with regard to the special structures named tensegrity. Tensegrities are characterized by the occur-
rence of self-stress states. Some of them are also characterized by the presence of infinitesimal mechanisms. The aim of this paper is to prove
that only tensegrity domes with mechanisms are sensitive to the change of the level of initial prestress. Two tensegrity domes are considered. In
addition, a standard single-layer dome is taken into account for comparison. The analysis is carried out in two stages. Firstly, the presence of the
characteristic tensegrity features is examined (qualitative analysis). Next, the behavior under static external loads is studied (quantitative analy-
sis). In particular, the influence of the initial prestress level on displacements, effort, and stiffness of the structure is analyzed. To evaluate this
behavior, a geometrically non-linear model is used. The model is implemented in an original program written in the Mathematica environment.
The analysis demonstrates that for a dome with mechanisms, the adjustment of pre-stressing forces influences the static properties. It has been
found that the stiffness depends not only on the geometry and properties of the material but also on the initial prestress level and external load.
In the case of the non-existence of mechanisms, structures are insensitive to the initial prestress level.

Key words: tensegrity dome; self-stress state; infinitesimal mechanism; geometrical non-linear analysis.

1. INTRODUCTION
Domes are one of the oldest covers used in civil engineering.
These structures have been known since 27 BCE, i.e., since
the Romans used stone blows to cover their palaces. In mod-
ern times, concrete or steel is used to build domes. The most
popular ones are steel domes, which are lighter than other con-
ventional forms. This kind of structure is the best solution for
long-span roofs. Steel domes can be divided into standard (tra-
ditional) and non-standard ones.

The standard domes are built with rods assembled in single-
layer or double-layer grids. There are also ribbed domes. De-
pending on the arrangement of the rods, the structures can be
divided into several groups (dome patterns), i.e., Kiewit domes,
Lamella domes, Schwedler domes, and others. The research on
standard steel domes concerns increasing the load capacity of
the structure of the load-bearing capacity of the structure [1]
and methods of taking into account the impact of non-uniform
loads [2–6] or imperfections [7–9]. Most of the research focuses
on optimization design [10, 11], stability analysis [12, 13], and
reliability analysis [14, 15].

The non-standard solutions are cable domes, which are struc-
turally effective in long-span roofs. There are special cable
structures named tensegrity. Tensegrity is composed of com-
pressed elements (struts or rods) separated from each other and
floating inside of the continuous net of tensed elements (ca-
bles). Although these systems are rod-like structures, some spe-
cific mechanical and mathematical properties distinguish them
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from conventional cable domes. The components are in a self-
equilibrated system of internal forces (self-stress state), which
means that there is an equilibrium stress state among struts
and cables under zero external loads. Self-stress states stabi-
lize infinitesimal mechanisms, the occurrence of which is an-
other immanent feature of tensegrity structures. In the absence
of self-stress, tensegrity structures are geometrically variable.
Stabilization occurs only after introducing the initial stresses.
The first tensegrity dome was proposed and patented in 1988
by Geiger [16]. This type of roof has low-profile configura-
tions that reduce wind lift and uneven snow settling, and use
less material to cover the roof. One of the main advantages of
this structure is that its weight per square meter does not change
with increasing span. This solution was used on the roof of the
Olympic Gymnastics Hall in Seoul. The Seoul gymnastics sta-
dium dome was 118 m in diameter, and 15 m high. After the
appearance of the Geiger dome, many researchers presented
their ideas of cable structures, i.e., Wang [17], Rębielak [18],
Kawaguchi [19], and Levy [20, 21]. Levy’s idea was applied to
the roof structure of Georgia Dome, the Atlanta Stadium in the
USA. It is the largest dome in the world.

The most dominant subject in the literature, starting from the
beginning of the idea of tensegrity to the present day, is the
search for the geometrical configuration (the form-finding) of
tensegrity structures. In recent years, the form-finding of cable
domes was investigated by many authors as well [22–24]. Pop-
ular areas of research on tensegrity domes include structure op-
timization [25, 26] and the investigation of static and dynamic
properties [27–29]. Nevertheless, there is a gap in the paramet-
ric analysis of tensegrity domes. This analysis provides the de-
termination of the static or dynamic parameters as the function
of the prestress forces. It is a very important aspect due to the
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possibility of controlling the stiffness of tensegrity structures by
modifying the level of self-stress state [29–31].

This paper focuses on the complete static analysis of tenseg-
rity domes. This approach contains a qualitative and quantita-
tive assessment. There is no such complete examination in the
literature known to the authors. Most articles only focus on one
of these two analyses. This article examines the behavior of two
various tensegrity domes, i.e., the Geiger dome and the Levy
dome. The choice of these two structures is justified as they
are often selected for the analysis of cable domes. In the years
1990 – 2022, according to Google Scholar, the appearance of
the Geiger dome in different articles counts more than 10’000
and more than 18’000 of Levy’s dome. However, the behavior
of these domes has never been compared before. These struc-
tures vary not only in geometry. The most important difference
is the presence or absence of infinitesimal mechanisms. In the
literature, structures with and without mechanisms are referred
to as tensegrities [32] but their behavior is distinct. To prove
this, static parametric analysis was performed and the behavior
of domes under external load is studied. Symmetrical and asym-
metrical loads are taken into account. In particular, the influence
of initial prestress level on displacements, effort and stiffness of
the structures are analyzed. To measure the changes in rigidity,
a dimensionless parameter, the so-called global stiffness param-
eter (GSP), is used. The GSP parameter expresses the ratio of
two strain energies, measured at the minimum and the i-th level
of self-stress. It should be noted that in the literature on tenseg-
rity domes, there is no parameter characterizing the stiffness.
Additionally, a standard single-layer dome is also analyzed for
comparison.

The quantitative assessment was performed by nonlinear
analysis. The geometrically non-linear model, implemented in
an original program, written in the Mathematica environment,
was used.

2. METHODS OF ANALYSIS
Tensegrity domes are n-element (e = 1,2, . . . ,n) spatial trusses
with m degrees of freedom q(∈ Rm×1):

q =
[
q1 q2 . . . qm

]T
. (1)

These systems consist of tensioned cables and compressed
struts in a self-stress state. Each element is characterized by
Young’s modulus Ee, a cross-sectional area Ae and a length Le.
The mechanical properties of analyzed domes are described by
the elasticity matrix E (∈ Rn×n):

E = diag
[

E1A1

L1

E2A2

L2
. . .

EnAn

Ln

]
, (2)

and by three linearized equations, i.e.: compatibility, material
properties and equilibrium with boundary conditions included:

∆∆∆ = B q, S = E∆∆∆, BT S = P, (3)

where B (∈ Rn×m) is compatibility matrix, ∆∆∆
(
∈ Rn×1

)
is

extension vector, S(∈ Rn×1) is internal longitudinal forces,
E (∈ Rn×n) is elasticity matrix and P(∈ Rm×1) is load vector.

The compatibility matrix B of analyzed structures can be de-
termined directly or using the formalism of the finite element
method [33]. The compatibility matrix determination algorithm
was presented in [34], among others.

The complete analysis of tensegrity structures is a two-stage
process. Qualitative assessment is the first step and quantitative
assessment is the second.

2.1. Qualitative analysis
Qualitative analysis is required to identify the immanent fea-
tures of tensegrity structures, such as infinitesimal mechanisms
and self-stress states that stabilize these mechanisms. There are
a lot of methods for qualitative analysis (form-finding meth-
ods). Starting from the beginnings of the idea of tensegrity,
i.e., the 1960s, to the present day, the search for geometri-
cal configuration is the most popular subject of papers. The
most common methods were described in [35]. The methods
often used include, e.g., the spectral analysis of linear stiff-
ness matrix, the analytical solutions, the force density method,
the dynamic relaxation, and the singular value decomposition
(SVD) of the compatibility matrix B [29, 30, 34, 36]. The SVD
method is considered due to its ease of application and can
be used both for simple and more complex structures. In the
Mathematica environment, based only on the information of the
compatibility matrix B the self-stress states and infinitesimal
mechanisms can be determined using the command {Y,N,X}=
[SingularValueDecomposition[B]]:

B = Y N XT , (4)

where Y (∈ Rn×n) =
[
y1 y2 . . . yn

]
and X(∈ Rm×m) =[

x1 x2 . . . xm
]

are orthogonal matrices and N(∈ Rn×m) is
a rectangular diagonal matrix. The orthogonal matrices Y and
X, as well as the matrix N, are related to eigenvectors and eigen-
values of the following problems:(

BT B−λ I
)

x = 0,
(
BBT −µI

)
y = 0. (5)

The mechanism can be considered as the eigenvector xi =
q(λi = 0) related to the zero eigenvalue λi = 0 of the matrix
in equation (5)1, if it exists. Respectively, the self-stress state
is the eigenvector yi = S(µi = 0) related to the zero eigenvalue
µi = 0 of the matrix in equation (5)2, if any.

If the self-stress state is defined as yi, the geometric stiffness
matrix KG(S)(∈ Rm×m) is built. The normal forces S, are de-
termined as a function of the initial prestress force S:

S = yiS, (6)

The complete solution of the eigenproblem is provided by the
spectral analysis of the stiffness matrix taking into account the
effect of self-equilibrated forces (KL + KG(S)). If all eigen-
values are positive, the identified mechanism is infinitesimal
and the structure is stable. Zero eigenvalues are related to fi-
nite mechanisms, whereas a negative eigenvalue represents the
instability of the structure.
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2.2. Quantitative analysis
The quantitative assessment is the second step of the analysis
of tensegrity structures. It is the parametric analysis leading to
the determination of the impact of the self-stress state (initial
prestress) on the behavior of the structure under static load. To
assess this behavior, a geometrically non-linear model (third-
order theory) is used [29, 31, 37]:

[KL +KG(S)+KNL(q)]q = P, (7)

where KL is linear stiffness matrix, KNL(q) is the non-linear
displacement stiffness matrix. The explicit matrices forms can
be found for example in [29, 31].

An original program written in the Mathematica environment
was used to solve the system of nonlinear equations (7). As a re-
sult, operations have been simplified using the functions and
commands implemented there. The Newton–Raphson method
was used to solve the algebraic system of nonlinear equations.
The program allows the user to freely define the geometry of
the structure, material parameters and loads, and then identify
the self-stress state and track the behavior of selected static
and geometric parameters as a function of this state. Addition-
ally, a geometrically quasi-linear model (second-order theory)
is also used to determine the influence of non-linearity:

[KL +KG(S)]q = P. (8)

The quantitative analysis contains:
• The determination of the minimum initial prestress level

Smin, which corresponds to the lowest level of prestress en-
suring appropriate identification of the type of elements,

• The determination of the maximum initial prestress level
Smax, which depends on the load-bearing capacity of the most
stressed elements,

• The assessment of the influence of the initial prestress level
on displacements q,

• The assessment of the influence of the initial prestress level
on the effort of the structure:

Wmax = Nmax/NRd , (9)

where Nmax is the maximal normal force and NRd is the load-
bearing capacity.

• The assessment of the influence of the initial prestress on the
rigidity of the structure determined by the global stiffness
parameter GSP:

GSP =

[
q(Smin)

T KS (Smin)q(Smin)
]

[
q(Si)

T KS (Si)q(Si)
] , (10)

where KS(Smin) and q(Smin) are a secant stiffness matrix and
a design displacement vector with a minimum initial pre-
stress level, and KS(Si) and q(Si) – at i-th prestress level.

3. EXAMPLES AND RESULTS
The article presents a parametric analysis of two non-standard
domes (tensegrity), i.e., Geiger and Levy domes. For compari-
son, the standard single-layer dome with the Schwedler pattern

is also considered. It is assumed that the cables in tensegrity
domes are made of S460N steel. Type A cables with Young
modulus 210 GPa [38] are used. The struts are made of a hot-
finished circular hollow section (S355J2 steel) with the Young
modulus 210 GPa. The profiles and the maximum load-bearing
capacities of elements are described separately for each dome
later in this chapter. The maximum length of domes is 20 m and
the maximum height, measured from the level of the supports
is 3.5 m. The structures are supported in all external nodes.

At first, the qualitative assessment of structures is carried out
and the characteristic features are examined. The analysis can
be performed by having only the knowledge of the geometry
of the structures. The qualitative analysis is necessary for the
correct assessment of the structure in the following step.

The quantitative assessment is performed as the next. The be-
havior under static external loads is studied. It is a parametric
analysis in which the impact of the self-stress level on the dis-
placements, effort and stiffness of the structures is examined.

3.1. Models of domes
The first structure to be analyzed is the modified Geiger dome
with six load-bearing girders (Fig. 1a). The modification from
the original Geiger’s patent is to add additional horizontal ca-
bles. The structure consists of 73 elements, i.e., 13 struts (thick
lines) and 60 cables (thin lines). The struts are designed as tubes
CHS 127×5.6. Due to different lengths, the struts were divided
into three groups, i.e., six struts of 3.83 m length, five struts of
2.33 m length and one strut of 1 m length, with the maximum
load-bearing capacity of 418 kN, 640 kN and 741 kN, respec-
tively. In turn, the cables are assumed to be made of “D42” with
a maximum load-bearing capacity of 504.4 kN.

a)

b)

Fig. 1. Non-standard (tensegrity) domes: a) Geiger dome,
b) Levy dome
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The second analyzed tensegrity structure is the original Levy
dome (Fig. 1b). In Geiger’s form, the ridge cables are radially
oriented, so the roof is divided into many wedge-shaped basic
units in the plan. To tension the membrane, some valley cables
are also provided in each panel between ridge cables. However,
in the Levy form, the ridge cables form a triangular pattern.
The Levy dome consists of 85 elements, i.e., 13 struts (thick
lines) and 72 cables (thin lines). The struts are designed as tubes
CHS 108× 4.5. The length of struts is the same as in the case
of Geiger dome and the load-bearing capacity equals 224 kN,
402 kN and 499 kN, respectively. In turn, the cables are as-
sumed to be made of “D36” with a maximum load-bearing ca-
pacity of 367.5 kN.

The single-layer steel standard structure with a popular type
of network, introduced by Schwedler in 1863 (Fig. 2), is the last
analyzed dome. This type of pattern was chosen due to its pop-
ular application in real objects. The most known are Bojangles
Coliseum built in 1955 (100 m in diameter), Astrodome built
in 1965 (220 m), Caesars Superdome built in 1975 (207 m),
and National Stadium Singapore built in 2014 (312 m), which
holds the record for the largest dome structure in the world.
Schwedler dome consists of meridional rods connected by lati-
tudinal ones with an additional diagonal member dividing each
trapezium “mesh eye” into two triangles. Additional diagonal
elements result in high resistance to unsymmetrical loads, sig-
nificantly increase the reliability of the dome and reduce the
sensitivity to node jumps.

Fig. 2. Standard single-layer dome with Schwedler pattern

The analyzed dome consists of 88 rods divided into 3 groups,
i.e., meridional (CHS 101.6x3.2), latitudinal (CHS 108x4) and
diagonal (CHS 101.6x5) with a maximum length of 7.65 m,
2.55 m, and 7.12 m, respectively. The maximum load-bearing
capacity equals 244 kN, 396 kN, and 216 kN, respectively.

3.2. Quanlitative analysis
The qualitative analysis leads to the identification of the self-
stress states and infinitesimal mechanisms. Therefore, the ge-
ometrical and mechanical characteristics do not affect these
properties, all constants were assumed as unitary, hence the
elasticity matrix is a unit matrix E = I.

The results of the qualitative analysis are shown in Table 1.
The considered domes have a comparable number of elements
and nodes but a different number of struts. Additionally, domes
differ in the number of identified mechanisms and self-stress
states.

The modified Geiger dome (G) features eight mechanisms
and three self-stress states. The modification, in relation to the

Table 1
Results of qualitative analysis

Dome
type

Number of:

nodes
degrees

of
freedom

all
elements

struts
self-
stress
states

mechanisms

Geiger 20 42 73 13 3 8

Levy 32 78 85 13 7 –

Single-layer 33 75 88 88 – –

original Geiger’s patent, leads to the reduction of the mecha-
nisms and the increase in the number of self-stress states (the
regular Geiger dome is characterized by 18 mechanisms and
one self-stress state). The obtained self-stress states do not
identify the type of elements properly. Only the superimposed
self-stress state yG is correct. In Fig. 3a, the values of self-
equilibrium normal forces (6) are shown. The eigenvalues of
the matrix (KL +KG (S)) are positive, thus the identified mech-
anisms are infinitesimal and the structure is stable.

The Levy dome (L) is characterized by the lack of mech-
anism and the presence of seven self-stress states. As in the
case of the Geiger dome, only the superposition of all states yL
identifies the type of elements properly. Figure 3b presents the
values of self-equilibrium normal forces (6).

a)

b)

Fig. 3. Values of self-equilibrium normal forces (9): a) Geiger, b) Levy

The single-layer Schwedler dome (SL) is not characterized
by tensegrity features such as infinitesimal mechanisms and
self-stress states. This is a standard steel dome.

3.3. Quantitative analysis
In the quantitative analysis, the behavior of three domes (G,
L, SL) is studied. Two variants of load are considered. In the
first case, the load was applied symmetrically (Fig. 4a) (G1, L1,
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SL1), whereas in the second – asymmetrically (Fig. 4b) (G2,
L2, SL2). In both cases, the vertical (z-direction) forces (Pz)
and plane ones (Pxy) are assumed to be the nominal value of
1 kN (Px = Py = 0.707;kN). It is not a real load. The conducted
considerations are intended only to compare and indicate the
differences in the behavior of the analyzed domes.

a)

b)

Fig. 4. Scheme of load: a) symmetrical (G1, L1, SL1),
b) asymmetrical (G2, L2, SL2)

The calculation procedure includes the geometrically quasi-
linear (II) and non-linear (III) analysis. Unlike the qualitative
analysis, the results of the quantitative analysis depend on the
materials and cross-sections of elements.

In the case of tensegrity, the quantitative assessment is a para-
metric analysis leading to the determination of the impact of
initial prestress level on the behavior of the structures. The
static and geometric parameters are the function of this state.
The first step of analysis is the determination of a prestress
range, which is an individual feature of the structure. The min-
imum prestress level (Smin) depends on the proper distribution
of normal forces in the structure elements, i.e., tensile forces
must be present in cables and compressive – in struts. In some
cases, the external load causes a different distribution of nor-
mal forces, which can be corrected only by introducing an ap-
propriate level of initial prestress. The minimum prestress level
for the Geiger dome is equal to Smin = 21 kN, whereas for the
Levy dome – Smin = 11 kN. In turn, the value of the maximum
prestress level (Smax) depends on the load-bearing capacity of
the most stressed elements. For both structures, it was assumed
as Smax = 190 kN and then the maximum effort of structures is
Wmax = 0.91.

In the case of a single-layer dome, self-stress states do not
exist, and the static and geometric parameters are constant. To

compare the different behavior of the analyzed domes, the ob-
tained results are shown in graphical form.

Firstly, the displacements of the upper middle node are pre-
sented (Figs. 5–7). In the case of the Levy dome, regardless of
the load variant (symmetrical L1, asymmetrical L2), the dis-
placements do not depend on the prestress level and they are
constant. Additionally, the impact of non-linearity is insignif-
icant (the results obtained from second order theory (II) and
third order theory (III) are the same). This structure behaves
like the single-layer dome. In turn, the behavior of Geiger dome
is different. The displacement qx (Fig. 5) and qy (Fig. 6) depend
on the level of the initial prestress and additionally on the load
variant. The displacements decrease as the initial prestress in-
creases.
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Fig. 5. Impact of the initial prestress level S on the displacement qx
for: a) symmetrical load, b) asymmetrical load

However, in the case of the asymmetrical load (G2), the dis-
placements are higher than in the case of a symmetrical load
(G1). This type of load causes displacements consistent with
the infinitesimal mechanisms. The behavior of the displacement
qz varies (Fig. 7). According to the second-order theory, it is not
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Fig. 6. Impact of the initial prestress level S on the displacement qy
for: a) symmetrical load, b) asymmetrical load

dependent on the level of initial prestress and is equal to almost
zero (this displacement in all mechanisms is zero). Nonetheless,
the calculations performed according to the third-order theory
confirm that displacement is correlated with the level of initial
prestress. Moreover, the initial prestress forces have a greater
influence on the displacement with lower external loads. The
conducted analyses show the influence of non-linearity is sig-
nificant at low values of initial prestress forces. As prestressing
forces increase, the differences between the calculations per-
formed according to the second- and third-order theory become
smaller. Although in the case of the assumed low load values,
the results are similar. For the real load, the impact of nonlinear-
ity is significant. For example, Fig. 8 shows the displacement qx
in the case of asymmetrical load Pz = Pxy = 30 kN. Moreover,
the initial prestress forces have a greater influence on the dis-
placements of the structure with lower external loads.

Next, the maximum effort of the structure (Wmax) is calcu-
lated (Fig. 9a). For the Levy dome the increase of the effort
is linear, whereas for the Geiger one – nonlinear. Due to the
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Fig. 7. Impact of the initial prestress level S on the displacement qz
for:a) symmetrical load, b) asymmetrical load
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Fig. 8. Impact of the initial prestress level S on the displacement qx of
Geiger dome in the case of asymmetrical load Pz = Pxy = 30 kN
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low load values, the non-linearity is not significant. To better
describe the differences between a tensegrity dome with and
without mechanisms, the global stiffness parameter (GSP) is
calculated (Fig. 9b). For the first type of dome, the GSP in-
creases with the prestress level. The almost linear relationship
results in low load values (as in the case of Wmax). For the dome
without mechanism, the GSP is constant (for the asymmetrical
load – almost constant).
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Fig. 9. Impact of the initial prestress level S on the: a) maximum effort
of the structure Wmax, b) global stiffness parameter GSP

4. CONCLUSIONS
This paper aims to compare the behavior of tensegrity domes.
The two most popular tensegrity domes, the Geiger dome and
the Levy dome, are analyzed. It was found that the behavior
of domes was different under the influence of external loads.
The difference is related to the occurrence of an infinitesimal
mechanism, i.e., only the Geiger dome is characterized by the
infinitesimal mechanism. The paper focuses on the possibil-
ity of the active control of the stiffness of the tensegrity dome
throughout the change of the level of self-stress.

The Geiger dome is characterized by the presence of both
immanent features. The behavior of this structure can be con-
trolled by the adjustment of the self-stress level. The stiffness
depends not only on the geometry and material properties but
also on the initial prestress level and external load. The impact
of the load is the most significant at low values of the initial
prestress forces. Additionally, the Geiger dome is more suscep-
tible to asymmetrical load, which causes displacements consis-
tent with infinitesimal mechanisms. In the case of a symmetri-
cal load, the displacements are smaller. However, regardless of
the type of load, the stiffness at the maximum prestress level
increases more than seven times. Due to the influence of the ex-
ternal load on the stiffening of the structure, the analysis should
be carried out assuming the hypothesis of large displacements.
In turn, the Levy dome is characterized only by the self-stress
states. In this case, the initial prestressing is possible, but this
structure is insensitive to the changes in the force level. Pre-
stressing increases only the effort of structures, but the stiffness
is constant. The Levy dome behaves like a standard dome and
the quantitative analysis can be carried out using a quasi-linear
geometric model. The question then arises, what is the point of
prestressing a structure? The introduction of the initial prestress
is required only when the external load causes an incorrect dis-
tribution of normal forces in the elements of the structure. In
that case, the minimum prestress level that corrects this distri-
bution should be specified.

This paper focuses on the parametric analysis of real tenseg-
rity domes. This area of research is still underdeveloped. The
conducted research helps to better understand the mechanical
properties of tensegrity systems. The comparative analysis, pre-
sented in this paper, gives two clear conclusions. On the one
hand, the stiffness can be easily rectified by the change of the
level of prestressing, and on the other, the prestressing of some
structures does not make sense. The first conclusion refers to
the domes characterized by the presence of infinitesimal mecha-
nisms. In such structures, the control of the static parameters fa-
cilitates the adaptation to the required design parameters. These
tensegrities offer many advantages and are a better alternative to
the domes without mechanisms that can be only used as avant-
garde architectural designs.
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