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Abstract: Time series models have been used to extract damage features in the measured structural
response. In order to better extract the sensitive features in the signal and detect structural damage,
this paper proposes a damage identification method that combines empirical mode decomposition
(EMD) and Autoregressive Integrated Moving Average (ARIMA) models. EMD decomposes nonlinear
and non-stationary signals into different intrinsic mode functions (IMFs) according to frequency. IMF
reduces the complexity of the signal and makes it easier to extract damage-sensitive features (DSF).
The ARIMA model is used to extract damage sensitive features in IMF signals. The damage sensitive
characteristic value of each node is used to analyze the location and damage degree of the damaged
structure of the bridge. Considering that there are usually multiple failures in the actual engineering
structure, this paper focuses on analysing the location and damage degree of multi-damaged bridge
structures. A 6-meter-long multi-destructive steel-whole vibration experiment proved the state of the
method.Meanwhile, the other two damage identificationmethods are compared. The results demonstrate
that the DSF can effectively identify the damage location of the structure, and the accuracy rate has
increased by 22.98% and 18.4% on average respectively.
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1. Introduction

According to the literature [1] there are about 1 million highway bridges in Europe, and
35% of these bridges are over 100 years old. Therefore, it is an urgent task to monitor the
operational status of bridge. Structural health monitoring (SHM) system can monitor the
development of structural damage in real time and effectively prevent sudden disasters [2].
The methods of damage identification, which is the key component of the SHM, are

divided into two categories:modal parametermethod and non-modal parametermethod [3].
Modal parameter method employs structural modal parameters to reflect the structural
damage, such as the natural frequency [4–6], mode shape [7, 8], modal curvature [9–11],
modal flexibility [12], and modal strain energy [13]. However, structural parameters tend
to be random and uncertain due to the complex and changeable application environment
of bridge. In addition, the modal-based damage detection method is only sensitive to
high strength damage and identifies false damage events affected by the noise. So many
researchers turn their researches into the non-modal parameter identification method.
In the current researches, the non-modal damage identification method mainly includes

the following contents: intelligent algorithm [14–16], Bayesian theory [17, 18], statistical
methods [19–21] and signal processing techniques [22–28].
In the above methods, the statistical-based damage identification method is widely used

to track and identify the data differences between the undamaged and damage, because
this method dispenses with establishing an accurate finite element model, and has high
anti-noise capability. A statistical method for damage detection has been presented [19],
its application in a small wind turbine proves the availability and reliability of this method.
Xin et al. [20] proposed a new bridge structure deformation prediction method based
on Kalman filter, Autoregressive Integrated Moving Average (ARIMA), and generalized
autoregressive conditional heteroscedasticity (GARCH), which can be applied to analyze
and predict the bridge deformation of structure.
The damage detection method based on signal processing can display the broken physi-

cal characteristics and identifies the structural damage according to the change of the signal.
Therefore, a powerful signal processing technology is crucial in identifying damage. In
recent years, many signal processing approaches for structural damage identification have
been proposed, such as fast Fourier transform (FFT) and its variant frequency response
function (FRF), wavelet transform (WT), and blind source separation (BSS). Sulaiman
et al. [23] presented a damage detection method based on FRF and model parameters,
the experimental results indicated that the reduction of structural stiffness will affect the
FRF value. Zenzen et al. [24] proposed an advanced method to identify the location and
level of structural damage, using FRF data and optimization technology. Dilena et al. [25]
utilized amplitude irregularity to detect and locate damage, combining interpolation dam-
age detection (IDD) and FRF. These methods can realize the damage identification of the
structure, but they are inefficient to analyze nonlinear and nonstationary signals. Besides,
these methods cannot process the effect of noise, so potential errors are generated during
identification. To solve nonlinear and nonstationary problems, continuous wavelet trans-
form (CWT) is presented to decompose the difference of signals between the undamaged
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and damaged [26], the change value of the signal is used to locate and detect damage. Patel
et al. [27] used complex CWT to extract and analyze the discontinuity of the acceleration
response signal, and utilized the wavelet coefficient to detect structural damage. Although
wavelet transform can process nonlinear and nonstationary signals, the selection of wavelet
generating function and the uncertainty of the decomposition level can easily affect the
consequences of damage identification. Morovati et al. [28] proposes a damage identifica-
tion method combining BSS and time-field analysis technology. Although BSS can explain
the mixed characteristics in the measured response signal, this method still has limitations
in analyzing signals with non-stationary characteristics.
From the above researches, the damage detection method based on time-domain signal

processing cannot meet high-precision identification requirement, especially for nonlinear
and nonstationary signals. As a result, Hilbert-Huang transform (HHT) is proposed to
analyze signal. Qu et al. [29] analyzed the seismic damage of soil using edge spectrum
identification theory based on HHT, experimental results show the HHTmethod is efficient
to nonlinear and non-stationary signal. Also, Han et al. [30] proved that marginal spectrum
inHHT can accurately identify the damage location, and has a strong anti-noise interference
ability. Kelareh et al. [31] researched the influence of measurement noise and load types on
the system, the result of simulations and experiments show that HHT technique can reduce
the effect of noises. Through the improvement of HHT algorithm, a method is proposed
based on empirical mode decomposition (EMD) and Shannon entropy index (SEI) [32,33],
and the results showed that this method has good sensitivity to small damage.
In order to better extract the damage-sensitive features from the signals, a structural

damage identification method combining EMD algorithm and ARIMA model is presented
to locate and quantify structural damage. EMD decomposes nonlinear and non-stationary
signals into different IMF according to frequency, which reduces the complexity of signals
and makes it easier to extract damage sensitive features. The ARIMA model is used
to extract the damage-sensitive features from the IMF signals, and the damage-sensitive
features are defined as the variance difference of the residual sequence before and after
the damage. The qualitative and quantitative analysis of the bridge damage structure is
realized through the damage-sensitive characteristic values of each node. Considering that
there are multiple damages in the actual engineering structure, a vibration experiment of
a 6-meter steel-concrete composite bridge with multiple damages was carried out to prove
the effectiveness of the proposed method.

2. Theoretical background

2.1. Empirical model decomposition (EMD)

EMDalgorithm is a signal processingmethod established byHuang [34] based onHHT,
which is not only suitable for nonlinear and non-stationary signal analysis but also suitable
for linear and stationary signal analysis. According to the frequency information, EMD
algorithm decomposes the original measured time series into trend term and multiple sub-
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sequences of different frequency (i.e., IMFs). The decomposed IMF components contain
local characteristic signals at different time scales of the original signal. EMD can retain
the characteristics of the original signal to the greatest extent, the inherent fluctuation
characteristics of the sequence are revealed by analysing the fluctuation information of
each frequency component. The process of the EMD algorithm is as follows:
1. Find out all the extreme points (local maximum andminimum) of the original time series

𝑋 (𝑡). According to the extreme points and using the cubic spline difference function,
the upper envelope 𝑈 (𝑡) and lower envelope 𝐿 (𝑡) of the sequence are fitted, and then
the mean envelope 𝑚(𝑡) is obtained (Eq. 2.1):

(2.1) 𝑚(𝑡) = 𝑈 (𝑡) + 𝐿 (𝑡)
2

where: 𝑈 (𝑡) – upper envelope sequence, 𝐿 (𝑡) – lower envelope sequence, 𝑚(𝑡)– mean
envelope sequence.

2. Subtract 𝑚(𝑡) from original time series 𝑋 (𝑡) to get a new sequence ℎ(𝑡).

(2.2) ℎ(𝑡) = 𝑋 (𝑡) − 𝑚(𝑡)

where: ℎ(𝑡) – a new sequence, 𝑋 (𝑡)– original time series.
3. Determine whether the ℎ(𝑡) sequence satisfies two conditions: a) In the entire data
range, the number of local extremums and zero crossings must be equal, or the number
of differences must be at most 1. b) At any time, the average value of the envelope of
the local maximum (upper envelope) and the envelope of the local minimum (lower
envelope) must be zero. If a) and b) are satisfied, the sequence ℎ(𝑡) is the first IMF
of the original sequence 𝑋 (𝑡), namely the IMF1; otherwise, then ℎ(𝑡) as a new 𝑋 (𝑡)
continues to perform 1), 2) operations until both conditions are satisfied.

4. By subtracting the first mode component IMF1 from the original sequence 𝑋 (𝑡), a new
sequence 𝑟1 is obtained. And 𝑟1 is decomposed by 1), 2) and 3) to obtain the second
mode component IMF2 is obtained. If time series cannot be decomposed, the sequence
that cannot be decomposed is called trend term 𝑟𝑛.

(2.3) 𝑟1 = 𝑋 (𝑡) − 𝐼𝑀𝐹1

where: 𝑟𝑖 – trend term sequence, IMFi – mode component.
In the process of measurement, the accuracy of the experimental data will be affected

by noise. However, after EMD decomposition, the noise will be evenly distributed on each
IMF. Through the analysis of IMFs, the influence of noise on the series is reduced and the
accuracy of the experiment can be improved.

2.2. Autoregressive integrated moving average model (ARIMA)

The ARMA model was proposed by mathematician Walker in 1931 and has been
widely used in various fields. Because the ARMA model only relies on the output data of
the system.It does not depend on the accurate finite element model and need to consider the
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relevant information of the load input.The model is widely used in the time series analysis
of structural damage identification.
In the ARMA model, the value of time is not only related to the past time value, but

also to the previous error term. The sequence value of time can be expressed as:

(2.4) 𝑥𝑡 = 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 + . . . + 𝜑𝑝𝑥𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1 + . . . + 𝛽𝑞𝜀𝑡−𝑞

where: 𝜑𝑖 (𝑖 = 0, 1, . . . , 𝑝) – the coefficient of the order autoregressive term, 𝛽 𝑗 ( 𝑗 =

0, 1, 2, . . . , 𝑞) – the order moving average term coefficient, 𝜀𝑡 – a white noise sequence
with zero mean and variance.
The ARMA model has the following properties: (1) A random event sequence can be

represented by an autoregressive moving average model. The sequence can be explained
by its own past or lag values and random disturbance terms. (2) If the series is stationary,
i.e. it does not change over time. It can be seen from the above formula, the modeling idea
of ARMA is that the system output of the current state or a certain time in the future is only
related to the output and error term of the past time. The correlation between the inherent
attribute information of the system and the output time series information is integrated into
the model. in the coefficient.
The lag operator B is introduced here. For the time series value 𝑥𝑡 at any time, the lag

operator satisfies:

(2.5) B(𝑥𝑡 ) = 𝑥𝑡−1

where: B(𝑥𝑡 ) – lag operator, 𝑥𝑡−1 – time series at time 𝑡 − 1.
Similarly, a higher-order lag operator can be defined. For any time series 𝑥𝑡 , the higher-

order lag operator satisfies:

(2.6) B𝑘 (𝑥𝑡 ) = 𝑥𝑡−𝑘

where: B𝑘 (𝑥𝑡 ) – 𝑘 order lag operator
Therefore, the Eq. (2.4) can be written as:

(2.7)

(
1 −

𝑝∑︁
𝑖=1

𝜑𝑖B𝑖
)
𝑥𝑡 =

©­«1 −
𝑞∑︁
𝑗=1

𝛽 𝑗B 𝑗ª®¬ 𝜀𝑡
When 𝜑(B) =

(
1 −

𝑝∑︁
𝑖=1

𝜑𝑖B𝑖
)
, 𝛽(B) = ©­«1 −

𝑞∑︁
𝑗=1

𝛽 𝑗B 𝑗ª®¬, the Eq. (2.7) can be converted
into:

(2.8) 𝜑(B)𝑥𝑡 = 𝛽(B)𝜀𝑡

After shifting the formula, we get:

(2.9) 𝑥𝑡 =
𝛽(B)
𝜑(B) 𝜀𝑡
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It can be seen from the above formula, the ARMAmodel can be converted into the form
of a transfer function, which is represented by white noise as the environmental excitation,
and has an equivalent relationship with the actual system in time series.
Therefore, in the same structural system, if the input of the two systems is the same,

the two ARMA models will only produce smaller residuals. On the contrary, if the two
structural systems are different, the ARMA models will produce larger residuals.

2.3. Damage index

EMD algorithm is a signal processing method established by Huang based on HHT,
which is suitable for nonlinear and non-stationary signal analysis. According to the fre-
quency information, EMD algorithm decomposes the original measured time series into
trend term andmultiple sub-sequences of different frequency (i.e., IMFs). The decomposed
IMF components contain local characteristic signals at different time scales of the original
signal. EMD can retain the characteristics of the original signal to the greatest extent, the
inherent fluctuation characteristics of the sequence are revealed by analysing the fluctuation
information of each frequency component.
The bridge vibration signal usually shows the characteristics of non-stationary, non-

linear, complex spectrum components and so on. At any point, these data contain multiple
fluctuation modes, decomposing the original data can retain the characteristics of the
original signal to the greatest extent. The noise data in the signal is decomposed to IMFs at
the same time, it is convenient for noise reduction. In the experiment, the EMD algorithm is
used to process the time-series, signals at different nodes in different states are decomposed
into IMFs respectively, the inherent fluctuation characteristics of the sequence are revealed
by analyzing the fluctuation information at different scales. Figure 1 shows the result of
EMD decomposition.
After the EMD algorithm, the time series signal is decomposed into various modal

components of different frequencies. The ARMA model is used to predict each modal
component, and the residual of each modal component signal is obtained. At this time,
the error between the predicted value of the residual ARMA model and the actual value
is calculated by using the obtained residual to solve its variance to construct the damage-
sensitive characteristic factor. At this time, the variance of the residual is used to indicate
the degree of agreement between the estimated value of the model and the real data. When
the variance is smaller, the degree of agreement is considered to be better, and the degree
of damage is considered to be smaller.
In order to accurately identify and quantify the damage site of the structure, the damage

index is defined as:

(2.10) DSF =
��𝜎2 (𝜀𝑑) − 𝜎2 (𝜀𝑢)

��
where: 𝜎2 (𝜀𝑑) – the conditional variance of the residuals of the structural model under
the damage condition, 𝜎2 (𝜀𝑢) – the conditional variance of the residuals of the structural
model under the intact condition.
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Fig. 1. Modal component diagram

When the DSF value is greater than 0, the structure is damaged, and when the DSF
value is equal to 0 or close to 0 within the allowable range of error (±(0.1 · max(DSF))),
the structure is not damaged. When identifying damage, qualitatively judge the damage
degree of the structure according to the size of the DSF mutation.

2.4. Index evaluation

Precision, Recall and valuation value 𝐹 are used to determine the accuracy of damage
identification results.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.11)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.12)

𝐹 =
2 · Precision · Recall
(Precision + Recall)(2.13)

where: 𝑇𝑃 – the number of true positive samples, 𝐹𝑃 – the number of false-positive
samples, 𝐹𝑁 – the number of false-negative samples.
According to the 𝐹 criterion, the larger of 𝐹, the higher the accuracy of damage index

identification.
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3. Experimentation

3.1. Experimental setup

A 6-meter steel-concrete bridge model is designed in the laboratory. The cross-section
size of the model is 900 × 90 mm, this model is divided into 19 units and 18 nodes. The
elastic modulus of the model material are 2.0795× 108 kN/m2 and 2.10× 108 kN/m2, and
the Poisson’s ratio is 𝜇 = 0.3. There are 18 removable shear connectors embedded in the
model, and all shear connectors are tightened to 120 N·m through the torque wrench. The
nut is 12 × 1.7 mm, and the bolts length is 50 mm. The concrete slab and the steel beam
are closely connected, and the beam slab is poured separately. Each shear connector is
composed of the screw rod of the beam arch and it is tied in the embedded nut cap. The
width of the bridge model support is 0.5 m, the height is 0.8 m, and the width of the bridge
is 0.9 m. The designed bridge model are shown in Figs. 2 and 3.

Fig. 2. Experimental setup

Fig. 3. Simply supported beam structure
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Firstly, the vibration data are obtained through the vibration experiment in the designed
bridge model. The NI acceleration sensors are fixed at the corresponding position of the
steel beam structure through the magnetic bearing, as shown in Figs. 4 and 5. The overall
frame design of the bridge is shown in Figs. 5 and 6. The influence of sensor quality on the
experiment was not considered. The data is acquired by a dynamic acquisition instrument
INV306U with the maximum sampling rate 1 MHz and recorded by a computer.

Fig. 4. Overall picture

Fig. 5. Bridge structure

Fig. 6. Sensor location

3.2. Study cases

A bridge has a large number of nodes, different damage factors will cause different
damages to these nodes of bridge. In order to better simulate the damage of the bridge
structure, the shear connectors at different nodes are removed simultaneously in this ex-
periment. Since the removed shear connectors have a great influence on the surrounding
adjacent nodes, the damage degree is set as the ratio of the number of removed connectors
to the total number of adjacent nodes. Five different damage states were set up in the test,



662 W. LU, J. DONG, Y. PAN, G. LI, J. GUO

the vibration acceleration under health and damage conditions was tested by the hammering
method. Experimental damage conditions are shown in Table 1.

Table 1. Data labels of structural state conditions

State Description Damage

OM1 Remove a row of shear connectors of S8, S12 and S15 10%

OM2 Remove two row of shear connectors of S8, S12 and S15 20%

OM3 Remove a row of shear connectors of S8 and S12 8%

OM4 Remove four row of shear connectors of S8, S12 and S15 40%

OM5 Remove two row of shear connectors of S8 and S12 15%

3.3. Results

The Figure 7 shows the identification of bridge damage structure using the ARIMA
model, Kalman-ARIMAmodel, and EMD-ARIMAmodel.When the structure is damaged,

(a) (b)

(c)

Fig. 7. Damage identification result: (a) ARIMA; (b) Kalman-ARIMA and (c) EMD-ARIMA
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the DSF values of the above three methods are mutated, and the DSF value of damaged
nodes are significantly greater than 0, which fully reflects that our method can effectively
identify the damage of the structure. It can be seen from Fig. 7 that the DSF values of
nodes with different damage degrees are different, and with the increase of damage degree,
the DSF value increases, which can preliminarily reflect that there is a linear correlation
between the damage degree of the structure and the DSF. EMD-ARIMA model based on
structural damage identification can effectively reduce the probability of false recognition,
from the 𝐹 value can be obtained (Table 2). Compared with ARIMA model and Kalman-
ARIMAmodel, the EMD-ARIMAmodel used in this paper has the best effect, the accuracy
of recognition is improved obviously under each condition.

Table 2. Damage identification result analysis

State
ARIMA Kalman-ARIMA EMD-ARIMA

Precision/% F/% Precision/% F/% Precision/% F/%

OM1 60.0 75.0 75.0 85.7 75.0 87.5

OM2 60.0 75.0 60.0 75.5 75.0 87.5

OM3 40.0 57.1 40.0 57.1 66.7 80.2

OM4 37.5 54.5 50.0 66.7 75.0 85.7

OM5 28.6 44.4 28.6 44.4 66.7 80.0

It can be seen from the test results that the error of damage identification results under
working conditions 1, 2, and 4 is small. Therefore, the peak values of damage indexes
under different damage conditions of each node in Fig. 7 are extracted, and the relationship
curve between the peak value of indexes and the damage degree is fitted. The peak values
of DSF indexes at nodes 5, 8, and 10 are selected for fitting. The fitting polynomial times
are set to 3, and the fitting damage degree function equations are respectively:

𝑦5 = 0.190427𝑥3 − 0.158638𝑥2 + 0.041907𝑥 − 0.001826(3.1)

𝑦8 = 0.218747𝑥3 − 0.164436𝑥2 + 0.040985𝑥 − 0.001586(3.2)

𝑦10 = 0.100987𝑥3 − 0.067962𝑥2 + 0.015779𝑥 − 0.000088(3.3)

The fitting curve of the structural damage relationship is shown in Figure 8. The damage
degree increases from 10% to 40%, the damage indexes of nodes 5, 8 and 10 increases
gradually. The relationship between the structural damage degree and the maximum mu-
tation value of the DSF index of the corresponding unit is fitted. As shown in Figure 8 the
mutation value of the DSF index in the damage position increases linearly with the increase
of the damage degree. The damage degree is greater than 40%, the increase of the mutation
value of the index increases rapidly. It can be inferred that the structural components at
the damage position have entered the plastic failure stage [35,36]. Due to the measurement
error in the measurement process, the fitted DSF value has a negative value in a healthy
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state. The cumulative effect of damage is considered in the curve, and the fitting curve of
damage degree can qualitatively verify the correctness of the growth trend.

Fig. 8. Damage degree fitting curve

The Figure 9 is the comparison of the identification effect of the three methods on
the damage nodes under the OM1, OM2 and OM3 states respectively. The DSF values
of the three methods at the damage nodes show a sudden rise. However, interestingly,

(a) OM1 (b) OM2

(c) OM4

Fig. 9. Comparison of recognition result. (a) OM1. (b) OM2 and (c) OM4
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compared with the ARIMA method and the Kalman-ARIMA method, the DSF value of
the EMD-ARIMA method is more obvious, and it is more sensitive to the identification of
the damaged structure.

4. Conclusions
This paper presents a bridge structure damage identification method based on EMD

and ARIMA model. In this work, these data are obtained from damaged structures under
different working conditions. The EMD is applied to process non-stationary signal without
presetting the basis function. The ARIMAmodel is employed to analyse data and construct
damage indicators, and the indicators are used to verify damage of structure. The following
conclusions can be obtained:
1. The damage identification method based on EMD-ARIMA is effective and correct.
Besides, the proposed DSF can also reflect the state of the structure.

2. In the case of multiple injuries, this method can effectively identify the damage at
different locations and has a high accuracy.

3. The damage identification index proposed by thismethod ismore sensitive to damage.
4. However, the number of nodes in this article is limited, and the results of complex
bridges need to be further verified.
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