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This paper discusses the different methods used for calculating first- and second-
order sensitivity: the direct differentiation method, the adjoint variables method, and
the hybrid method. The solutions obtained allow determining the sensitivity of dy-
namic characteristics such as eigenvalues and eigenvectors, natural frequencies, and
nondimensional damping ratios. The methods were applied for analyzing systems
with viscoelastic damping elements, whose behavior can be described by classical
and fractional rheological models. However, the derived formulas are general and can
also be applied to systems with damping elements described by other models. Their
advantage is a compact and easy to code form. The paper also presents a comparison of
the computational costs of the discussed methods. The correctness of all the proposed
methods has been illustrated with numerical examples.

1. Introduction

Sensitivity analysis iswidely used for various purposes such as structural health
monitoring, damage detection [1], model updating, and structural optimization [2].
A review of this tool has been previously presented by some authors [3, 4].
The systems subjected to dynamic impacts involve a large amount of work

devoted to the calculations of the sensitivity of eigenvalues and eigenvectors. The
sensitivity of eigenvalues and eigenvectors can be determined using three different
approaches. The first one is the modal method [5, 6] in which all or almost all
modes should be determined and is therefore considered less efficient.
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The second method was developed by Nelson [7], which was later extended
to viscous [8] and nonviscous damped systems [9]. This method is more effective
than the modal method because it requires only the eigenvalue and its associated
eigenvector to be determined.
The third one is the algebraic method which includes the direct differentiation

method (DDM) and the adjoint variables method (AVM). The authors who pro-
posed DDM [7] used it to calculate the sensitivities of eigenvalues and eigenvectors
by solving a system of equations formed from a differentiated eigenproblem and
differentiated normalization condition. The method was subsequently extended to
systemswith repeated eigenvalues [10] aswell as to viscous and nonviscous damped
systems [11]. AVM consists in adopting the response function to an eigenproblem
in terms of eigenvalue, eigenvector, and design parameters, and then differentiating
the augmented function, which is written using the eigenproblem and the vector
normalization condition. This method can be used for distinct [12] and repeated
eigenvalues [13]. In [14] AVM is used to compute complex eigenvalues and eigen-
vectors derivatives and the reverse algorithmic differentiation formula is proposed
when only the eigenvalue is required. AVM seems to be more effective than DDM
in some cases, especially when the number of parameters is large. Both methods,
DDM and AVM, have been described in [15], in which the authors discuss the
analysis of systems with viscoelastic dampers using these methods. Sensitivity
analysis of transient response for systems with viscoelastic elements based on both
DDM [16] and AVM [17] can be found.
The use of the second-order sensitivity can contribute to improving conver-

gence in the optimization design and to increasing the accuracy of the approxima-
tion. The discussedmethods have been extended to second- or higher-order analysis
in [15, 18–21]. Three methods were proposed for the calculation of second-order
sensitivity in [4]: DDM, AVM, and the hybrid method (HM). However, these
methods were used only for undamped systems, whereas this paper presents a com-
parison of the efficiency of these methods for systems with viscoelastic elements
which can be described by classical and fractional rheological models.
A lot of work is devoted to the application of design sensitivity analysis. In [22],

the combination of the AVM and complex variable method is proposed to calculate
the shape and size sensitivity for structural optimization. In [2] two optimizing
procedures based on eigensensitivity are presented to find the optimal distribution
of viscoelastic layer. In [23] the authors used the eigensensitivitymethod to optimize
the damper location in trusses. A comprehensive description of design sensitivity
analysis and its applications can be found in [24].
The equation of motion for structures with viscoelastic elements can be ex-

pressed as follows:

M¥q(𝑡) + C ¤q(𝑡) +
𝑡∫
0

G̃(𝑡 − 𝜏) ¤q(𝜏)d𝜏 + K q(𝑡) = f (𝑡), (1)
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where q(𝑡) is the vector of nodal displacement, f(𝑡) is the vector of excitation
forces, M, K, and C are mass, stiffness, and damping matrices, respectively, and
G̃(𝑡 − 𝜏) is the matrix of damping kernel functions. The form of matrix G̃ depends
on the model adopted [25, 26]. Applying the Laplace transform with zero initial
conditions, the eigenvalue problem can be written as (for f(𝑡) = 0):

D(𝑠)q̄(𝑠) = 0, D(𝑠) = 𝑠2M + 𝑠C + G(𝑠) + K, (2)

where 𝑠 is the Laplace variable, G(𝑠) is the matrix depending on the model of
viscoelastic element in Laplace domain, and q̄(𝑠) is the Laplace transform of
q(𝑡). A solution to the eigenproblem (2) for under-critically damped system is
obtained in the formof a set of complex, conjugate eigenvalues 𝑠𝑙 and corresponding
eigenvectors q̄𝑙 (𝑠) for 𝑙 = 1, 2, . . . , 2𝑛, where 𝑛 is the number of degrees of freedom
of the structure.
The AVM of the second order and HM are presented for the first time for

structures with viscoelastic elements along with the comparison of three sensitivity
calculation methods for such systems with respect to their computational cost.
The paper is organized as follows: Section 2 presents the methods of cal-

culating the sensitivities; Section 3 describes their application to structures with
viscoelastic elements; Section 4 provides examples; Section 5 shows a comparison
with respect to the computational cost of the presented methods, and Section 6
presents conclusions.

2. Design sensitivity analysis of the first and second order

2.1. Direct differentiation method (DDM)

Differentiation of Eq. (2) with respect to the design parameter 𝑝𝑖 results in the
following formula (for simplicity, (𝑠) will be omitted):

D
𝜕q̄
𝜕𝑝𝑖

+ 𝜕D
𝜕𝑠

q̄
𝜕𝑠

𝜕𝑝𝑖
= − 𝜕D

𝜕𝑝𝑖
q̄. (3)

Since Eq. (3) has 𝑛+1 unknowns (sensitivity of eigenvalue 𝜕𝑠/𝜕𝑝𝑖 and sensitivities
of 𝑛 elements of corresponding eigenvector 𝜕q̄/𝜕𝑝𝑖), it is necessary to include
additional eigenvector normalization equation:

1
2

q̄𝑇 𝜕D
𝜕𝑠

q̄ = 1. (4)

MatricesD, 𝜕D/𝜕𝑠 and 𝜕D/𝜕𝑝𝑖 have dimensions 𝑛×𝑛 and vectors q̄ and 𝜕q̄/𝜕𝑝𝑖–
𝑛 × 1.
After differentiating Eq. (4), the following formula is obtained:

q̄𝑇 𝜕D
𝜕𝑠

𝜕q̄
𝜕𝑝𝑖

+ 1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄
𝜕𝑠

𝜕𝑝𝑖
= −1
2

q̄𝑇 𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄. (5)
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Eqs. (3) and (5) can be rewritten as a set of equations as follows:
D

𝜕D
𝜕𝑠

q̄

q̄𝑇 𝜕D
𝜕𝑠

1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄



𝜕q̄
d𝑝𝑖
𝜕𝑠

d𝑝𝑖

 =


− 𝜕D
𝜕𝑝𝑖

q̄

−1
2

q̄𝑇 𝜕2D
𝜕𝑝𝑖𝜕𝑠

q̄

 . (6)

The first-order sensitivities of eigenvalues 𝜕𝑠/𝜕𝑝𝑖 and eigenvectors 𝜕q̄/𝜕𝑝𝑖 are a
solution to (6).
The second-order sensitivity can be determined by re-differentiating Eqs. (3)

and (5) with respect to the parameter 𝑝 𝑗 . This will lead to the following set of
equations: 

D
𝜕D
𝜕𝑠

q̄

q̄𝑇 𝜕D
𝜕𝑠

1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄




𝜕2q̄
𝜕𝑝𝑖𝜕𝑝 𝑗

𝜕2𝑠

𝜕𝑝𝑖𝜕𝑝 𝑗


=

[
r1
𝑟2

]
, (7)

where

r1 = −
[(

𝜕2D
𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖
+ 𝜕2D
𝜕𝑠𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

)
q̄

+
(
𝜕D
𝜕𝑝𝑖

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

+
(
𝜕D
𝜕𝑝 𝑗

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

]
,

𝑟2 = −
[
1
2

q̄𝑇

(
𝜕3D

𝜕𝑠𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕3D
𝜕3𝑠

𝜕𝑠

𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕3D
𝜕2𝑠𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕3D
𝜕2𝑠𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖

)
q̄

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝𝑖

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

+ 𝜕q̄𝑇

𝜕𝑝𝑖

𝜕D
𝜕𝑠

𝜕q̄
𝜕𝑝 𝑗

]
.

The solution of (7) is the second-order sensitivities of eigenvalues 𝜕2𝑠/(𝜕𝑝𝑖𝜕𝑝 𝑗)
and eigenvectors 𝜕2q̄/(𝜕𝑝𝑖𝜕𝑝 𝑗).
It is worth noting that the left sides of Eqs. (6) and (7) are the same. Therefore,

higher-order sensitivities will only require the calculation of the right-hand side
vector.

2.2. Adjoint variables method (AVM)

For AVM, the following objective function is assumed:

𝑓 = 𝑓 (𝑠, q̄, 𝑝𝑖) (8)

which is understood as a response function to eigenproblem in terms of eigenvalue
𝑠, eigenvector q̄, and design parameter 𝑝𝑖. By using the variational principle applied
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for the analysis of design sensitivity [27, 28], the augmented function can be defined
based on eigenproblem (2) and normalization condition (4), as follows:

𝐹𝐴
1 = 𝑓 + x𝑇1 Dq̄ + 𝑦1

(
1
2

q̄𝑇 𝜕D
𝜕𝑠

q̄ − 1
)
, (9)

where x1 and 𝑦1 are adjoint variables (the so-called Lagrangemultipliers) for eigen-
values and the associated eigenvectors, respectively. After differentiating Eq. (9)
with respect to the design parameter 𝑝𝑖 and considering Eqs. (2) and (4), the
following formula is obtained:

𝜕𝐹𝐴
1

𝜕𝑝𝑖
=

𝜕 𝑓

𝜕𝑝𝑖
+ x𝑇1

𝜕D
𝜕𝑝𝑖

q̄ + 1
2
𝑦1q̄𝑇 𝜕2D

𝜕𝑠𝜕𝑝𝑖
q̄

+
(
𝜕 𝑓

𝜕𝑠
+ x𝑇1

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦1q̄𝑇 𝜕2D

𝜕𝑠2
q̄
)
𝜕𝑠

𝜕𝑝𝑖

+
[(
𝜕 𝑓

𝜕q̄

)𝑇
+ x𝑇1 D + 𝑦1q̄𝑇 𝜕D

𝜕𝑠

]
𝜕q̄
𝜕𝑝𝑖

. (10)

Eq. (10) has two unknowns, which can be understood as the sensitivity of the eigen-
values 𝜕𝑠/𝜕𝑝𝑖 and the associated eigenvectors 𝜕q/𝜕𝑝𝑖. These can be eliminated
by formulating two adjoint equations:

𝜕 𝑓

𝜕𝑠
+ x𝑇1

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦1q̄𝑇 𝜕2D

𝜕𝑠2
q̄ = 0, (11)(

𝜕 𝑓

𝜕q̄

)𝑇
+ x𝑇1 D + 𝑦1q̄𝑇 𝜕D

𝜕𝑠
= 0𝑇 (12)

which give rise to the following set of equations:
D

𝜕D
𝜕𝑠

q̄

q̄𝑇 𝜕D
𝜕𝑠

1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄


[
x1
𝑦1

]
= −


𝜕 𝑓

𝜕q̄
𝜕 𝑓

𝜕𝑠

 . (13)

After solving (13), Lagrange multipliers are obtained. Substitution of these into
Eq. (10), will reduce it to the following form:

𝜕𝐹𝐴
1

𝜕𝑝𝑖
=

𝜕 𝑓

𝜕𝑝𝑖
+ x𝑇1

𝜕D
𝜕𝑝𝑖

q̄ + 1
2
𝑦1q̄𝑇 𝜕2D

𝜕𝑠𝜕𝑝𝑖
q̄ , (14)

where the explicit derivative 𝜕 𝑓 /𝜕𝑝𝑖 is equal to 0.
For determining the sensitivity of eigenvalue and the 𝑙-th element of the

eigenvector, Eq. (13) has to be solved separately. If the sensitivity of the eigenvalues
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is of interest, the expression 𝑓 = 𝑠 is substituted into Eq. (13) and 𝜕 𝑓 /𝜕q̄ = 0 and
𝜕 𝑓 /𝜕𝑠 = 1. On the other hand, if the sensitivity of the 𝑙-th element of eigenvector
is of interest, then the expression 𝑓 = 𝑞𝑙 is substituted and 𝜕 𝑓 /𝜕𝑠 = 0 and
𝜕 𝑓 /𝜕q̄ = 1𝛿𝑚𝑙, where 𝛿𝑚𝑙 is the Kronecker delta.
For second-order sensitivity, the new augmented function should be written

using eigenproblem (2), normalization condition (4), and two adjoint equations
(11) and (12):

𝜕𝐹𝐴
2

𝜕𝑝𝑖
=

𝜕𝐹𝐴
1

𝜕𝑝𝑖
+ x𝑇2 Dq̄ + 𝑦2

(
1
2

q̄𝑇 𝜕D
𝜕𝑠

q̄ − 1
)
+ x𝑇3

(
𝜕 𝑓

𝜕q̄
+ D x1 + 𝑦1

𝜕D
𝜕𝑠

q̄
)

+ 𝑦3

(
𝜕 𝑓

𝜕𝑠
+ x𝑇1

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦1q̄𝑇 𝜕2D

𝜕𝑠2
q̄
)
. (15)

There are four Lagrange multipliers: x2, x3, 𝑦2, and 𝑦3. After substituting
Eq. (14), differentiating Eq. (15) with respect to the design parameter 𝑝 𝑗 , and
fulfilling conditions (2) and (4), the following formula is obtained:

𝜕2𝐹𝐴
2

𝜕𝑝𝑖𝜕𝑝 𝑗

=
𝜕2 𝑓

𝜕𝑝𝑖𝜕𝑝 𝑗

+ x𝑇3
𝜕2 𝑓

𝜕q̄𝜕𝑝 𝑗

+ 𝑦3
𝜕2 𝑓

𝜕𝑠𝜕𝑝 𝑗

+ 1
2
𝑦2q̄𝑇 𝜕2D

𝜕𝑠𝜕𝑝 𝑗

q̄

+ x𝑇3

(
𝜕D
𝜕𝑝 𝑗

x1 + 𝑦1
𝜕2D
𝜕𝑠𝜕𝑝 𝑗

q̄
)
+ 𝑦3

(
x𝑇1

𝜕2D
𝜕𝑠𝜕𝑝 𝑗

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠2𝜕𝑝 𝑗

q̄
)

+
(
𝜕x1
𝜕𝑝 𝑗

)𝑇 (
𝜕D
𝜕𝑝𝑖

q̄ + D x3 + 𝑦3
𝜕D
𝜕𝑠

q̄
)
+

(
𝜕q̄
𝜕𝑝 𝑗

)𝑇 [
𝜕2 𝑓

𝜕𝑝𝑖𝜕q̄
+ 𝜕D
𝜕𝑝𝑖

x1 + 𝑦1
𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄

+ D x2 + 𝑦2
𝜕D
𝜕𝑠

q̄ + 𝑦1
𝜕D
𝜕𝑠

x3 + 𝑦3

(
𝜕2 𝑓

𝜕𝑠𝜕q̄
+ 𝜕D

𝜕𝑠
x1 + 𝑦1

𝜕2D
𝜕𝑠2

q̄
)]

+ 𝜕𝑦1
𝜕𝑝 𝑗

(
1
2

q̄𝑇 𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + x𝑇3
𝜕D
𝜕𝑠

q̄ + 1
2
𝑦3q̄𝑇 𝜕2D

𝜕𝑠2
q̄
)

+ 𝜕𝑠

𝜕𝑝 𝑗

[
𝜕2 𝑓

𝜕𝑝𝑖𝜕𝑠
+ x𝑇1

𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠2𝜕𝑝𝑖
q̄ + x𝑇2

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦2q̄𝑇 𝜕2D

𝜕𝑠2
q̄

+ x𝑇3

(
𝜕2 𝑓

𝜕𝑠𝜕q̄
+ 𝜕D

𝜕𝑠
x1 + 𝑦1

𝜕2D
𝜕𝑠2

q̄
)
+ 𝑦3

(
x𝑇1

𝜕2D
𝜕𝑠2

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠3
q̄
)]

. (16)

If the sensitivity of the eigenvalue 𝑠 ( 𝑓 = 𝑠) or the element of the eigenvector
𝑞𝑙 ( 𝑓 = 𝑞𝑙) is of interest, then the relationships:

𝜕2 𝑓

𝜕𝑠𝜕𝑝 𝑗

= 0,
𝜕2 𝑓

𝜕q̄𝜕𝑝 𝑗

= 0,
𝜕2 𝑓

𝜕𝑝𝑖𝜕𝑠
= 0,

𝜕2 𝑓

𝜕𝑝𝑖𝜕q̄
= 0 (17)

are always true.
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The unknown derivatives 𝜕x1/𝜕𝑝 𝑗 and 𝜕𝑦1/𝜕𝑝 𝑗 are eliminated from Eq. (16)
using the following two new adjoint equations:

𝜕D
𝜕𝑝𝑖

q̄ + D x3 + 𝑦3
𝜕D
𝜕𝑠

q̄ = 0, (18)

1
2

q̄𝑇 𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + x𝑇3
𝜕D
𝜕𝑠

q̄ + 1
2
𝑦3q̄𝑇 𝜕2D̄

𝜕𝑠2
q̄ = 0. (19)

The above conditions can be written as a set of equations:
D

𝜕D
𝜕𝑠

q̄

q̄𝑇 𝜕D
𝜕𝑠

1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄


[
x3
𝑦3

]
=


− 𝜕D
𝜕𝑝𝑖

−1
2

q̄𝑇 𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄

 . (20)

The above set of equations is identical to (6) in the DDM. Hence, it is not
necessary to solve Eq. (20) because it is known that x3 = 𝜕q̄/𝜕𝑝𝑖 and 𝑦3 = 𝜕𝑠/𝜕𝑝𝑖
are the first-order sensitivities. Next, the other unknown derivatives 𝜕q̄/𝜕𝑝 𝑗 and
𝜕𝑠/𝜕𝑝 𝑗 should be eliminated fromEq. (16) by introducing the following conditions:

𝜕D
𝜕𝑝𝑖

x1 + 𝑦1
𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + D x2 + 𝑦2
𝜕D
𝜕𝑠

q̄ + 𝑦1
𝜕D
𝜕𝑠

x3

+ 𝑦3

(
𝜕D
𝜕𝑠

x1 + 𝑦1
𝜕2D
𝜕𝑠2

q̄
)
= 0, (21)

x𝑇1
𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠2𝜕𝑝𝑖
q̄ + x𝑇2

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦2q̄𝑇 𝜕2D

𝜕𝑠2
q̄

+ x𝑇3

(
𝜕D
𝜕𝑠

x1 + 𝑦1
𝜕2D
𝜕𝑠2

q̄
)
+ 𝑦3

(
x𝑇1

𝜕2D
𝜕𝑠2

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠3
q̄
)
= 0. (22)

These form the following set of equations:
D

𝜕D
𝜕𝑠

q̄

q̄𝑇 𝜕D
𝜕𝑠

1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄


[
x2
𝑦2

]
=

[
r3
𝑟4

]
, (23)

where

r3 = −
[
𝜕D
𝜕𝑝𝑖

x1 + 𝑦1
𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + 𝑦1
𝜕D
𝜕𝑠

x3 + 𝑦3

(
𝜕D
𝜕𝑠

x1 + 𝑦1
𝜕2D
𝜕𝑠2

q̄
)]

,

𝑟4 = −
[
x𝑇1

𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄ + 1
2
𝑦1q̄

𝜕3D
𝜕𝑠2𝜕𝑝𝑖

q̄ + x𝑇3

(
𝜕D
𝜕𝑠

x1 + 𝑦1
𝜕2D
𝜕𝑠2

q̄
)

+ 𝑦3

(
x𝑇1

𝜕2D
𝜕𝑠2

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠3
q̄
)]

.
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Eq. (23) is solved with respect to the Lagrange multipliers x2 and 𝑦2. Then,
considering conditions (2), (4), (11), and (12), Eq. (16) is reduced to the following
form:

𝜕2𝐹𝐴
2

𝜕𝑝𝑖𝜕𝑝 𝑗

= x𝑇1
𝜕2D

𝜕𝑝𝑖𝜕𝑝 𝑗

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠𝜕𝑝𝑖𝜕𝑝 𝑗

q̄ + x𝑇2
𝜕D
𝜕𝑝 𝑗

q̄

+ 1
2
𝑦2q̄𝑇 𝜕2D

𝜕𝑠𝜕𝑝 𝑗

q̄ + x𝑇3

(
𝜕D
𝜕𝑝 𝑗

x1 + 𝑦1
𝜕2D
𝜕𝑠𝜕𝑝 𝑗

q̄
)

+ 𝑦3

(
x𝑇1

𝜕2D
𝜕𝑠𝜕𝑝 𝑗

q̄ + 1
2
𝑦1q̄𝑇 𝜕3D

𝜕𝑠2𝜕𝑝 𝑗

q̄
)
. (24)

(the explicit derivative 𝜕2 𝑓 /𝜕𝑝𝑖𝜕𝑝 𝑗 = 0). The obtained formula (24) allows deter-
mining the second-order sensitivities with the use of AVM. Similar to DDM, the
matrices on the left side of Eqs. (13) and (23) are the same.

2.3. Hybrid method (HM)

HM is also based on determining the objective function, but it can be written
as the first derivative of function 𝑓 (𝑠, 𝑝𝑖 , q̄) with respect to design parameter
(𝜕 𝑓 (𝑠, 𝑝𝑖 , q̄) /𝜕𝑝𝑖). First, the direct differentiation technique is used for computing
the derivatives 𝜕𝑠/𝜕𝑝𝑖 and 𝜕q̄/𝜕𝑝𝑖 and then the augmented function is determined
as a combination of the differentiated eigenproblem (3) and the differentiated
normalization condition (5):

𝜕𝐹𝐻
1

𝜕𝑝𝑖
=

𝜕 𝑓

𝜕𝑝𝑖
+ x𝑇4

(
D

𝜕q̄
𝜕𝑝𝑖

+ 𝜕D
𝜕𝑠

q̄
𝜕𝑠

𝜕𝑝𝑖
+ 𝜕D
𝜕𝑝𝑖

q̄
)

+ 𝑦4

(
q̄𝑇 𝜕D

𝜕𝑠

𝜕q̄
𝜕𝑝𝑖

+ 1
2

q̄𝑇 𝜕2D
𝜕𝑠2

q̄
𝜕𝑠

𝜕𝑝𝑖
+ 1
2

q̄𝑇 𝜕2D
𝜕𝑠𝜕𝑝𝑖

q̄
)
. (25)

Eq. (25) has two Lagrange multipliers: x4 and 𝑦4. After differentiating this
equation with respect to parameter 𝑝 𝑗 and considering formulas (3), (5), and (17),
the following equation is obtained:

𝜕2𝐹𝐻
1

𝜕𝑝𝑖𝜕𝑝 𝑗

=
𝜕2 𝑓

𝜕𝑝𝑖𝜕𝑝 𝑗

+ x𝑇4

[(
𝜕D

𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

)
q̄ +

(
𝜕D
𝜕𝑝𝑖

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

+
(
𝜕D
𝜕𝑝 𝑗

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

]
+ 𝑦4

[
1
2

q̄𝑇

(
𝜕3D

𝜕𝑠𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕3D
𝜕𝑠2𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕3D
𝜕𝑠2𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖
+ 𝜕3D

𝜕𝑠3
𝜕𝑠

𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

)
q̄

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝𝑖

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

(26)
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[(26) cont.]

+
(
𝜕q̄
𝜕𝑝𝑖

)𝑇
𝜕D
𝜕𝑠

𝜕q̄
𝜕𝑝 𝑗

]
+

[(
𝜕 𝑓

𝜕q̄

)𝑇
+ x𝑇4 D + 𝑦4q̄𝑇 𝜕D

𝜕𝑠

]
𝜕2q̄

𝜕𝑝𝑖𝜕𝑝 𝑗

+
(
𝜕 𝑓

𝜕𝑠
+ x𝑇4

𝜕D
𝜕𝑠

q̄ + 1
2
𝑦4q̄𝑇 𝜕2D

𝜕𝑠2
q̄
)

𝜕2𝑠

𝜕𝑝𝑖𝜕𝑝 𝑗

.

Similar to AVM, the unknown sensitivities of the second order 𝜕2q̄/𝜕𝑝𝑖𝜕𝑝 𝑗 and
𝜕2𝑠/𝜕𝑝𝑖𝜕𝑝 𝑗 are eliminated in HM. Two adjoint equations form a set of equations
which is the same as (13) obtained for first-order sensitivities. Thus, the Lagrange
multipliers are those obtained in the case of the first order (x4 ≡ x1 and 𝑦4 ≡ 𝑦1).
The second-order derivative can be written as follows:

𝜕2𝐹𝐻
1

𝜕𝑝𝑖𝜕𝑝 𝑗

= −x𝑇1 r5 − 𝑦1𝑟6 , (27)

where

r5 = −
[(

𝜕D
𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖
+ 𝜕2D

𝜕𝑠2
𝜕𝑠

𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

)
q̄

+
(
𝜕D
𝜕𝑝𝑖

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

+
(
𝜕D
𝜕𝑝 𝑗

+ 𝜕D
𝜕𝑠

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

]
,

𝑟6 = −
[
1
2

q̄𝑇

(
𝜕3D

𝜕𝑠𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕3D
𝜕𝑠2𝜕𝑝𝑖

𝜕𝑠

𝜕𝑝 𝑗

+ 𝜕3D
𝜕𝑠2𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝𝑖
+ 𝜕3D

𝜕𝑠3
𝜕𝑠

𝜕𝑝 𝑗

𝜕𝑠

𝜕𝑝 𝑗

)
q̄

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝 𝑗

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝 𝑗

)
𝜕q̄
𝜕𝑝𝑖

+ q̄𝑇

(
𝜕2D
𝜕𝑠𝜕𝑝𝑖

+ 𝜕2D
𝜕𝑠2

𝜕𝑠

𝜕𝑝𝑖

)
𝜕q̄
𝜕𝑝 𝑗

+
(
𝜕q̄
𝜕𝑝𝑖

)𝑇
𝜕D
𝜕𝑠

𝜕q̄
𝜕𝑝 𝑗

]
.

It should be noted that only one-time calculation of the set of equations is
required for determining the first- and second-order sensitivities by HM.
Both AVM and HM allow simultaneous calculation of the sensitivities of

eigenvalues and the associated eigenvectors.

3. Application to structures with viscoelastic elements

Eq. (2) describes an eigenproblem for systems with viscoelastic elements, in
which, as mentioned in Section 1, the matrix G(𝑠) depends on the type of system
considered and the rheological model of viscoelastic elements. It can be written in
the following general form:

G(𝑠) =
𝑟∑︁

𝑘=1
G𝑘 (𝑠) =

𝑟∑︁
𝑘=1

K𝑣,𝑘𝑔𝑘 (𝑠), (28)
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where 𝑟 denotes the number of viscoelastic elements, K𝑣,𝑘 is a location matrix of
viscoelastic elements and 𝑔𝑘 (𝑠) is a function describing the viscoelastic properties
of element 𝑘 . Structures with viscoelastic elements have already been described in
detail, including frame with viscoelastic dampers [29], beam with viscoelastic lay-
ers [30], and plates with viscoelastic layers [31] or with viscoelastic dampers [32].
Dynamic behavior of structures with viscoelastic elements can be described

by the natural frequency 𝜔𝑙 and the nondimensional damping ratio 𝛾𝑙 (for 𝑙 = 1, 2,
. . . , 𝑛) expressed as:

𝜔𝑙 =

√︃
𝜇2
𝑙
+ 𝜂2

𝑙
, 𝛾𝑙 = − 𝜇𝑙

𝜔𝑙

, (29)

where 𝜇𝑙 = Re(𝑠𝑙) and 𝜂𝑙 = Im(𝑠𝑙), (𝑠𝑙 = 𝜇𝑙 + i𝜂𝑙, i =
√
−1).

4. Examples

4.1. System with four degrees of freedom

The first example is the analysis of a system with four degrees of freedom
described previously in [10] (Fig. 1). The matrix D(𝑠) is expressed as:

D(𝑠) = 𝑠2M + K + K𝑣𝑔(𝑠), (30)

where
K𝑣 = diag

[
4𝑐1 4𝑐2 4𝑐𝑙 6𝑐

]
, 𝑔(𝑠) = 𝑠,

K =


4𝑘 + 𝑘1 −𝑘1 0 0
−𝑘1 5𝑘1 0 0
0 0 4𝑘 0
0 0 0 6𝑘


, M =


𝑚 0 0 0
0 𝑚 0 0
0 0 𝑚 0
0 0 0 𝑚


.

In the above example, 𝑘 = 𝑘1 = 1000 N/m, 𝑐1 = 𝑐2 = 𝑐 = 10 Ns/m and 𝑚 = 1 kg.

Fig. 1. System with four degrees of freedom
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Sensitivity was calculated with respect to the change of parameter 𝑘 . Only
distinct eigenvalues were considered in the analysis, because the presented method
cannot be applied to repeated eigenvalues (Table 1).
The values obtained here are the same as in [10].

Table 1. Comparison of results

Eigenvalue Sensitivity [10] Sensitivity DDM

𝑠1 = −20.0 + 74.8333i 1.3363 · 10−2i 1.3363 · 10−2i
𝑠2 = −30.0 + 71.414i 4.2008 · 10−2i 4.2008 · 10−2i

The system in consideration was also analyzed in terms of the second-order
sensitivity. The analysis was carried out for the first eigenvalue with respect to the
change of parameters 𝑐1 and 𝑐2. The obtained results are summarized in Table 2.

Table 2. Comparison of sensitivities of the first- and second-order

Parameter Sensitivity of the first order Sensitivity of the second order

𝑐1 −1.0 − 0.2673i 0.08 − 0.1533i
𝑐2 −1.1546 − 0.3086i 0.0564 − 0.1072i

For the imaginary part, the second-order sensitivity value for the parameter 𝑐1
is about 57% of the first-order values, and for the parameter 𝑐2 it is about 35%. This
indicates that for the case under consideration, it is advisable to take into account
the second-order sensitivity since the first-order sensitivity may give an erroneous
approximation.

4.2. Frame with viscoelastic dampers

The second example is the analysis of a framewith built-in viscoelastic dampers
(Fig. 2a). The structure was modeled as a shear frame assuming the following
parameters: mass of the floor 𝑚 = 10 000 kg and stiffness of the storey 𝑘 =

1.0 MN/m.
The behavior of the dampers is described using the fractional Maxwell model

(Fig. 2b). The same parameters were assumed for all dampers: stiffness 𝑘1,𝑘 =

1.0 MN/m, damping coefficient 𝑐1,𝑘 = 0.1 MNs/m and fractional parameter 𝛼𝑘 =

0.6. The function 𝑔𝑘 (𝑠) in Eq. (28) takes the following form:

𝑔𝑘 (𝑠) =
𝑘1,𝑘𝑐1,𝑘 𝑠

𝛼𝑘

𝑘1,𝑘 + 𝑐1,𝑘 𝑠𝛼𝑘
. (31)

A model of such a structure has been previously described in detailed [29].
First, the results of the first- and second-order sensitivity obtained using DDM,

AVM, and HM were compared. The sensitivity of the dynamic characteristics
was calculated with respect to the change of the first damper parameter 𝑐1,1.
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(a) (b)

Fig. 2. A frame with viscoelastic dampers(a) and a model of damper (b)

This was followed by a comparison of the sensitivity of natural frequency and
nondimensional damping ratio. Using the following formulas:

𝜕𝑠

𝜕𝑝𝑖
=

𝜕𝜇

𝜕𝑝𝑖
+ i 𝜕𝜂

𝜕𝑝𝑖
,

𝜕2𝑠

𝜕𝑝𝑖𝜕𝑝 𝑗

=
𝜕2𝜇

𝜕𝑝𝑖𝜕𝑝 𝑗

+ i 𝜕2𝜂

𝜕𝑝𝑖𝜕𝑝 𝑗

(32)

they can be computed as:

𝜕𝜔

𝜕𝑝𝑖
=
1
𝜔

(
𝜇
𝜕𝜇

𝜕𝑝𝑖
+ 𝜂

𝜕𝜂

𝜕𝑝𝑖

)
,

𝜕𝛾

𝜕𝑝𝑖
= − 1

𝜔

𝜕𝜇

𝜕𝑝𝑖
− 𝛾

𝜔

𝜕𝜔

𝜕𝑝𝑖
(33)

for the first-order sensitivity and

𝜕2𝜔

𝜕𝑝𝑖𝜕𝑝 𝑗

=
1
𝜔

(
𝜕𝜇

𝜕𝑝𝑖

𝜕𝜇

𝜕𝑝 𝑗

+ 𝜕𝜂

𝜕𝑝𝑖

𝜕𝜂

𝜕𝑝 𝑗

+ 𝜇
𝜕2𝜇

𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜂
𝜕2𝜂

𝜕𝑝𝑖𝜕𝑝 𝑗

− 𝜕𝜔

𝜕𝑝𝑖

𝜕𝜔

𝜕𝑝 𝑗

)
, (34)

𝜕2𝛾

𝜕𝑝𝑖𝜕𝑝 𝑗

= − 1
𝜔

(
𝛾

𝜕2𝜔

𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕2𝜇

𝜕𝑝𝑖𝜕𝑝 𝑗

+ 𝜕𝛾

𝜕𝑝𝑖

𝜕𝜔

𝜕𝑝 𝑗

+ 𝜕𝛾

𝜕𝑝 𝑗

𝜕𝜔

𝜕𝑝1

)
(35)

for the second-order sensitivity.
The results of the comparison are presented in Table 3.

Table 3. Comparison of the results obtained by DDM, AVM, and HM

Methods
Sensitivities

𝜕𝜔/𝜕𝑐1,1 𝜕2𝜔/𝜕𝑐21,1 𝜕𝛾/𝜕𝑐1,1 𝜕2𝛾/𝜕𝑐21,1
·10−7 ·10−12 ·10−7 ·10−12

DDM 7.4970 –1.7382 1.0741 –1.3461

AVM 7.4970 –1.7382 1.0741 –1.3461

HM 7.4970 –1.7382 1.0741 –1.3461
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The values of sensitivities determined by all three methods are the same. In
most of the cases analyzed, the differences appeared only in the 15th significant
place. This indicates that the results are not influenced by the method used.
The next analysis was a comparison of the exact results obtained by changing

the values of the damper parameters and the results obtained from the first- and
second-order sensitivity analysis. The values obtained from the sensitivity analysis
were calculated from the Taylor series expansion [13]:

𝑓 = 𝑓 + 𝜕 𝑓

𝜕𝑝𝑖
Δ𝑝𝑖 +

𝜕 𝑓

𝜕𝑝 𝑗

Δ𝑝 𝑗 (36)

for the first order sensitivity and

𝑓 = 𝑓 + 𝜕 𝑓

𝜕𝑝𝑖
Δ𝑝𝑖 +

𝜕 𝑓

𝜕𝑝 𝑗

Δ𝑝 𝑗 +
1
2

(
𝜕2 𝑓

𝜕𝑝2
𝑖

Δ𝑝2𝑖 +
𝜕2 𝑓

𝜕𝑝2
𝑗

Δ𝑝2𝑗 + 2
𝜕2 𝑓

𝜕𝑝𝑖𝜕𝑝 𝑗

Δ𝑝𝑖Δ𝑝 𝑗

)
(37)

for the second order sensitivity. 𝑓 denotes the function calculated for the parameters
𝑝𝑖 and 𝑝 𝑗 and 𝑓 the function after changing the parameters. For the analysis of the
variability of one parameter, formulas (36) and (37) reduce to:

𝑓 = 𝑓 + 𝜕 𝑓

𝜕𝑝𝑖
Δ𝑝𝑖 (38)

for the first order sensitivity and

𝑓 = 𝑓 + 𝜕 𝑓

𝜕𝑝𝑖
Δ𝑝𝑖 +

1
2
𝜕2 𝑓

𝜕𝑝2
𝑖

Δ𝑝2𝑖 (39)

for the second order sensitivity.
The results of the comparison are presented in Figs. 3 and 4. The influence of

the variability of the damper parameters on the first natural frequency and nondi-
mensional damping ratio was investigated. The below charts present a comparison
of the exact results (solid line) and the results obtained from the first- (dashed line)
and second-order (dotted line) sensitivity analysis. The comparisons suggest that
the second-order sensitivity analysis allows predicting the correct value of dynamic
characteristics even for changes in design parameters up to 50%.
Then, the influence of the simultaneous change of two parameters, 𝑐1,1 and 𝛼1

was examined, and the exact results obtained by changing the values of the damper
parameters were compared with those obtained from the first- and second-order
sensitivity analyses. The results of selected changes are presented in Table 4.
The comparison proves that the sensitivity analysis gives good results when

two parameters are changed simultaneously.
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(a) (b)

Fig. 3. Comparison of the first natural frequency (a) and nondimensional damping ratio (b)
with respect to the change of 𝑐1,1

(a) (b)

Fig. 4. Comparison of the first natural frequency (a) and nondimensional damping ratio (b)
with respect to the change of 𝛼1

Table 4. Comparison of the first nondimensional damping ratio for the simultaneous change
of two parameters

Results
Changes of 𝑐1,1 and 𝛼1

Δ𝑐1,1 30% Δ𝑐1,1 30% Δ𝑐1,1 30%
Δ𝛼1 10% Δ𝛼1 20% Δ𝛼1 30%

Exact 0.0378 0.0413 0.0452

First-order sensitivity 0.0379 0.0408 0.0436

Error [%] 0.26 1.21 3.54

Second-order sensitivity 0.0378 0.0414 0.0453

Error [%] 0.00 0.24 0.22
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4.3. Three-layered composite beam

The third example is the analysis of a simply supported beamwith a viscoelastic
layer (Fig. 5). The bottom and top layers of the beam are assumed to be made of
aluminum, and the core is made of a viscoelastic material described by the Zener
model. The matrix G(𝑠) is written in the following form:

G(𝑠) = 𝜏𝛼𝑠𝛼

1 + 𝜏𝛼𝑠𝛼
K∞ , (40)

where 𝜏 and 𝛼 are the parameters of the Zener model and K∞ is a known matrix.
The model has been previously described in detail [30]. The following formulas
can be substituted in Eq. (28):

𝑔(𝑠) = 𝜏𝛼𝑠𝛼

1 + 𝜏𝛼𝑠𝛼
, K𝑣 = K∞ . (41)

For elastic layers, the parameters assumed were as follows: ℎ 𝑓 = 0.001 m,
𝜌 𝑓 = 2690 kg/m3 and 𝐸 𝑓 = 70.3 GPa. For the viscoelastic layer, the following
parameters were assumed: ℎ𝑐 = 0.002 m, 𝜌𝑐 = 1600 kg/m3, 𝐸0 = 1.5 MPa, and
𝐸∞ = 69.9495 MPa. The Poisson ratio was 𝜈𝑐 = 0.5, and the parameters of the
Zenermaterial were the following: time relaxation 𝜏 = 1.4052·10−5 s and fractional
order 𝛼 = 0.7915. The length of the beam was 0.2 m, and the beam was divided
into 10 elements.

Fig. 5. Diagram of a composite beam

For the considered beam, the sensitivities of natural frequency and nondimen-
sional damping ratio with respect to the change of time relaxation were determined
for the first three modes. The obtained results are presented in Table 5.

Table 5. Sensitivities of natural frequency and nondimensional damping ratio with respect
to the change of time relaxation

Sensitivities
Mode

1 2 3
𝜕𝜔𝑖/𝜕𝜏 1.5251 · 106 −660.1300 −1.1468 · 103

𝜕2𝜔𝑖/𝜕𝜏2 7.7978 · 109 3.6369 · 103 4.4957 · 103

𝜕𝛾𝑖/𝜕𝜏 7.3608 · 103 −0.3805 −0.2318
𝜕2𝛾𝑖/𝜕𝜏2 −1.5802 · 108 −0.4372 −0.6142
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The analysis of the sensitivity values revealed that the second-order sensitivity
is significant in relation to the first-order sensitivity, and is even higher in some
cases. This proves that the second-order sensitivity should be included in the
calculations.
An advantage of the presented methods is that they allow simultaneous calcu-

lation of the sensitivity of eigenvalues and eigenvectors. The real and imaginary
parts of the eigenvector elements corresponding to the vertical degrees of dynamic
freedom are presented in Fig. 6. The exact values (solid line) were compared with
those obtained for the first- (dashed line) and second-order sensitivity (dotted line).
The change of the parameter 𝛼 by 5% was analyzed.

Fig. 6. Real and imaginary parts of the elements of eigenvector
(the imaginary part is multiplied by 107)

The eigenvector elements are characterized by much smaller sensitivity than
the previously analyzed dynamic characteristics. As a result, the compared values
almost overlap on the graph, and no significant difference can be found between
the results obtained using the first- and second-order sensitivity.

5. Computational efficiency

To compare the methods used for calculating sensitivity, the number of op-
erations to be performed was estimated for the systems whose eigenproblem is
described by formula (2). Although the presented comparison is only a certain esti-
mate, it clearly proves the effectiveness of the described methods for the considered
systems. Only multiplication/division was assumed for the comparison because the
time taken for addition/subtraction is significantly shorter. The following notations
were used for the analysis: 𝑛 is the number of degrees of freedom, 𝑝 is the num-
ber of parameters, and 𝑟 is the number of viscoelastic elements. It was assumed
that sensitivity is calculated with respect to parameters describing viscoelastic
elements because they generate more operations than structure related parame-
ters. It was also considered that some operations are performed using complex
numbers.
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The number of operations performed for the first-order sensitivity when both
eigenvalue and eigenvector are calculated, and when only the eigenvalue is calcu-
lated, is listed in Table 6. For DDM, the procedure is the same for both cases. The
left-hand side of the set of equations was omitted because it is the same for all
methods.
A similar comparison was also made for the second-order sensitivity. A com-

parison of DDM, AVM, and HM is presented in Table 7. When the sensitivity

Table 6. Number of operations for sensitivity of the first order

Operation Number of operations Complexity

Sensitivity of 𝑠 and q simultaneously, DDM

Setting up a set of equations 4𝑛𝑝 (𝑟𝑛 + 2𝑛 + 1) 𝑂

(
𝑟 𝑝𝑛2

)
Solving a set of equations 4𝑝

(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑝𝑛3

)
Sensitivity of 𝑠 and q simultaneously, AVM

Solving a set of equations 4(𝑛 + 1)
(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑛4

)
Additional equation 4𝑝

(
𝑟𝑛2 + 3𝑛2 + 3𝑛 + 1

)
𝑂

(
𝑟 𝑝𝑛2

)
Sensitivity of 𝑠, AVM

Solving a set of equations 4
(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑛3

)
Additional equation 4𝑝

(
𝑟𝑛2 + 2𝑛2 + 2𝑛 + 1

)
𝑂

(
𝑟 𝑝𝑛2

)
Table 7. Number of operations for sensitivity of the second order

Operation Number of operations Complexity

Sensitivity of 𝑠 and q simultaneously, DDM

Setting up a set of equations 4𝑝
(
2𝑟𝑛2 + 11𝑛2 + 3𝑛 + 1

)
𝑂

(
𝑟 𝑝𝑛2

)
Solving a set of equations 4𝑝

(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑝𝑛3

)
Sensitivity of 𝑠 and q simultaneously, AVM

Setting up a set of equations 4𝑝
(
2𝑛3 + 12𝑛2 + 12𝑛 + 𝑟𝑛2 + 3

)
𝑂

(
𝑝𝑛3

)
Solving a set of equations 4(𝑛 + 1)

(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑛4

)
Additional equation 2𝑝

(
3𝑟𝑛2 + 12𝑛2 + 18𝑛 + 8

)
𝑂

(
𝑟 𝑝𝑛2

)
Sensitivity of 𝑠 and q simultaneously, HM

Additional equation 4𝑝
(
2𝑟𝑛2 + 12𝑛2 + 5𝑛 + 3

)
𝑂

(
𝑟 𝑝𝑛2

)
Sensitivity of 𝑠, AVM

Setting up a set of equations 𝑝

(
24𝑛2 + 36𝑛 + 4𝑟𝑛2 + 12

)
𝑂

(
𝑝𝑛2

)
Solving a set of equations 4𝑝

(
2𝑛3 + 15𝑛2 + 19𝑛 + 6

)
/6 𝑂

(
𝑝𝑛3

)
Additional equation 2𝑝

(
3𝑟𝑛2 + 6𝑛2 + 10𝑛 + 8

)
𝑂

(
𝑟 𝑝𝑛2

)
Sensitivity of 𝑠, HM

Additional equation 4𝑝
(
2𝑟𝑛2 + 11𝑛2 + 4𝑛 + 3

)
𝑂

(
𝑟 𝑝𝑛2

)
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of the eigenvalue is of interest, for AVM and HM, it is also necessary to find the
first-order sensitivity of the associated eigenvector. It was assumed that it would be
calculated using the first-order AVM.
Figs. 7 and 8 present a comparison of the number of operations for 𝑟 = 3,

𝑛 = 20, and the number of parameters varying from 1 to 50 (solid line DDM,
dashed line AVM, dotted line HM). For calculating the first-order sensitivity of the
eigenvalue and the eigenvector, AVM is better for a greater number of parameters,
while for the second-order sensitivity AVM analysis is completely ineffective,
and HM is the best. If the sensitivity of only eigenvalues is to be calculated,
AVM has a definite advantage in the case of the first-order analysis, while for the
second-order analysis, HM is more advantageous, but only for a larger number of
parameters.

Fig. 7. Number of operations for sensitivity of eigenvalues and eigenvectors

Fig. 8. Number of operations for sensitivity of eigenvalues

The cases where the degree of dynamic freedom was greater were also ana-
lyzed, and the conclusions obtained are similar.
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6. Conclusions

The paper describes three methods that allow calculating the sensitivity of
dynamic characteristics of systems with viscoelastic damping elements. A com-
parison of these methods with respect to their computational cost is also presented.
The solutions obtained from these methods can be applied to systems with damp-
ing elements described by classical and fractional rheological models, which are
illustrated with three examples. All three methods are simple to code and can be
successfully used for various applications such as model updating, damage detec-
tion, and structural optimization.
The results for all three methods are the same, but the computational cost

depends on:
I) number of degrees of freedom of the structure,
II) number of design parameters taken into account,
III) number of viscoelastic elements,
IV) calculations performed only for eigenvalues or for both eigenvalues and

eigenvectors,
V) first-order sensitivity calculations or both first- and second-order sensi-
tivity calculations.

In the case of the sensitivity of eigenvalues and eigenvectors, for first-order
sensitivity, DDM is more advantageous with fewer design parameters. As the
number of parameters increases, AVM becomes more useful. However, for the
sensitivity of the second-order, regardless of the number of parameters, HM is the
most advantageous, while AVM generates a very large number of operations.
In the case of calculating the sensitivity of eigenvalues, AVM is more favorable

than DDM for first-order sensitivity, and its advantage increases with the increasing
number of parameters. Whereas for the sensitivity of the second-order, for a small
number of parameters, DDM is more favorable, while for a larger number of
parameters, HM is more advantageous.
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