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Abstract. This paper attempts to conduct a comparative life cycle environmental analysis of alternative versions of a product that was manu-
factured with the use of additive technologies. The aim of the paper was to compare the environmental assessment of an additive-manufactured
product using two approaches: a traditional one, based on the use of SimaPro software, and the authors’ own concept of a newly developed
artificial intelligence (AI) based approach. The structure of the product was identical and the research experiments consisted in changing the
materials used in additive manufacturing (from polylactic acid (PLA) to acrylonitrile butadiene styrene (ABS)). The effects of these changes on
the environmental factors were observed and a direct comparison of the effects in the different factors was made. SimaPro software with imple-
mented databases was used for the analysis. Missing information on the environmental impact of additive manufacturing of PLA and ABS parts
was taken from the literature for the purpose of the study. The novelty of the work lies in the results of a developing concurrent approach based
on Al The results showed that the artificial intelligence approach can be an effective way to analyze life cycle assessment (LCA) even in such
complex cases as a 3D printed medical exoskeleton. This approach, which is becoming increasingly useful as the complexity of manufactured

products increases, will be developed in future studies.
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1. INTRODUCTION

Environmental protection is becoming one of the most impor-
tant assets in the world. Air pollution contributes to loss of
health in many people. Reduction of air pollution can save
millions of lives [1, 2]. Innovative technologies, such as 3D
scanning, additive printing, and reverse engineering, integrated
into the Industry 4.0 paradigm, can negatively affect the en-
vironment. Innovative technologies are also increasingly used
in medicine. An example is the use of additive technologies
in the design and manufacturing of assistive devices, such as
e.g. exoskeletons. About 15% of the world’s population suffer
from various types of disabilities, of which 110-190 million
are persons with reduced mobility, who require the support of
equipment in daily activities [2, 3]. Each assistive device must
be adapted to individual needs of its user. To meet this demand,
there is a strong need for flexible manufacturing processes. Ad-
ditive manufacturing provides this level of flexibility — each
product can have a unique design. Considering some undeni-
able advantages, such as the short and simple manufacturing
process and relatively low manufacturing costs depending pri-
marily on the quantity of material used, additive technologies
are expected to keep gaining in popularity. A CAD model de-
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veloped in an additive technology becomes a sufficient basis for
the end product. The time- and labor-consuming preparations
required to manufacture a product in a traditional technology
are circumvented here. The soaring popularity of additive tech-
nologies is bound to increase their environmental footprint. Key
issues here are manufacturing waste, end-of-life product recy-
cling, use of non-renewable resources, emissions in the manu-
facturing process, and energy consumption. In order to curb the
environmental impact, the size of the problem must be exam-
ined and preventive measures must follow. The aim of the paper
was to compare the environmental assessment of an additive-
manufactured product using two approaches: a traditional one,
based on the use of SimaPro software, and the authors’ own
concept of a newly developed artificial intelligence (Al) based
approach. Using both approaches, the authors investigated how
the material used in the manufacturing process influences the
environmental parameters of the product and then compared
the results obtained using the two approaches. The Al-based
solution is novel and has no equivalent in the literature. It fits
into the concepts of computerization and the use of advanced
machine learning (ML) techniques to improve manufacturing
efficiency, data analysis, inference and prediction from data.
The article is structured as follows: the paper begins with
a comparison of sustainable manufacturing with additive tech-
nologies, followed by a presentation of the LCA analysis and
the IT tools that support this analysis. In the subsequent sec-
tions of the paper, we verify the results obtained by Al with
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traditional LCA methods (SimaPro), as the paper focuses on
the development of a new method. The paper concludes with
a discussion and conclusions, comparing our results with those
of other authors, pointing out limitations and directions for fur-
ther development, and providing a basis for replication of our
research and further studies developing our concepts.

2. SUSTAINABLE MANUFACTURING VS. ADDITIVE

TECHNOLOGIES
Accelerated development of Industry 4.0 brings about a number
of environmental threats, such as increasing demand for elec-
trical energy [4] and emissions of harmful compounds, to men-
tion just a few. Electrical energy is required to operate machines
and meet the growing demand for hardware computing power.
Innovative solutions introduced under the Industry 4.0 frame-
work, such as e.g. 3D printing, generate emissions of harmful
substances. 3D printers use electrical energy to melt the work-
ing material. The environmental impact depends on the energy
source. It is negligible with solar energy, but increases with the
use of energy from the mains supply, depending on the com-
bination of energy sources engaged by the supplier. In order
to minimize the negative environmental impact of, inter alia,
new technologies, in 2015 the World Commission on Environ-
ment and Development [5] defined 17 sustainable development
goals and 169 targets. Aimed to help implement the sustain-
able development policy, they are accompanied by the concept
of sustainable manufacturing, defined as the creation of manu-
factured products that use processes which minimize negative
environmental impacts, conserve energy and natural resources,
are safe for employees, communities, and consumers, and also
economically sound [6-8].

Sustainable manufacturing encompasses not only manufac-
turing, but also preparatory and post-manufacturing processes,
such as designing, procurement of raw materials, distribution,
use and reuse of the product. One cannot overestimate the im-
portance of the design process, when decisions are made con-
cerning recyclability of the product, minimization of danger-
ous substances, and use of environmentally friendly materials.
At the stage of procurement of raw materials, the supply chain
should be considered and eco-efficient supplies secured. Man-
ufacturing processes should generate zero emissions and pro-
vide for efficient use of resources, including electrical energy.
In compliance with the sustainable manufacturing policy, dis-
tribution should include product returns, reuse and recycling.
While in use by the end consumer, a sustainable product should
be reliable while generating low operating expenses and zero
emissions. The last stage is end-of-life disposal, with various
possibilities, such as reuse, disassembly, and landfill disposal at
a low cost [9-12].

For an additive technology to be considered environmentally
friendly, it should feature all of the above-mentioned qualities
of sustainable manufacturing. No product has been produced
so far which would fully comply with the requirements of sus-
tainable manufacturing. The key issue are emissions of con-
taminants, depending primarily on the type of material used.
Gases and particles emitted during 3D printing contaminate the

air [13, 14]. Some of them, such as those emitted by bisphenol
A (BPA), used as a plasticizer and antioxidant, are presumed to
have carcinogenic potential for humans [15]. Various measures
are recommended to mitigate the hazards, such as use of low-
emission materials and low temperatures, installing shields with
filters around the printer, and monitoring emissions on an ongo-
ing basis. Wojtyta has established that when used in 3D print-
ing, polylactic acid (PLA) is distinctly less toxic than acryloni-
trile butadiene styrene (ABS) [16]. In an environmental analysis
of ankle foot orthoses, Gorski [17] has found out, on the basis
of the calculated carbon footprint, that a 3D-printed orthosis
is much more environmentally friendly than one made in the
conventional technology of plaster cast covered manually with
layers of resin and fiberglass fabric [18]. In CO2eg, the carbon
footprint of a traditionally manufactured orthosis is three times
that of a 3D-printed one.

A study of a 3D printer working in the fused deposition mod-
elling (FDM) technology has shown that when diverse materi-
als and various extrusion temperatures are used, emissions of
super-micron particles go down to zero and give way to emis-
sions of ultrafine (10-30 nm) particles. Emissions increase in
line with the increase in the temperature of extrusion. What is
more, even a relatively short, 40-minute 3D printing cycle gen-
erates up to 200 mm? of emissions [19]. Steinle [20] has found
that emissions of ultrafine aerosol (UFA) are much higher when
printing in PLA than ABS.

A longer duty cycle of the 3D printer causes the emission
rating to rise even further. What is important, 3D printing in
spacious, well-ventilated rooms does not increase the UFA con-
centration significantly, as compared to printing in a confined,
non-ventilated room. This is an important hint when choosing
aroom for a 3D printing laboratory. Other materials used in 3D
printing are thermosetting photopolymers, which can be reused
as materials reforming 3D printed objects into a new shape. The
technology is used for repairing damaged parts [21].

As is the case with many other manufacturing technologies,
the environmental impact of 3D printing depends largely on
choices made by the user. Model design, energy source, ma-
terials in use, recyclability — all these factors determine the re-
sulting environmental impact of the product.

Life cycle assessment (LCA) is just one of many tools facili-
tating assessment of the environmental impact, including those
based on artificial intelligence (AI). Owing to a standardized
analysis process and incorporation of numerous standards, the
method ensures comparable results of analyses conducted in en-
terprises and research organizations, and facilitates the creation
of a hierarchy of many issues related to the environmental im-
pact of manufacturing processes and product life cycle.

3. LIFE CYCLE ASSESSMENT

Life cycle assessment (LCA) is defined in the ISO 14040:2006
standard as an environmental management technique aimed at
the assessment of products, materials, processes, services and
systems in terms of their impact on the natural environment.
LCA covers potential impact on the ecosystem throughout the
product life cycle (“from cradle to grave”), i.e. from the pro-
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curement of raw materials to the disposal of materials at the
end of life. Aggregated impact on the natural environment at
all the stages of the product life cycle is assessed, based on the
assumption that processes are interdependent, or that individ-
ual manufacturing stages affect one another [22]. LCA ensures
a comprehensive overview of the product’s environmental im-
pact, taking into account processes that are otherwise excluded,
such as extraction of raw materials, transport, etc. [23]. The
LCA method is classified as a quantitative tool not only facil-
itating the classification of certain groups of impact, but also
determining the impact quantitatively for each of the measures
in use [24]. Owing to the complexity of calculations and se-
quentiality which can be easily expressed by means of algo-
rithms, the LCA is widely implemented in software tools sup-
porting product environmental assessment [25]. According to
ISO 14040:2006, the LCA comprises four stages [26,27]:

e Goal & scope definition — definition of the product under
analysis and its service life, scope of study, data source, tar-
get group and intended purpose of the study;

e Inventory analysis — determination of system inputs, outputs
and processes, determination of the raw material and energy
balance, creation of the product’s life cycle;

e Impact assessment — classification of environmental im-
pacts by means of a selected method and determination of
their size (categorization and quantitative analysis);

e Interpretation — presentation and critical evaluation of re-
sults (this stage is in progress simultaneously with the three
other stages).

There are defined methods by which an LCA can be per-
formed, such as e.g. Eco-Indicator 99, IMPACT 2002+ or
ReCiPe 2016 Endpoint [28]. In this study, the ReCiPe 2016
Endpoint method, described in detail in the chapter entitled
Methodology of the study, has been used.

4. SOFTWARE TOOLS SUPPORTING ENVIRONMENTAL
ANALYSIS

There is a wide choice of software tools which facilitate the
environmental analysis of manufactured products. One group
of them are autonomous software tools which require manual
and usually time-consuming implementation of the product life
cycle. Not integrated into any 3D CAD environment, they do
not support any data transfer, such as e.g. product structure.
Their ample databases retrieve proprietary data on processes.
Typically, the analysis is carried out in accordance with the
LCA environmental management technique (discussed in de-
tail in the chapter on LCA) by a method (e.g. Eco-Indicator 99,
ReCiPe 2016 Endpoint) implemented into the software. They
support extensive analyses of emissions (positive and nega-
tive ones), and provide numerical values of emitted substances,
gases, etc. Some examples of such software tools are GaBi,
SimaPro, Umberto and OpenLCA. SimaPro is one the most
commonly used tools. Data on the product can be retrieved from
the databases implemented, and the calculation methods corre-
spond to the LCA environmental management technique. En-
vironmental impacts can be imaged for one product assembly,
and alternative product assemblies can be compared [29].
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Another group are autonomous tools integrated into a 3D
CAD environment or one of its modules. Some examples
are the Eco Materials Adviser environmental analysis mod-
ule of Autodesk Inventor and SOLIDWORKS Sustainability
of SOLIDWORKS. Solutions of this type streamline work
through automated data interchange between a 3D product
model and the environmental analysis module, thus saving the
designer’s time spent on entering the product structure data.
Additionally, other data on the manufacturing process can be
entered, such as methods of transport, place of production and
use, service life, etc., which — as a standard — are not assigned to
a 3D model. Analyses performed in such systems are trimmed
down to the examination of water and energy consumption, car-
bon footprint of the manufacturing process, etc. Compared to
the analyses performed by the autonomous systems referred to
above, these tools are intended for management purposes. They
do not support thorough analysis of the environmental impact
of designed products throughout the life cycle using the LCA
environmental management technique [30].

Many enterprises develop proprietary environmental analy-
sis software for particular products, such as e.g. the Ecodesign
Manual by Philips, the Handbook of Volvo, the Environmental
Guidelines by Electrolux, etc. [31].

Changes in manufacturing processes aimed at reducing the
environmental impact of products throughout the life cycle are
driven by the pressure put by industry beneficiaries on environ-
mental protection. Accordingly, the number of software pro-
grams supporting environmental analysis, equally customized
(adapted for certain products and enterprises), autonomous and
integrated into CAD 3D systems, available in the market, is
growing rapidly.

A wide spectrum of novel Al-based solutions supporting
LCA is described in Section 6.

5. AI-BASED ANALYSIS OF A PRODUCT MANUFACTURED
IN AN ADDITIVE TECHNOLOGY

LCA is an environmental tool that typically requires big data
to provide indirect measurement of product performance and
simulation of proposed scenarios to improve product perfor-
mance. Al supports LCA on the increasing availability of data
and information by combining the concepts of modeling and
data analysis, creating LCA based on data mining. The LCA as-
sessment by Al can cover all or only specific steps of the LCA,
also as a second opinion system. The typical scientific approach
in LCA is based on the life sciences, but this is not always fully
possible, also due to the lack of a sufficiently large amount of
research. For the above-mentioned reasons, Al-based LCA is
now a complementary rather than a base technology.

5.1. Methodology of the study
A comparative Al-based LCA environmental analysis has also
been performed for a previously described hand exoskeleton in
two alternative versions:
e the base assembly — featuring PLA elements manufactured
in an additive technology,
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e alternative assembly — featuring ABS elements manufac-
tured in an additive technology.
The study has been conducted in accordance with an original
ANN concept taking into consideration LCA four-stage envi-
ronmental management technique (based on ISO 14040:2006).

5.2. Goal & scope definition

The use of artificial intelligence for LCA assessment allows the
existing functionality presented in Section 5 to be extended to
include LCA analysis based on data at the two extreme poles of
computational analysis complexity:

e incomplete data that does not lend itself to traditional LCA
assessment, requiring estimation rather than exact calcula-
tion,

e very complex, multidimensional data, from multiple mea-
surements (e.g. from real-time solutions based on the Inter-
net of Things or the Internet of Everything), too complex
for traditional calculations and imaging without the use of
multidimensional scaling to project a set of parameters into
3D space.

The aforementioned approaches provide an opportunity to
take advantage of the fundamental benefits of Al:

e being based on the structures, values, and properties of the
data you have, rather than on proven mechanisms and algo-
rithms for analyzing it,

e extraction of rules “on the fly”,

e possible lower accuracy (estimation rather than calcula-
tion),

e response in all conditions (Al solutions will always give
some result, and their operation will not crash, in contrast
to a running traditional computer program),

e in some cases: the possibility of learning during operation,
adapting solutions better fitted to e.g. specific operating
conditions of a device or production line.

For the above reasons, the natural tools used in Al-based
LCA analysis will be traditional and deep artificial neural net-
works (ANN within machine learning (ML) concepts — data
driven approach), complemented in some applications by other
tool modules such as:

e inference on mobile devices, IoT sensors and effectors for
data collection and impact checking/testing,

e decision trees and random forests for working out decision
processes,

e fuzzy logic, for analyzing processes describable only lin-
guistically, including ordered fuzzy numbers — for describ-
ing and analyzing fuzzy processes where the direction of
data change is important (e.g. rapidly rising, slowly falling),

e genetic algorithms for optimization of ANN structures,

e multifractal analysis for the analysis of the degree of data
variability, including the analysis of the possibility of trend
change on the basis of Hurst index values.

The computerization, automation, and robotization of man-
ufacturing under the Industry 4.0 paradigm will foster the use
of Al for LCA analysis through the mass production of sensor
and effector data, quality control at every stage of manufactur-
ing, labeling of products and their parts, and the ability to read
the aforementioned labels at every stage of a product’s life until

successful recycling. This will allow LCA simulation effects to
be compared with real values, gradually improving the virtual
twins of products.

5.3. Inventory (inputs and outputs) analysis

We used a three-tier ANN to estimate the LCA. ANN was built
and trained in a MATLAB environment with Neural Networks
Toolbox (R2021b version, MathWorks, Natick, MA, USA).
When developing the model, we used:

data sets from traditional LCA analysis,

multilayer perceptron (MLP),

a three-layer neural network of the feed-forward type,

back propagation error (BP) algorithm, because it is rela-

tively easy to use, fast, simple and easy to program,

e optimization of MLP connection weights based on the min-
imization of the mean square error function (MSE) between
the target and actual results averaged in all teaching exam-
ples,

e pre-programming the weights of neural networks to avoid
too slow convergence and attractor wedging at local minima
instead of searching for a global minimum,

e naive initialization techniques, much simpler than Xavier
initialization or ReLu function.

The structure of the ANN used is shown in Figure 1 and Ta-
bles 1-3.

a) Input layer Outputlayer

Hidden layer

b)
Input layer (50 neurons) Output layer

Groups of input parameters: — (1 neuron)
KP1-5 - number and type of part (range 1-5) .
DIM - dimensions of the part (X, ,2) —_—
W - weigth of the part
MAT - material (PLA/ABS) Hidden layer
PRT - type of 3D printer with energy consumption | > (55 neurons) — {ﬁgﬁl“‘l‘e
3D1-12 - parameters of 3D printing - potential
LAP - type of laptop with energy consumption environmental
TIMEI-4 - time of each stage of the production — impact
SPEC - parameters specific for product life —

(22 including customization, transport I

distance, till the recycling typical for LCA) | —

Fig. 1. ANN structure: a) idea, b) realization.

The number of neurons of the input layer is equal to the num-
ber of features in the LCA data. The number of neurons of the
output layer is equal to the number of outputs associated with
the result (here one reflecting the LCA value).

The number of hidden layer neurons, which is responsible for
the learning capabilities of the network, is selected experimen-
tally based on the knowledge and experience of the neural net-
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work designers and its optimization for a specific angle. In our
case, we chose complex optimization criteria, i.e. accuracy and
fast convergence of the network to the desired mean square er-
ror (MSE) value. Generally, optimizing a neural network might
be a complex task.

Each ANN layer contained neurons with the same activation
function (Table 1).

Table 1

MLP network model for LCA assessment

NS AHI AO
MLP 50-45-1a Sigmoid Sigmoid
MLP 50-45-1b Tanh Tanh
MLP 50-50-1a Sigmoid Sigmoid
MLP 50-50-1b Tanh Tanh
MLP 50-55-1a Sigmoid Sigmoid
MLP 50-55-1b Tanh Tanh
MLP 50-60-1a Sigmoid Sigmoid
MLP 50-60-1b Tanh Tanh
MLP 50-65-1a Sigmoid Sigmoid
MLP 50-65-1b Tanh Tanh

Where: NS — ANN structure; AH — activation function in the hid-
den layer; AO — activation function in the output layer.

The ANN-based LCA assessment shows that the proposed
analysis is fast and accurate for an independently tested prod-
uct. It is worth noting here that sensitivity of the method was
assessed as sufficient, however, further verification in this area
is advisable. In subsequent studies, further optimization is nec-
essary, including checking the advisability of using deep learn-
ing (DL).

The best results were achieved for the MLP 50-55-1 network
with sigmoid activation function (MLP 50-55-1a) (Table 2, Ta-
ble 3).

Table 2
Selected ANN quality assessment
Network name Quality (learning) Quality (testing)
MLP 50-45-1a 0.8778 0.8904
MLP 50-45-1b 0.8801 0.8914
MLP 50-50-1a 0.9017 0.9178
MLP 50-50-1b 0.9023 0.9192
MLP 50-55-1a 0.9112 0.9216
MLP 50-55-1a 0.9092 0.9177
MLP 50-60-1a 0.9002 0.9134
MLP 50-60-1b 0.8997 0.9102
MLP 50-65-1a 0.8822 0.8956
MLP 50-65-1b 0.8789 0.8912
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Table 3
MSE values for MLP neural network
Network name (R)MSE
MLP 50-45-1a 0.03
MLP 50-45-1b 0.03
MLP 50-50-1a 0.02
MLP 50-50-1b 0.02
MLP 50-55-1a 0.01
MLP 50-55-1a 0.02
MLP 50-60-1a 0.02
MLP 50-60-1b 0.02
MLP 50-65-1a 0.03
MLP 50-65-1b 0.03

5.4. Impact assessment

Due to many factors (not only technological, but also envi-
ronmental or social ones), perhaps in addition to the tradi-
tional approach based on life sciences, LCA may need to ap-
ply other scientific approaches, including those from social
and economic sciences. There is still much work to be done
in the methodology for measuring energy and resource con-
sumption for LCAs, hence the need to develop a broad ap-
proach to coordinating the various components of different
materials and different technologies, needed to produce a fin-
ished product (e.g. 3D printed circuit boards). This also ap-
plies to the incorporation of elements from natural technolo-
gies into the LCA, e.g. wood from forestry as part of the Al-
based monitoring of the Earth’s natural resources with Over-
story. Such real-time insight into the resources of forests and
other natural ecosystems of the Earth allows to make faster and
more accurate decisions about nature, protecting the Earth’s
biodiversity, maintaining sustainable development and miti-
gating climate change on our planet. Al methods in con-
junction with LCAs have been applied to agriculture, climate
and engineering research (including energy and water effi-
ciency) [32-36], demonstrating high ability to solve complex
problems using uncertain, interactive and dynamic character-
istics in a cost-effective and efficient manner, improving the
quality of your inventory. Its use in industry is only at the be-
ginning.

5.5. Directions for further research
The main problem is the need to learn data sets — we need real
life values of LCA to learn the network.

In order to fully identify the Al techniques used in LCA, both
new research and literature on the subject is required. Al can be
used not only to estimate and calculate the potential effects of
change using previously developed models, but also to detect
missing data, thus increasing the robustness of the models. In
order to increase its reliability, LCA-AI models should be ap-
plied on a large scale over a wide range of materials, technolo-
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gies and industries as well as taught and tested on large sets of
various data, and the results should be published in the form of
reports [37-42].

6. TRADITIONAL ENVIRONMENTAL ANALYSIS
OF A PRODUCT MANUFACTURED IN AN ADDITIVE
TECHNOLOGY
6.1. Methodology of the study
A comparative LCA environmental analysis has been per-
formed for a hand exoskeleton in two alternative versions:
e the base assembly — featuring PLA elements manufactured
in an additive technology,
e alternative assembly — featuring ABS elements manufac-
tured in an additive technology.
The study has been conducted in accordance with the LCA
four-stage environmental management technique (in compli-
ance with ISO 14040:20006).

6.2. Goal & scope definition

A hand exoskeleton developed by scientists of the Kazimierz
Wielki University in Bydgoszcz, Poland, has been examined.
The study is aimed to determine the environmental impact of
the product throughout its life cycle. Two assemblies of the
product, with elements made of two different materials (both
manufactured in an additive technology), have been examined
to find how the change of material affects the software output,
i.e. information about the environmental impact of the assem-
bly. The final output is a comparative analysis of the alternative
product assemblies, shown as a compilation of graphs generated
in the software. The study can support scientists in the selection
of material for the exoskeleton.

The product has been assigned a service life of 5 years — at
the end of that period, all of its parts should be replaced with
new ones.

The scope of the study has been defined as follows: the
manufacturing processes of equipment, tools and vehicles used
throughout the product’s life cycle, such as a truck, a drill-
driver, a 3D printer and a laptop, have been excluded from
the analysis; however, emissions to the environment in the pro-
cesses related directly to the manufacturing of the exoskeleton
with the use of the above-mentioned equipment, tools and ve-
hicles (e.g. transport of sub-assemblies in the truck) have been
included.

The analysis has been performed in the SimaPro software,
with data sourced from the literature and software databases.
Universal substitutes available in databases have been used in
place of the missing data required to create the life cycle of the
product (e.g. linear servo controller — electronics, for control
units).

6.3. Inventory (inputs & outputs) analysis

At stage one, processes required to develop the product struc-
ture, which were missing from the software database, were de-
veloped. The focus was put on the additive manufacturing pro-
cess. All other elements of the two assemblies under analysis

were purchased and identical for both assemblies, so they had
no impact on the outcome of the comparative analysis. Based on
the data sourced from [43], a universal additive manufacturing
process was entered for both PLA and ABS, with the respective
emissions generated by each material during a one-hour cycle
of the 3D printer. Next, the process of additive manufacturing
of the assembly parts, namely, finger phalanxes, a metacarpus
and a carpal joint (connected by means of supports), a hous-
ing for the electronic circuit and fourteen mounting pegs, has
been developed. Energy consumption by the 3D printer and the
laptop (necessary to adapt a universal exoskeleton design to in-
dividual needs of the patient) has also been taken into account.
The additive manufacturing process for PLA, implemented into
the system, is shown in the screenshot in Fig. 2. The printing
process was of the same duration for both assemblies, but en-
ergy consumption by the printer was declared higher for ABS
than for PLA.

Similarly, the manufacturing process for the polyester ele-
ments — a wrist orthosis and a Lilon battery case — was de-
veloped. The process was identical for both assemblies. Other
subassemblies were simplified (as they did not affect the result
of comparative analysis) and based on the data retrieved from
the SimaPro database. As mentioned in Section 6.1, substitutes
(similar processes for parts manufactured in similar technolo-
gies) were used in some assemblies for the data which were
missing from the database.

At stage two, the product structure, identical for both assem-
blies, was developed. Modification of the alternative assembly
relative to the base one consisted in using a different mate-
rial (ABS in place of PLA). The product structure is shown in
Fig. 3.

According to Section 6.1, considering the very production
of the exoskeleton, the manufacturing processes of equipment,
tools and vehicles used in the entire manufacturing process of
the product under analysis were excluded from the study scope.
However, certain processes related directly to the production
of the exoskeleton, in which the above-mentioned equipment,
tools and vehicles were used, were identified, namely:

e delivery of the purchased subassemblies and the end prod-
uct to the customer — transport by a truck (underlying as-
sumption: each subassembly is transported over a distance
of 100 km),

e customization of the exoskeleton — performed on a com-
puter in the active mode; duration: 5 hours; mean energy
consumption,

e additive manufacturing of exoskeleton elements — with the
use of a 3D printer; mean energy consumption,

e assembly of the exoskeleton — energy consumption by
a drill-driver for 3 hours of operation.

At the next stage of data preparation for the analysis, infor-
mation about the service life of the product was entered. The
service life was defined as 5 years — after that period all the
parts of the product should be replaced with new ones. The
process of manufacturing of the carton box in which the end
product would be delivered to the end user as well as the trans-
port to the end user by means of a truck were taken into ac-
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Qutputs to technosphere: Products and co-products Amour Unit  Quantity  Allocatic Waste typ Category Comment
| EGZQ | Printed exoskeleton connected by supports (PLA) | 200 | g ‘ Mass | 100 % Biopolyn| Plastics\Bi..\Market : Printed product without finishing
(without cutting and grinding).
Add
QOutputs to technosphere: Avoided products Amount Unit Distribution SD2 or 25D Min Max Comment
Add
Inputs
Inputs from nature Sub-compartment  Amount Unit Distribution SD2 or 25D Min Max Comn
Add
Inputs from technosphere: materials/fuels Amaor Unit Distribution SD2 or Min  Max Comment
| Polylactide, granulate {GLO}| production | APOS, S ‘ 200 | a | Undefined ‘ Input material - biodegradable PLA.

Simplification - ariginally PLA in & form of filament,
not granulate.

| Electricity, low voltage {PL}| market for | APOS, S

| 288 [ kwh | Undefined |

Energy consumed by 3D printer during 32 hours of

printing (8 hours for 4 days). Printer power
consumption - 90 W/h.

| Electricity, low voltage {PL}| market for | APOS, 5 ‘ 1 | kWh | Undefined ‘ ‘ | Energy consumed by computer (laptop) during 5
hours of designing parts of exoskeleton and
generating .stl file (max power - 200 W).
Add

Inputs from technosphere: electricity/heat Amour Unit  Distribution SD2 Min Ma: Comment

Operation, computer, laptop, active mode {GLO}| market for| 5 hr Undefined Operations required to design parts of exoskeleton.

EGZO | 3D Printing of PLA elements 32 hr Undefined Emissions form 3D printing of PLA elements based on
literature.

Add

Fig. 2. Additive manufacturing of elements in PLA

1o
EGZO | Exoskeleton
assembly (PLA)

{GLO}| production |
APOS, S

0.704 %

voltage {PL)| market
for | APOS, S

243 %

100 %
1p ] 1p 14p 1p [] 14p
EGZO|1.1-7.1 EGZO | 9. Electronic EGZO | 10. Micro EGZO | 12. Lilon EGZO | 11. Bowden
Printed exoskeleton circuit (PLA case) Linear Actuator battery line
(PLAY
298% L 672% 269 % 1 197% L 0501 % L
0,081 ky 0.039 kg 0.009 kg 0.154 kg 0014 kg 0072 kg [ 0.04 kg 0.007 kg
EGZO | 1.1-7.1, Printed wiring board, EGZO | 92. Case for Electronics, for Cable, unspecified Battery, Li-ion, EGZO | 12.2. Case for Cable, unspecified
Printed elements of surface mounted, electronic circuit control units {RER}| {GLO}] production | rechargeable, Lilon battery {GLO}| market for |
exoskeleton unspecified, Pb (PLA) production | APOS, § APOS, S prismatic (GLO}| APOS, S
298% L 669 % 0331% 259% 0999 % L 177 % L 0.19% || 05 % L
00936kg | | 0.0585 kg 007 kg
EGZO | Printed Acrylic varnish, Ay Fibre, polyester {INJ]
exoskeleton without water, in ol polyester fibre
connected by 87.5% solution state DUEEEE production, finished |
B Disposal scenario
3.09% 0281% L] e a—— 0.332% L]
O Reuse
0 Material
0 Energy
_ O Transport
0.0936 kg 688 M) 0 Processing
Polylactide, granulate| Electricity, low OUse

O Waste scenario
0 Waste treatment

19 nodes visible of 14722

Fig. 3. The most important elements of the product structure

count, and energy consumption during the five years of service
life was determined (164.25 kWh, 90 W/day). Consumption of
sanitizer was also added for the entire service life (182.5 I, ca.
0.1 1/day). The last stage of the inputs and outputs analysis was
the determination of removal from service strategy. Based on
the databases available for both alternatives, landfill disposal
was selected.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. 144478, 2023

The outcome of this stage was the development of life cycles
for the base and alternative assemblies.

6.4. Impact assessment

The analysis was performed by means of the global ReCiPe
2016 Endpoint method (one of the methods implemented in the
software, compliant with the LCA environmental management
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technique). This is one of the most comprehensive methods
of assessment, which supports an analysis of cause and effect
paths linking midpoint characterization factors with endpoint
characterization factors [33, 44]. The assessment relies on 22
indirect impact categories (Fig. 4), which are then assigned to
three endpoint area categories (human health, ecosystems, re-
sources) (Fig. 4).

00
6
| I
4
80
&

WEGZO | PLA assembly life
cycle, no takeback

%

& WEGZO| ABS assembly life
cycle, no takeback

Fig. 4. Results of a comparative analysis of the base assembly (PLA)

and the alternative assembly (ABS) — midpoint characterization fac-

tors (red bars — PLA assembly life cycle, blue bars — ABS life cycle
assembly)

6.5. Interpretation of results

The analysis leads to a direct comparison (visual — on graphs,
and quantitative — in tables) of the two versions of the assem-
bly (the base assembly — PLA and the alternative assembly —
ABS). As mentioned above, the same purchased subassemblies
were used for both assemblies of the product; the only differ-
ence between the assemblies was the material used for the parts
produced in the additive technology. The differences of the es-
timated environmental impact (midpoint characterization fac-
tors) between the two assemblies throughout their life cycles
are shown in the screenshot (Fig. 3).

The base assembly (PLA) is marked in red, the alternative as-
sembly (ABS) — in blue. Values representing the environmen-
tal impact of the PLA assembly are higher than those for the
ABS assembly only in three of the 22 categories under analysis.
Similarly, it follows from an analysis of the endpoint character-
ization factors — normalization (by the ReCiPe 2016 Endpoint
method) — that for each of the categories (human health, ecosys-
tems, resources), values for the life cycle of the ABS assembly
are higher than those for the PLA assembly (Fig. 5).

Se| Damage category Unit EGZO | PLA assembly life cycle, no | EGZO | ABS assembly life cycle,
takeback no takeback

¥ Resources 000027 10000275

| Ecosystems 00257 0026

| Human health 0402 0407

Fig. 5. Comparative analysis results
(normalization — ReCiPe 2016Endpoint)

All in all, the alternative assembly has a greater environmen-
tal impact than the base one (single score — Fig. 6).

W Resources
mEcosystems

W Human
health

EGZO| PLA assembly life cycle, no takeback EGZO| ABS assembly life cycle, no takeback

Fig. 6. Comparative analysis results — single score — ReCiPe
2016Endpoint (red — resources, green — ecosystems,
blue — humanhealth)

7. DISCUSSION

The SimaPro software used in the study is a tool supporting
thorough analysis of the environmental impact of a product
throughout its life cycle. The global methods implemented in
the software (ReCiPe 2016 Endpoint, Eco-Indicator 99) facil-
itate calculation of the environmental impact and streamline
clear representation of data. To date, we have not observed simi-
lar studies in the literature on artificial-intelligent LCA analysis,
comparative studies or hybrid solutions combining traditional
and Al-based approaches. For the aforementioned reasons, it is
difficult for us to make direct comparisons with existing solu-
tions. Nevertheless, this area of research is worth pursuing, and
the results obtained and new approaches will be all the more
valuable the more complex the planning, design, manufactur-
ing, servicing, after-sales retrofitting and recycling processes.
Handling such complex processes as part of the Industrial In-
ternet of Things and Industry 4.0 will require increasingly so-
phisticated computing tools.

Limitations are posed by databases, which lack some data on
particular (often specific) processes necessary to build a pre-
cise representation of the product’s life cycle. Another diffi-
culty is posed by the fact that manufacturing processes of some
subassemblies by third parties are unknown. Meticulous data
gathering is required to build a product life cycle in the soft-
ware which will truly and accurately represent the real life cy-
cle of the product. This applies particularly to their collection
in IT databases, which will be the basis for efficient computa-
tional analyses using artificial intelligence. It was also shown
that metal bases are useful in the production of e.g. dentures. It
is easier to optimize them to mimic hard tissues [45].

Further study will focus on minimizing the simplifications
made to the product, especially with regard to the disposal of
particular assemblies at the end of life. This will allow the con-
cept of computational and hybrid LCA analyses presented in
this article to be developed thoughtfully and as quickly as pos-
sible. The development of Al-based LCA for small samples is
also a challenge.
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8. CONCLUSIONS

The results obtained showed that the artificial-intelligent ap-
proach can provide an effective way to analyze LCA even in
such complex cases as a 3D printed medical exoskeleton. This
approach, which is becoming increasingly useful as the com-
plexity of manufactured products increases, will be developed
in future studies.

Despite the potential benefits of using Al-based integrated
modeling in LCA, the topic is currently not fully explored. Al
algorithms in LCA research are applied from the identification
of the problem to its solution, therefore the integration between
Al and LCA models, also within hybrid solutions, is very im-
portant, allowing for the construction of predictive models that
increase the effectiveness of decisions being made.
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