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Abstract. In the present paper, we analyze the model of a single–server queueing system with limited number of waiting positions, random
volume customers and unlimited sectorized memory buffer. In such a system, the arriving customer is additionally characterized by a non–
negative random volume vector whose indications usually represent the portions of unchanged information of a different type that are located in
sectors of unlimited memory space dedicated for them during customer presence in the system. When the server ends the service of a customer,
information immediately leaves the buffer, releasing resources of the proper sectors. We assume that in the investigated model, the service
time of a customer is dependent on his volume vector characteristics. For such defined model, we obtain a general formula for steady–state
joint distribution function of the total volume vector in terms of Laplace-Stieltjes transforms. We also present practical results for some special
cases of the model together with formulae for steady–state initial moments of the analyzed random vector, in cases where the memory buffer is
composed of at most two sectors. Some numerical computations illustrating obtained theoretical results are attached as well.

Key words: single–server queueing system; queueing systems with random volume customers; sectorized memory buffer; total volume vector;
Laplace–Stieltjes transform.

1. INTRODUCTION
The classical queueing theory usually deals with models in
which the arriving customers are assumed to be homogeneous.
It means that their basic characteristics such as service time
distribution are the same and they differ substantially only in
arrival times. This assumption is taken into consideration in
almost all analyses of well–known models of type 𝑀/𝑀/𝑛/𝑚,
𝑀/𝐺/𝑛/0, 𝑀/𝐺/1/∞, 𝑀/𝐺/1/𝑚, 𝐺𝐼/𝑀/𝑛/∞ and queueing
system with processor sharing 𝑀/𝐺/1/∞ − 𝐸𝑃𝑆 [1–3].
On one hand such simplification makes analysis less com-
plicated, but on the other hand the results of investigations
cannot be often applied in real computer or telecommunication
systems.

Indeed, nowadays in many modern technical systems that
are designed for customers’ servicing, we must treat customers
as non–homogeneous. They may exemplary have different ser-
vice time characteristics, different priorities, come from differ-
ent sources or be characterized by other random requirements.
These additional assumptions make research more complicated
but let us successfully use introduced models in practice. Some
aspects of customers’ non–homogeneity have recently appeared
in many works of researchers from different countries [4–9].

In many papers, authors assume that customers differ in their
volumes (sizes). Such situation happens when they transport in-
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formation that is integrally stored in memory buffer of a system
until their service termination. This approach has caused ap-
pearance of the new discipline called queueing systems with
random volume customers. It is still rather a novel but strongly
developing direction in applied mathematics which has many
various applications, especially in computer science.

Moving on to practice, in many real systems customer ser-
vice time is dependent on his volume (size of the portion of
information he delivers, measured in bytes). The area of investi-
gation in this case is much wider than for the classical queueing
models. Besides getting the characteristics of number of cus-
tomers present in the system or waiting time characteristics (for
models with unlimited queue), we also want to obtain character-
istics of the total volume of customers (the sum of the volumes
of all customers present in the system) and loss characteristics
when memory buffer size is limited. Initially, such models were
investigated by the tools of classical queueing theory [10, 11]
but it turned out that obtained theoretical results were not com-
patible with simulation ones. It was because computations did
not take into account an existing dependence between customer
volume and his service time.

First papers investigating systems with random volume cus-
tomers that introduced new methods of research and extended
mathematical apparatus appeared in the last decades of the
twentieth century [12, 13]. The popularity of this direction has
been increasing in the last few years and there are a lot of pub-
lications on this topic, mainly due to the progress in computer
science and possible applications of analyzed models or ob-
tained results in real systems. Some interesting investigations
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can be found e.g. in [14–28] but we must emphasize that in
many of cited papers service time of a customer is still often
treated as independent with regard to his volume which does
not let us use the results in many practical systems, and the
others include only approximate analysis and do not deal with
calculating exact total volume characteristics (even in steady
state).

Considering the theory of queueing systems with random
volume customers, we always must take into account two main
important aspects. The first of them is a possible limitation of
total volume and the second is the character of dependency be-
tween customer’s volume and his service time (dependent or
not). So we can analyze models with limited or unlimited mem-
ory buffer in which service time of a customer can be indepen-
dent or dependent on his volume. Finally, we have four classes
of models [2, 29, 30]. Models from first class (unlimited total
volume and service time of a customer independent on his vol-
ume) are trivial and their analysis needs no extended methods
(we can obtain results using classical ones). Models belong-
ing to second class (limited memory buffer but still indepen-
dent customer volume and his service time) are only a little
bit more difficult because they need just small modifications
in classical methods. Unfortunately, independence assumption
in these two classes makes that models rarely can be used in
practice as service time of a customer (e.g. packet) in real com-
puter or telecommunication systems is usually dependent on
his size (often proportional). The third class (unlimited mem-
ory buffer and dependence between customer service time and
his volume) is very interesting because we may obtain in this
case very practical characteristics of the total volume of cus-
tomers present in the system. Here analysis demands introduc-
ing significant generalizations of methods known from classical
queueing theory (see e.g. [31] in which servers are additionally
non–identical). Moreover, results obtained for the models from
the third class can be used to calculate approximate loss charac-
teristics for analogous models but with limited memory buffer
(the fourth class) [32]. The last fourth class is the most difficult
(but the most practical) and exact results were obtained only for
systems with no waiting positions (see e.g. [33–35]). Some of
obtained results can be used in real computer or telecommuni-
cation system designing process (e.g. calculating required sizes
of memory buffers) as packets of data seem to be good repre-
sentation of random volume customers.

In addition, investigations have recently become concen-
trated on systems in which customers are characterized by some
random volume vectors (their volume is understood as multi-
dimensional). This assumption is connected with practical ob-
servation that in computer networks customers (packets) may
transport information of a different type (packets are composed
of parts storing some specific data – text parts, attachment parts,
audio parts, video parts and so on). These parts are located
in separate sectors of memory buffer until customer ends his
service. The behavior of such systems is schematically pre-
sented in Fig. 1. This approach can be found in technical re-
ports [36, 37] and first important analyses of systems with ran-
dom volume customers and sectorized memory buffer can be
found e.g. in [38–40].

Fig. 1. Scheme of a queueing system with random volume customers
and sectorized memory buffer

In our paper we also deal with analysis of chosen model of
the mentioned above type. However, this time we investigate
much more complicated model in which the queue of waiting
customers is limited and service time of a customer is depen-
dent on his volume vector. These practical (in line with real-
ity) assumptions make research more complex from the math-
ematical point of view (compared to the cited above papers).
E.g. in [40] we analyze either models without a queue or mod-
els in which the queue is unlimited. The analysis is a little bit
less complicated in this case. But, on the other hand, results ob-
tained in the present paper may have many various applications
in real telecommunication or computer systems designing pro-
cess. The model might be exemplary used for application–level
servers and routers inside the computer network. This paper
presents an exact analysis of single–server queueing system (of
𝑀/𝐺/1/𝑚–type) with random volume customers and sector-
ized unlimited memory buffer. The rest of the paper is organized
as follows. In Section 2, we introduce necessary notations and
show some mathematical background of our research. In Sec-
tion 3, we present obtained formula for steady–state Laplace–
Stieltjes transform of total volume vector for analyzed model
which is the main result of this paper. Next Section 4 contains
exemplary results for some special cases of the model. In Sec-
tion 5, we present calculations for the limitary case (𝑀/𝐺/1/∞
system). In Section 6, we discuss situation in which random
volume vector is one-dimensional whereas in Section 7 – the
case of two-dimensional vector. These two sections addition-
ally contain formulae for steady–state initial moments of total
volume vector and some numerical computations. The last Sec-
tion 8 presents conclusions and final remarks.

2. THE MODEL AND BASIC NOTATIONS
In this section, we introduce some necessary notations that are
used in analyzing of single–server queueing system with lim-
ited number of waiting positions and unlimited sectorized mem-
ory buffer.

We analyze a queueing system 𝑀/𝐺/1/𝑚, 𝑚 = 0,1, . . . ,
(in our notation 𝑚 does not include service position) in
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steady state (we assume that the utilization coefficient 𝜌 sat-
isfies the condition: 𝜌 = 𝑎𝛽1 < ∞), where 𝑎 is an arrival
rate (time between neighboring moments of customers’ ar-
rival is exponentially distributed with parameter 𝑎) and 𝛽1
is the mean value of customer’s service time b. We de-
note by 𝐵(𝑡) = P{b < 𝑡} its distribution function (DF). We
assume that each customer in the system is characterized
by 𝑛-dimensional random (volume) vector 𝜻 = (Z1, . . . , Z𝑛),
𝑛 = 1,2, . . ., where indications Z1, . . . , Z𝑛 are non–negative ran-
dom variables (RVs). Let

𝐿 (x) = 𝐿 (𝑥1, . . . , 𝑥𝑛) = P{Z1 < 𝑥1, . . . , Z𝑛 < 𝑥𝑛} = P{𝜻 < x}

be the joint DF of RVs Z1, . . . , Z𝑛 (or DF of the random vec-
tor 𝜻).

We also assume that service time of the customer on ser-
vice b generally depends on vector 𝜻 . So, the following (𝑛+1)-
dimensional DF is defined:

𝐹 (x, 𝑡) = P{𝜻 < x, b < 𝑡}.

Then, we obviously have 𝐿 (x) = 𝐹 (x,∞),
𝐵(𝑡) = 𝐹 ( ®∞, 𝑡), where ®∞ = (∞, . . . ,∞)︸       ︷︷       ︸

𝑛

.

Let 𝜎𝑖 (𝑡) be the sum of 𝑖th indications of all customers
present in the system at time instant 𝑡, 𝑖 = 1, . . . , 𝑛. Now we in-
troduce vector 𝝈(𝑡) = (𝜎1 (𝑡), . . . ,𝜎𝑛 (𝑡)), that is usually called
total volume vector. In steady state we have 𝜎𝑖 (𝑡) ⇒ 𝜎𝑖 , 𝑖 =
1, . . . , 𝑛, and 𝝈(𝑡) ⇒ 𝝈 = (𝜎1, . . . ,𝜎𝑛) in the sense of a weak
convergence, where 𝜎𝑖 , 𝝈 are the proper steady–state (limit)
random characteristics of the system.

Our aim is the determination of 𝑛-dimensional Laplace–
Stieltjes transform (LST) 𝛿(s) = 𝛿(𝑠1, . . . , 𝑠𝑛) of the random
vector 𝝈:

𝛿(s) = E𝑒−(s,𝝈) =
®∞∫

0

𝑒−(s,x) d𝐷 (x),

where 𝐷 (x) = 𝐷 (𝑥1, . . . , 𝑥𝑛) = P{𝜎1 < 𝑥1, . . . ,𝜎𝑛 < 𝑥𝑛}
= P{𝝈 < x} is the joint DF of vector’s 𝝈 indications and

(s,x) =
𝑛∑︁
𝑖=1

𝑠𝑖𝑥𝑖 denotes the scalar product of the vectors s and x.

3. THE MAIN RESULT
In this section we present main result of our investigations con-
nected with obtaining of general formula for LST 𝛿(s).

Denote by 𝑝𝑘 (𝑢) d𝑢 the steady–state probability that there
are 𝑘 customers in the system at arbitrary time instant and
time b∗ passed from the beginning of service (of currently
being served customer) to this time, where b∗ ∈ [𝑢,𝑢 + d𝑢),
𝑘 = 1, . . . ,𝑚 + 1. Time b∗ is often called elapsed time of a cus-
tomer. Let [ be the number of customers present in the system
in steady state. Evidently, due to the total probability theorem,

we obtain the following formula for the steady–state probabili-
ties 𝑝𝑘 :

𝑝𝑘 = P{[ = 𝑘} =
∞∫

0

𝑝𝑘 (𝑢) d𝑢, 𝑘 = 1, . . . ,𝑚 +1,

whereas value of 𝑝0 = P{[ = 0} can be found from the normal-

ization condition
𝑚+1∑︁
𝑘=0

𝑝𝑘 = 1.

As it follows from [1, 2], we have (if 𝑚 > 0)

𝑝𝑘 (𝑢) = 𝑒−𝑎𝑢 [1−𝐵(𝑢)]
𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
(𝑎𝑢)𝑖
𝑖!

, 𝑘 =1, . . . ,𝑚, (1)

𝑝𝑚+1 (𝑢) = [1−𝐵(𝑢)]
𝑚∑︁
𝑘=1

𝑝𝑘 (0) −
𝑚∑︁
𝑘=1

𝑝𝑘 (𝑢). (2)

In the case of 𝑚 = 0, we easily obtain

𝑝1 (𝑢) = 𝑎𝑝0 [1−𝐵(𝑢)] . (2a)

Let

𝛼(s, 𝑞) = E𝑒−(s,𝜻 )−𝑞b =

®∞∫
x=0

∞∫
𝑡=0

𝑒−(s,x)−𝑞𝑡 d𝐹 (x, 𝑡)

be LST of the function 𝐹 (x, 𝑡) and analogously

𝜑(s) = 𝛼(s,0) =
®∞∫

0

𝑒−(s,x) d𝐿 (x)

and

𝛽(𝑞) = 𝛼(0, 𝑞) =
∞∫

0

𝑒−𝑞𝑡 d𝐵(𝑡)

be LSTs of the function 𝐿 (x) and 𝐵(𝑡), respectively.

Theorem 1. The function 𝛿(s) for the system under considera-
tion is determined by the following relations:

𝛿(s) = 𝑝0 − (𝜑(s))𝑚𝛼′
𝑞 (s, 𝑞)

��
𝑞=0

𝑚∑︁
𝑘=1

𝑝𝑘 (0)

+ 1
𝑎

𝑚∑︁
𝑘=1

[
(𝜑(s))𝑘−1 − (𝜑(s))𝑚

]
×

𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝜑(s) −

𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)
 ,

where

𝑅 𝑗 (s, 𝑎) =
𝑎 𝑗

𝑗!

®∞∫
x=0

∞∫
𝑡=0

𝑡 𝑗𝑒−(s,x)−𝑎𝑡 d𝐹 (x, 𝑡), if 𝑚 > 0;

𝛿(s) = 𝑝0

[
1− 𝑎𝛼′

𝑞 (s, 𝑞)
��
𝑞=0

]
, if 𝑚 = 0.

(3)
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Proof. Assume that 𝑚 > 0. On the base of total probabil-
ity theorem, in analogous way as it was done in [40] for the
𝑀/𝐺/1/∞ system with random volume customers and sector-
ized memory buffer, we can present DF 𝐷 (x) in the following
form:

𝐷 (x) = 𝑝0 +
𝑚+1∑︁
𝑘=1

∞∫
0

𝑝𝑘 (𝑢)
[
𝐿
(𝑘−1)
∗ ∗𝐸𝑢 (x)

]
d𝑢,

where 𝐿
(𝑘−1)
∗ (x) denotes (𝑘 − 1)-dimensional convolution of

DF 𝐿 (x) and 𝐸𝑢 (x) – conditional joint DF of customer on
service volume vector, under condition that his elapsed time
equals 𝑢.

Obviously, on the base of properties of LST transform (ap-
plied to the left and right side of the above formula), we can
present function 𝛿(s) in the following form:

𝛿(s) = 𝑝0 +
𝑚+1∑︁
𝑘=1

(𝜑(s))𝑘−1
∞∫

0

𝑝𝑘 (𝑢)𝑒𝑢 (s) d𝑢,

where 𝑒𝑢 (s) = [1−𝐵(𝑢)]−1
®∞∫

0

𝑒−(s,x)
∞∫

𝑦=𝑢

d𝐹 (x, 𝑦) is LST of DF

𝐸𝑢 (x). From (1) and (2) we obtain

𝛿(s) = 𝑝0 +
𝑚∑︁
𝑘=1

(𝜑(s))𝑘−1
∞∫

0

𝑝𝑘 (𝑢)𝑒𝑢 (s) d𝑢

+ (𝜑(s))𝑚
∞∫

0

{
[1−𝐵(𝑢)]

𝑚∑︁
𝑘=1

𝑝𝑘 (0) −
𝑚∑︁
𝑘=1

𝑝𝑘 (𝑢)
}
𝑒𝑢 (s) d𝑢

= 𝑝0 +
𝑚∑︁
𝑘=1

[
(𝜑(s))𝑘−1 − (𝜑(s))𝑚

] ∞∫
0

𝑝𝑘 (𝑢)𝑒𝑢 (s) d𝑢

+ (𝜑(s))𝑚
𝑚∑︁
𝑘=1

𝑝𝑘 (0)
∞∫

0

[1−𝐵(𝑢)] 𝑒𝑢 (s) d𝑢. (4)

If we calculate the last integral, taking into consideration the
relation for 𝑒𝑢 (s), we obtain:

∞∫
0

[1−𝐵(𝑢)] 𝑒𝑢 (s) d𝑢 =

∞∫
0

d𝑢
®∞∫

0

𝑒−(s,x)
∞∫

𝑢

d𝐹 (x, 𝑡)

=

®∞∫
0

∞∫
0

𝑒−(s,x) d𝐹 (x, 𝑡)
𝑡∫

0

d𝑢

=

®∞∫
0

∞∫
0

𝑡𝑒−(s,x) d𝐹 (x, 𝑡)

= 𝑎−1𝑅1 (s,0) = −𝛼′
𝑞 (s, 𝑞)

��
𝑞=0 . (5)

Let us calculate the integral

∞∫
0

𝑝𝑘 (𝑢)𝑒𝑢 (s) d𝑢

=

∞∫
0

𝑒−𝑎𝑢 d𝑢
𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
(𝑎𝑢)𝑖
𝑖!

®∞∫
0

𝑒−(s,x)
∞∫

𝑢

d𝐹 (x, 𝑡)

=

𝑘−1∑︁
𝑖=0

𝑎𝑖 𝑝𝑘−𝑖 (0)
𝑖!

®∞∫
0

∞∫
0

𝑒−(s,x) d𝐹 (x, 𝑡)
𝑡∫

0

𝑢𝑖𝑒−𝑎𝑢 d𝑢.

It is known that

𝑡∫
0

𝑢𝑖𝑒−𝑎𝑢 d𝑢 =
𝑖!
𝑎𝑖+1

1− 𝑒−𝑎𝑡
𝑖∑︁
𝑗=0

(𝑎𝑡) 𝑗
𝑗!

 ,
whereas we obtain:

∞∫
0

𝑝𝑘 (𝑢)𝑒𝑢 (s) d𝑢

=

𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝑎

®∞∫
0

∞∫
0

𝑒−(s,x)
1− 𝑒−𝑎𝑡

𝑖∑︁
𝑗=0

(𝑎𝑡) 𝑗
𝑗!

 d𝐹 (x, 𝑡)

=

𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝑎


®∞∫

0

∞∫
0

𝑒−(s,x) d𝐹 (x, 𝑡)

−
𝑖∑︁
𝑗=0

®∞∫
0

∞∫
0

(𝑎𝑡) 𝑗
𝑗!

𝑒−(s,x)−𝑎𝑡 d𝐹 (x, 𝑡)


=
1
𝑎

𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝜑(s) −

𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)
 . (6)

If we substitute (5) and (6) into (4), we obtain the first relation
from the statement of the theorem.

If 𝑚 = 0, DF 𝐷 (x) can be presented in a simpler form:

𝐷 (x) = 𝑝0 +
∞∫

0

𝑝1 (𝑢)𝐸𝑢 (x) d𝑢.

If we use LST to the both sides of the above relation, we obtain:

𝛿(s) = 𝑝0 +
∞∫

0

𝑝1 (𝑢)𝑒𝑢 (s) d𝑢.

Taking into consideration relation for 𝑒𝑢 (s) and formulae (2a)
and (5), we finally have:

𝛿(s) = 𝑝0 + 𝑎𝑝0

∞∫
0

d𝑢
®∞∫

0

𝑒−(s,x)
∞∫

𝑢

d𝐹 (x, 𝑡)

= 𝑝0 − 𝑎𝑝0𝛼
′
𝑞 (s, 𝑞)

��
𝑞=0 ,
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which proves the second relation from theorem. The same result
can be obtained as the special case of the 𝑀/𝐺/𝑛/0 system
with random volume customers and sectorized memory buffer,
substituting 𝑛 = 1 (see again [40]). �

Note that, to calculate vector’s 𝝈 characteristics (if 𝑚 > 0),
we can use relations 𝑝1 (0) = 𝑎(𝑝0 + 𝑝1), 𝑝𝑖 (0) = 𝑎𝑝𝑖 , 𝑖 =

2, . . . ,𝑚, and 𝑝𝑚+1 = 1− (1− 𝑝0)/𝜌 [2]. Then, we can obtain
the following, more convenient form of the formula from The-
orem 1:

𝛿(s) = 𝑝0 −
1− 𝑝0
𝛽1

(𝜑(s))𝑚𝛼′
𝑞 (s, 𝑞)

��
𝑞=0

+
𝑚∑︁
𝑘=1

[
(𝜑(s))𝑘−1 − (𝜑(s))𝑚

] 𝑝0

𝜑(s) −
𝑘−1∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)


+
𝑘∑︁
𝑖=1

𝑝𝑖

𝜑(s) −
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)

 , (7)

where probabilities 𝑝𝑘 = P{[ = 𝑘} can be determined by the
following algorithm [2]:
1. Calculate the quantities:

𝛽𝑘 (𝑎) =
1
𝑘!

∞∫
0

(𝑎𝑡)𝑘𝑒−𝑎𝑡 d𝐵(𝑡), 𝑘 = 0, . . . ,𝑚−1.

2. Calculate 𝛾𝑘 (𝑎) (𝑘 = 0, . . . ,𝑚−1) using following relations:

𝛾0 (𝑎) = 1− 𝛽0 (𝑎);
𝛾𝑘 (𝑎) = 𝛾𝑘−1 (𝑎) − 𝛽𝑘 (𝑎), 𝑘 = 1, . . . ,𝑚−1.

3. Calculate the quantities 𝑆𝑘 (𝑘 = 0, . . . ,𝑚−1):

𝑆0 = 1/𝛽0 (𝑎);

𝑆𝑘 =
1

𝛽0 (𝑎)

𝑘−1∑︁
𝑖=0

𝛾𝑘−𝑖 (𝑎)𝑆𝑖 , 𝑘 = 1, . . . ,𝑚−1.

4. Calculate 𝑝0:

𝑝0 =

[
1+ 𝜌

𝑚−1∑︁
𝑘=0

𝑆𝑘

]−1

.

5. Calculate 𝑝𝑘 (𝑘 = 1, . . . ,𝑚 +1) under following relations:

𝑝1 = 𝑝0 (𝑆0 −1);
𝑝𝑘 = 𝑝0𝑆𝑘−1, 𝑘 = 2, . . . ,𝑚, 𝑚 > 1;

𝑝𝑚+1 = 1− (1− 𝑝0)/𝜌.

Some approximate relations are also known for probabilities 𝑝𝑘
calculations (see e.g. [41]).

If 𝑚 = 0, we obtain: 𝑝0 =
1

1+ 𝜌
, 𝑝1 =

𝜌

1+ 𝜌
and finally:

𝛿(s) = 1
1+ 𝜌

[
1− 𝑎𝛼′

𝑞 (s, 𝑞)
��
𝑞=0

]
.

4. EXEMPLARY RESULTS FOR SOME SPECIAL CASES
In this section we present simple results for some special cases
of the investigated model.
1. System 𝑴/𝑮/1/1. Let 𝑚 = 1. Then, we have from Theo-

rem 1:

𝛿(s) = 𝑝0 −𝜑(s)𝛼′
𝑞 (s, 𝑞)

��
𝑞=0𝑝1 (0)

+ 𝑎−1 (1−𝜑(s)) 𝑝1 (0) [𝜑(s) −𝑅0 (s, 𝑎)] .

In this case we obviously have 𝑅0 (s, 𝑎) = 𝛼(s, 𝑎), 𝛽0 (𝑎) =
𝛽(𝑎). It is also easy to prove that

𝑝0 + 𝑝1 =
𝑝0
𝛽(𝑎) ,

whereas, taking into consideration (7), we obtain the other
form of the formula:

𝛿(s) = 𝑝0 −
1− 𝑝0
𝛽1

𝜑(s)𝛼′
𝑞 (s, 𝑞)

��
𝑞=0

+ 𝑝0
𝛽(𝑎) (1−𝜑(s)) (𝜑(s) −𝛼(s, 𝑎)) . (8)

2. System 𝑴/𝑮/1/2. For 𝑚 = 2 we obtain analogously after
some calculations:

𝛿(s) = 𝑝0 −
1− 𝑝0
𝛽1

(𝜑(s))2𝛼′
𝑞 (s, 𝑞)

��
𝑞=0

+ (1−𝜑(s))
{

1
𝜌
(1− 𝑝0) (𝜑(s))2 + 𝑝0

𝛽(𝑎) (𝜑(s) −𝛼(s, 𝑎))

− 𝛽(𝑎) (1− 𝑝0) − 𝜌𝑝0
𝜌𝛽(𝑎) 𝜑(s)𝛼(s, 𝑎) + 𝑝0

𝛽(𝑎) 𝜑(s)

× [𝜑(s) −2𝛼(s, 𝑎) −𝑅1 (s, 𝑎)]
}
. (9)

5. THE CASE OF UNLIMITED QUEUE
In this section, basing on the proved theorem, we will obtain
formula for 𝛿(s) for single–server queueing system with ran-
dom volume customers, unlimited queue and sectorized mem-
ory buffer.

Assume now that 𝑚 → ∞ and 𝜌 < 1, so we analyze
𝑀/𝐺/1/∞ queueing system in a steady state, and let us calcu-
late 𝛿 (∞) (s) = lim

𝑚→∞
𝛿(s). Then, from theorem 1 and the fact that

|𝜑(s) | < 1 (so, obviously, lim
𝑚→∞

(𝜑(s))𝑚 = 0 and
∞∑︁
𝑖=0

(𝜑(s))𝑖 =

(1−𝜑(s))−1), we obtain:

𝛿 (∞) (s) = lim
𝑚→∞

𝛿(s) = 𝑝
(∞)
0

+ 𝑎−1
∞∑︁
𝑘=1

(𝜑(s))𝑘−1
𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝜑(s) −

𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)
 , (10)

where 𝑝
(∞)
0 = lim

𝑚→∞
𝑝0.
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Relation (10) can be written out in the following form (we
denote here 𝑝

(∞)
𝑖

(0) = lim
𝑚→∞

𝑝𝑖 (0)):

𝛿 (∞) (s) = 𝑝
(∞)
0

+ 𝑎−1

[ ∞∑︁
𝑘=1

(𝜑(s))𝑘
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0)

−
∞∑︁
𝑘=1

(𝜑(s))𝑘−1
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0)
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)
 . (11)

The first sum in (11) is calculated as follows:

∞∑︁
𝑘=1

(𝜑(s))𝑘
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0)

=

∞∑︁
𝑖=1

(𝜑(s))𝑖 𝑝 (∞)
𝑖

(0)
∞∑︁
𝑘=𝑖

(𝜑(s))𝑘−𝑖

= (1−𝜑(s))−1
∞∑︁
𝑖=1

𝑝
(∞)
𝑖

(0) (𝜑(s))𝑖 .

If we denote 𝑝
(∞)
𝑖

= lim
𝑚→∞

𝑝𝑖 and take into consideration that

𝑝
(∞)
1 (0) = 𝑎

(
𝑝
(∞)
0 + 𝑝

(∞)
1

)
and 𝑝

(∞)
𝑖

(0) = 𝑎𝑝
(∞)
𝑖

, 𝑖 = 2, . . . ,𝑚,
we easily obtain, when 𝑚 → ∞, after simple transformations
that

(1−𝜑(s))−1
∞∑︁
𝑖=1

𝑝
(∞)
𝑖

(0) (𝜑(s))𝑖

=
𝑎

1−𝜑(s)

[
𝑝
(∞)
0 𝜑(s) +

∞∑︁
𝑖=1

𝑝
(∞)
𝑖

(𝜑(s))𝑖
]

=
𝑎

1−𝜑(s)

[
𝑝
(∞)
0 𝜑(s) +𝑃 (𝜑(s)) − 𝑝

(∞)
0

]
,

where 𝑃(𝑧) =
𝑝
(∞)
0 (1− 𝑧)𝛽(𝑎− 𝑎𝑧)

𝛽(𝑎− 𝑎𝑧) − 𝑧
is the generation function

of steady–state customers number distribution for the system
𝑀/𝐺/1/∞. As a result, we obtain:

∞∑︁
𝑘=1

(𝜑(s))𝑘
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0) =
𝑎𝑝

(∞)
0 𝜑(s)

𝛽 (𝑎− 𝑎𝜑(s)) −𝜑(s) . (12)

The second sum in (11) can be presented as follows:

∞∑︁
𝑘=1

(𝜑(s))𝑘−1
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0)
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎)

= (𝜑(s))−1
∞∑︁
𝑖=1

𝑝
(∞)
𝑖

(0) (𝜑(s))𝑖
∞∑︁
𝑘=0

(𝜑(s))𝑘
𝑘∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎). (13)

Here we have:

∞∑︁
𝑘=0

(𝜑(s))𝑘
𝑘∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎) =
∞∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎) (𝜑(s)) 𝑗
∞∑︁
𝑘= 𝑗

(𝜑(s))𝑘− 𝑗

= (1−𝜑(s))−1
∞∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎) (𝜑(s)) 𝑗 . (14)

Taking into consideration relation (3), we obtain:

∞∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎) (𝜑(s)) 𝑗 =
®∞∫

0

∞∫
0

𝑒−(s,x)−𝑎𝑡
∞∑︁
𝑗=0

(𝑎𝑡𝜑(s)) 𝑗

𝑗!
d𝐹 (x, 𝑡)

=

®∞∫
0

∞∫
0

𝑒−(s,x)−(𝑎−𝑎𝜑 (s))𝑡 d𝐹 (x, 𝑡) = 𝛼 (s, 𝑎− 𝑎𝜑(s)) . (15)

If we substitute (14) (taking into consideration (15)) to (13), we
obtain (see also (12)):

∞∑︁
𝑘=1

(𝜑(s))𝑘−1
𝑘∑︁
𝑖=1

𝑝
(∞)
𝑖

(0)
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (s, 𝑎) =
𝑎𝑝

(∞)
0 𝛼 (s, 𝑎− 𝑎𝜑(s))

𝛽 (𝑎− 𝑎𝜑(s)) −𝜑(s) .

(16)
It can be easily shown that 𝑝 (∞)

0 = lim𝑚→∞ 𝑝0 = 1−𝜌. Indeed,
we have relation

lim
𝑚→∞

𝑝𝑚+1 = lim
𝑚→∞

(
1− 1− 𝑝0

𝜌

)
= 1−

1− 𝑝
(∞)
0

𝜌
.

But, of course, series
∑𝑘

𝑖=0 𝑝𝑖 is convergent what implies that
lim𝑚→∞ 𝑝𝑚+1 = 0, so we finally obtain mentioned above for-
mula for 𝑝 (∞)

0 . If we now substitute (12) and (16) into (11), we
finally obtain:

𝛿 (∞) (s) = (1− 𝜌)
[
1+ 𝜑(s) −𝛼 (s, 𝑎− 𝑎𝜑(s))

𝛽 (𝑎− 𝑎𝜑(s)) −𝜑(s)

]
. (17)

The same result was obtained in [40].

6. SYSTEM 𝑀/𝐺/1/𝑀 WITH RANDOM VOLUME
CUSTOMERS AND ONE-DIMENSIONAL MEMORY
BUFFER

In this section we investigate the case 𝑛 = 1, i.e. we assume that
each customer is characterized by random one-dimensional vol-
ume Z . In the same way we define the following DF: 𝐹 (𝑥, 𝑡) =
P{Z < 𝑥, b < 𝑡}, 𝐿 (𝑥) = P{Z < 𝑥} = 𝐹 (𝑥,∞), 𝐵(𝑡) = P{b <

𝑡} = 𝐹 (∞, 𝑡), 𝜎(𝑡) is a total volume of customers present in the
system at time instant 𝑡 (𝜎(𝑡) ⇒ 𝜎, if 𝜌 < ∞, where 𝜎 is the
steady-state total volume), 𝐷 (𝑥) = P{𝜎 < 𝑥} is DF of RV 𝜎,

𝛿(𝑠) = E𝑒−𝑠𝜎 =

∞∫
0

𝑒−𝑠𝑥 d𝐷 (𝑥) is LST of DF 𝐷 (𝑥), 𝛼(𝑠, 𝑞) =

∞∫
0

∞∫
0

𝑒−𝑠𝑥−𝑞𝑡 d𝐹 (𝑥, 𝑡) is LST of DF 𝐹 (𝑥, 𝑡), 𝜑(𝑠) = 𝛼(𝑠,0) is

LST of DF 𝐿 (𝑥) and 𝛽(𝑞) = 𝛼(0, 𝑞) is LST of DF 𝐵(𝑡).
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From Theorem 1 we obtain (in the case of 𝑛 = 1 and 𝑚 > 0):

𝛿(𝑠) = 𝑝0 − (𝜑(𝑠))𝑚𝛼′
𝑞 (𝑠, 𝑞)

��
𝑞=0

𝑚∑︁
𝑘=1

𝑝𝑘 (0)

+ 1
𝑎

𝑚∑︁
𝑘=1

[
(𝜑(𝑠))𝑘−1 − (𝜑(𝑠))𝑚

]
×

𝑘−1∑︁
𝑖=0

𝑝𝑘−𝑖 (0)
𝜑(𝑠) −

𝑖∑︁
𝑗=0

𝑅 𝑗 (𝑠, 𝑎)
 , (18)

where

𝑅 𝑗 (𝑠, 𝑎) =
𝑎 𝑗

𝑗!

∞∫
0

∞∫
0

𝑡 𝑗𝑒−𝑠𝑥−𝑎𝑡 d𝐹 (𝑥, 𝑡),

or, in other form,

𝛿(𝑠) = 𝑝0 −
1− 𝑝0
𝛽1

(𝜑(𝑠))𝑚𝛼′
𝑞 (𝑠, 𝑞)

��
𝑞=0

+
𝑚∑︁
𝑘=1

[
(𝜑(𝑠))𝑘−1 − (𝜑(𝑠))𝑚

] 𝑝0

𝜑(𝑠) −
𝑘−1∑︁
𝑗=0

𝑅 𝑗 (𝑠, 𝑎)


+
𝑘∑︁
𝑖=1

𝑝𝑖

𝜑(𝑠) −
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (𝑠, 𝑎)

 . (19)

Let

𝛼𝑖 𝑗 = E
(
Z 𝑖b 𝑗

)
= (−1)𝑖+ 𝑗 𝜕𝑖+ 𝑗

𝜕𝑠𝑖𝜕𝑞 𝑗
𝛼(𝑠, 𝑞)

��
𝑠=𝑞=0,

𝑖, 𝑗 = 1,2, . . . , be the mixed (𝑖 + 𝑗)-th moment of RVs Z and b,
𝛽𝑖 denotes the 𝑖-th moment of RV b and 𝜑𝑖 – the 𝑖-th moment
of RV Z .

The first and second moments of RV 𝜎 are determined by the
following relations:

𝛿1 = E𝜎 = −𝛿′(0) = 1− 𝑝0
𝛽1

(𝛼11 +𝑚𝜑1𝛽1)

−
𝑚∑︁
𝑘=1

(𝑚− 𝑘 +1)𝜑1

𝑝0

1−
𝑘−1∑︁
𝑗=0

𝛽 𝑗 (𝑎)


+
𝑘∑︁
𝑖=1

𝑝𝑖

1−
𝑘−𝑖∑︁
𝑗=0

𝛽 𝑗 (𝑎)

 ; (20)

𝛿2 = E𝜎2 = 𝛿′′(0)

=
1− 𝑝0
𝛽1

[
𝛼21 +2𝑚𝜑1𝛼11 +𝑚𝜑2𝛽1 +𝑚(𝑚−1)𝜑2

1𝛽1
]

−
𝑚∑︁
𝑘=1

{
(𝑚− 𝑘 +1)𝜑2 + [𝑚(𝑚−1) − (𝑘 −1) (𝑘 −2)] 𝜑2

1
}

×
𝑝0

1−
𝑘−1∑︁
𝑗=0

𝛽 𝑗 (𝑎)
 +

𝑘∑︁
𝑖=1

𝑝𝑖

1−
𝑘−𝑖∑︁
𝑗=0

𝛽 𝑗 (𝑎)



−2(𝑚− 𝑘 +1)𝜑1

𝑝0

𝜑1 +
𝑘−1∑︁
𝑗=0

𝑅′
𝑗 (0, 𝑎)


+

𝑘∑︁
𝑖=1

𝑝𝑖

𝜑1 +
𝑘−𝑖∑︁
𝑗=0

𝑅′
𝑗 (0, 𝑎)


 , (21)

where 𝑅′
𝑗
(0, 𝑎) =

𝜕𝑅 𝑗 (𝑠, 𝑎)
𝜕𝑠

��
𝑠=0.

Let us consider as an example a system 𝑀/𝑀/1/1 with
service time proportional to customer volume: b = 𝑐Z, 𝑐 > 0,
where RV Z has an exponential distribution with parameter 𝑓 .

Then 𝜌 =
𝑎𝑐

𝑓
, 𝜑(𝑠) = 𝑓

𝑠+ 𝑓
, 𝛽(𝑞) = 𝜑(𝑐𝑞) = 𝑓

𝑓 + 𝑐𝑞 , 𝛼(𝑠, 𝑞) =

𝜑(𝑠 + 𝑐𝑞) = 𝑓

𝑠+ 𝑓 + 𝑐𝑞 , 𝛼′
𝑞 (𝑠, 𝑞) |𝑞=0 = − 𝑐 𝑓

(𝑠+ 𝑓 )2 , 𝑅0 (𝑠, 𝑎) =
𝑓

𝑠+ 𝑓 + 𝑎𝑐 , 𝑝𝑘 = 𝑝0𝜌
𝑘 , 𝑘 = 1,2, 𝑝0 =

1− 𝜌

1− 𝜌3 , if 𝜌 ≠ 1 and 𝑝0 =
1
3

,

if 𝜌 = 1. If we substitute these functions into (19), taking into
consideration the relations for 𝑝𝑘 , we obtain:

𝛿(𝑠) = 𝑝0 +
𝑓 2

( 𝑓 + 𝑠)2

[
(1− 𝑝0) 𝑓

𝑓 + 𝑠 + 𝑝0𝜌(1+ 𝜌)𝑠
𝑓 + 𝑓 𝜌 + 𝑠

]
. (22)

Inversion of Laplace transform 𝛿(𝑠)/𝑠 presents the exact form
of 𝐷 (𝑥) function:

𝐷 (𝑥) =
(
1+ 𝜌 + 𝜌2

)−1

×
{
1+ 𝑒− 𝑓 (1+𝜌)𝑥 (1+ 𝜌−1) + 𝜌(1+ 𝜌)

− (2𝜌)−1𝑒− 𝑓 𝑥 (1+ 𝜌)
[
2−2 𝑓 𝜌𝑥 + 𝜌2 (2+2 𝑓 𝑥 + 𝑓 2𝑥2)

] }
,

when 𝜌 ≠ 1 and

𝐷 (𝑥) = 1+ 2
3
𝑒−2 𝑓 𝑥 − 1

3
𝑒− 𝑓 𝑥

(
4+ 𝑓 2𝑥2

)
,

when 𝜌 = 1.
First two moments are equal:

𝛿1 =
𝜌(2+3𝜌)

𝑓 (1+ 𝜌 + 𝜌2)
; 𝛿2 =

2𝜌 (3+2𝜌(5+3𝜌))
𝑓 2 (1+ 𝜌) (1+ 𝜌 + 𝜌2)

.

In Tables 1, 2 we show numerical results of 𝛿1 and 𝛿2 for some
various values of 𝜌 and 𝑓 .

Obtained results are consistent with the intuitive understand-
ing of the analyzed problem. If we increase the value of 𝜌 (with-
out changing 𝑓 ), the values of 𝛿1 and 𝛿2 also increase whereas
increasing of 𝑓 value (without c hanging of 𝜌) causes decreas-
ing of these characteristics because the mean value of the vol-
umes of the arriving customers is smaller then. It is obvious that
these characteristics must be limited (because of limited num-
ber of waiting positions). In this case 𝛿1 → 3

𝑓
and 𝛿2 → 12

𝑓 2

(when we change only the value of 𝜌 → ∞) and 𝛿1, 𝛿2 → 0 if
𝑓 →∞ (when we change only value of 𝑓 ).
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Table 1
Values of 𝛿1 for 𝑀/𝑀/1/1 queueing system with customer service

time proportional to his volume

𝛿1 𝑓 = 0.1 𝑓 = 0.3 𝑓 = 0.5 𝑓 = 0.7 𝑓 = 0.9

𝜌 = 0.1 2.0721 0.6907 0.4144 0.2960 0.2302

𝜌 = 0.6 11.6327 3.8776 2.3265 1.6618 1.2925

𝜌 = 1.1 17.6133 5.8711 3.5227 2.5162 1.9570

𝜌 = 1.6 21.0853 7.0284 4.2171 3.0122 2.3428

𝜌 = 2.1 23.2091 7.7364 4.6418 3.3156 2.5788

𝜌 = 2.6 24.5946 8.1982 4.9189 3.5135 2.7327

Table 2
Values of 𝛿2 for 𝑀/𝑀/1/1 queueing system with customer’s service

time proportional to his volume

𝛿2 𝑓 = 0.1 𝑓 = 0.3 𝑓 = 0.5 𝑓 = 0.7 𝑓 = 0.9

𝜌 = 0.1 66.503 7.389 2.660 1.357 0.821

𝜌 = 0.6 427.041 47.449 17.082 8.715 5.272

𝜌 = 1.1 672.882 74.765 26.915 13.732 8.307

𝜌 = 1.6 819.559 91.062 32.782 16.726 10.118

𝜌 = 2.1 910.322 101.147 36.413 18.578 11.239

𝜌 = 2.6 969.841 107.760 38.794 19.793 11.973

Remark 1. It can be easily shown that the character of depen-
dency between customer’s service time and his volume has a
substantial influence on total volume characteristics. Consider
now, as the next example, system 𝑀/𝑀/1/1 with service time
independent of customer’s volume and assume that customer’s
volume is also exponentially distributed with parameter 𝑓 and
his service time is exponentially distributed with parameter `.

Let us substitute ` =
𝑓

𝑐
. Then, from the classical point of view,

this system behaves in the same way as investigated earlier sys-
tem with customer’s service time proportional to his volume
(e.g. distribution function 𝐵(𝑡) is identical for both systems).

But here we have: 𝛼(𝑠, 𝑞) = 𝑓 2

( 𝑓 + 𝑠) ( 𝑓 + 𝑐𝑞) and relation for

𝛿(𝑠) has the following form:

𝛿(𝑠) = 𝑓 2 + 𝑝0 𝑓 𝑠(2+ 𝜌) + 𝑝0𝑠
2

( 𝑓 + 𝑠)2 .

The exact form of 𝐷 (𝑥) function is presented below:

𝐷 (𝑥) = 1− 𝑒− 𝑓 𝑥𝜌(1+ 𝜌 + 𝜌 𝑓 𝑥)
1+ 𝜌 + 𝜌2 ,

when 𝜌 ≠ 1 and

𝐷 (𝑥) = 1− 1
3
𝑒− 𝑓 𝑥 (2+ 𝑓 𝑥),

when 𝜌 = 1.

Notice that even formulae for first two moments are com-
pletely different in this case:

𝛿1 =
𝜌(1+2𝜌)

𝑓 (1+ 𝜌 + 𝜌2)
; 𝛿2 =

2𝜌(1+3𝜌)
𝑓 2 (1+ 𝜌 + 𝜌2)

.

7. THE CASE OF TWO-DIMENSIONAL MEMORY BUFFER

This section presents results in the case when memory buffer
is composed of two sectors (𝑛 = 2). In this case we obtain (for
𝑚 > 0):

𝛿(𝑠1, 𝑠2) = 𝑝0 −
1− 𝑝0
𝛽1

(𝜑(𝑠1, 𝑠2))𝑚𝛼′
𝑞 (𝑠1, 𝑠2, 𝑞)

��
𝑞=0

+
𝑚∑︁
𝑘=1

[
(𝜑(𝑠1, 𝑠2))𝑘−1 − (𝜑(𝑠1, 𝑠2))𝑚

] {
𝑝0

[
𝜑(𝑠1, 𝑠2)

−
𝑘−1∑︁
𝑗=0

𝑅 𝑗 (𝑠1, 𝑠2, 𝑎)
]

+
𝑘∑︁
𝑖=1

𝑝𝑖

𝜑(𝑠1, 𝑠2) −
𝑘−𝑖∑︁
𝑗=0

𝑅 𝑗 (𝑠1, 𝑠2, 𝑎)

 , (23)

where

𝑅 𝑗 (𝑠1, 𝑠2, 𝑎) =
𝑎 𝑗

𝑗!

∞∫
𝑥1=0

∞∫
𝑥2=0

∞∫
𝑡=0

𝑡 𝑗𝑒−𝑠1𝑥1−𝑠2𝑥2−𝑎𝑡 d𝐹 (𝑥1, 𝑥2, 𝑡).

Introduce the notation

𝛼𝑖 𝑗𝑘 = E
(
Z 𝑖1Z

𝑗

2 b
𝑘
)
=

∞∫
0

∞∫
0

∞∫
0

𝑥𝑖1𝑥
𝑗

2 𝑡
𝑘 d𝐹 (𝑥1, 𝑥2, 𝑡)

= (−1)𝑖+ 𝑗+𝑘 𝜕
𝑖+ 𝑗+𝑘𝛼(𝑠1, 𝑠2, 𝑞)
𝜕𝑠𝑖1𝜕𝑠

𝑗

2𝜕𝑞
𝑘

����
𝑠1=𝑠2=𝑞=0

, 𝑖, 𝑗 , 𝑘 = 0,1, . . . .

For example, EZ1 = 𝜑
(1)
1 = 𝛼100; EZ2 = 𝜑

(2)
1 = 𝛼010; E (Z1Z2) =

𝛼110 = 𝜑11; Eb = 𝛽1 = 𝛼001; EZ2
1 = 𝜑

(1)
2 = 𝛼200; EZ2

2 = 𝜑
(2)
2 =

𝛼020; Eb2 = 𝛽2 = 𝛼002 etc.

Then, we obtain from (23):

𝛿
(1)
1 = E𝜎1 = −𝜕𝛿(𝑠1,0)

𝜕𝑠1

����
𝑠1=0

=
1− 𝑝0
𝛽1

(
𝛼101 +𝑚𝜑

(1)
1 𝛽1

)
−

𝑚∑︁
𝑘=1

(𝑚− 𝑘 +1)𝜑 (1)
1

𝑝0

1−
𝑘−1∑︁
𝑗=0

𝛽 𝑗 (𝑎)


+
𝑘∑︁
𝑖=1

𝑝𝑖

1−
𝑘−𝑖∑︁
𝑗=0

𝛽 𝑗 (𝑎)

 ; (24)
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𝛿
(1)
2 = E𝜎2

1 =
𝜕2𝛿(𝑠1,0)

𝜕𝑠2
1

����
𝑠1=0

=
1− 𝑝0
𝛽1

[
𝛼201 +2𝑚𝜑

(1)
1 𝛼101 +𝑚𝜑

(1)
2 𝛽1

+𝑚(𝑚−1)
(
𝜑
(1)
1

)2
𝛽1

]
−

𝑚∑︁
𝑘=1

{
(𝑚− 𝑘 +1)𝜑 (1)

2

+ [𝑚(𝑚−1) − (𝑘 −1) (𝑘 −2)]
(
𝜑
(1)
1

)2
}

×
𝑝0

1−
𝑘−1∑︁
𝑗=0

𝛽 𝑗 (𝑎)
 +

𝑘∑︁
𝑖=1

𝑝𝑖

1−
𝑘−𝑖∑︁
𝑗=0

𝛽 𝑗 (𝑎)



−2(𝑚− 𝑘 +1)𝜑 (1)
1

𝑝0

𝜑 (1)
1 +

𝑘−1∑︁
𝑗=0

𝑅′
𝑗 (0, 𝑎)


+

𝑘∑︁
𝑖=1

𝑝𝑖

𝜑 (1)
1 +

𝑘−𝑖∑︁
𝑗=0

𝑅′
𝑗 (0, 𝑎)


 . (25)

It is clear that the relations for 𝛿
(2)
1 = E𝜎2 and 𝛿

(2)
2 = E𝜎2

2
take similar forms. For the mixed moment 𝛿11 = E (𝜎1𝜎2) =
𝜕2 (𝑠1, 𝑠2)
𝜕𝑠1𝜕𝑠2

����
𝑠1=𝑠2=0

we obtain:

𝛿11 = (1− 𝑝0)
{ [

𝜑11 +𝑚(𝑚−1)𝜑 (1)
1 𝜑

(2)
1

]
+ 1
𝛽1

(
𝛼111 +𝜑 (1)

1 𝛼011 +𝜑 (2)
1 𝛼101

) }
−

𝑚∑︁
𝑘=1

{[
(𝑚− 𝑘 +1)𝜑11

+ (𝑚(𝑚−1) − (𝑘 −1) (𝑘 −2)) 𝜑 (1)
1 𝜑

(2)
1

]
×
𝑝0

©«1−
𝑘−1∑︁
𝑗=0

𝛽 𝑗 (𝑎)
ª®¬+

𝑘∑︁
𝑖=1

𝑝𝑖
©«1−

𝑘−𝑖∑︁
𝑗=0

𝛽 𝑗 (𝑎)
ª®¬


+ (𝑚− 𝑘 +1)𝜑 (1)
1

𝑝0
©«𝜑 (2)

1 +
𝑘−1∑︁
𝑗=0

𝑅′
𝑗𝑠2

(0,0, 𝑎)ª®¬
+

𝑘∑︁
𝑖=1

𝑝𝑖
©«𝜑 (2)

1 +
𝑘−𝑖∑︁
𝑗=0

𝑅′
𝑗𝑠2

(0,0, 𝑎)ª®¬


+ (𝑚− 𝑘 +1)𝜑 (2)
1

𝑝0
©«𝜑 (1)

1 +
𝑘−1∑︁
𝑗=0

𝑅′
𝑗𝑠1

(0,0, 𝑎)ª®¬
+

𝑘∑︁
𝑖=1

𝑝𝑖
©«𝜑 (1)

1 +
𝑘−𝑖∑︁
𝑗=0

𝑅′
𝑗𝑠1

(0,0, 𝑎)ª®¬

 , (26)

where

𝑅′
𝑗𝑠1

(0,0, 𝑎) = −𝑎 𝑗

𝑗!

∞∫
0

∞∫
0

𝑥1𝑡
𝑗 d𝐹 (𝑥1,∞, 𝑡),

𝑅′
𝑗𝑠2

(0,0, 𝑎) = −𝑎 𝑗

𝑗!

∞∫
0

∞∫
0

𝑥2𝑡
𝑗 d𝐹 (∞, 𝑥2, 𝑡).

Consider, as an example, system 𝑀/𝐺/1/1, in which
service time of a customer is proportional to his length i.e.
b = 𝑐 (Z1 + Z2), where RV Z1, Z2 are independent, and assume
additionally that indications Z1 and Z2 are exponentially
distributed with parameters 𝑓 and 𝑔 ( 𝑓 ≠ 𝑔), respectively. Then,

after simple calculations we have: 𝜌 = 𝑎𝑐

(
1
𝑓
+ 1
𝑔

)
, 𝜑(𝑠1, 𝑠2) =

𝑓 𝑔

( 𝑓 + 𝑠1) (𝑔 + 𝑠2)
, 𝛼(𝑠1, 𝑠2, 𝑞) =

𝑓 𝑔

( 𝑓 + 𝑠1 + 𝑐𝑞) (𝑔 + 𝑠2 + 𝑐𝑞)
,

𝛼′
𝑞 (𝑠1, 𝑠2, 𝑞)

��
𝑞=0 =

−𝑐 𝑓 𝑔( 𝑓 +𝑔 + 𝑠1 + 𝑠2)
( 𝑓 + 𝑠1)2 (𝑔 + 𝑠2)2 and we finally have:

𝛿(𝑠1, 𝑠2) = 𝑝0 −
( 𝑓 𝑔)3 (𝑝0 −1) ( 𝑓 +𝑔 + 𝑠1 + 𝑠2)

( 𝑓 +𝑔) ( 𝑓 + 𝑠1)3 (𝑔 + 𝑠2)3

+ 𝑝0 ( 𝑓 𝑔)2𝜌(1+ 𝜌) (𝑔𝑠1 + ( 𝑓 + 𝑠1)𝑠2)
( 𝑓 + 𝑠1)2 ( 𝑓 2 +𝑔𝑠1 + 𝑓 (𝑔(1+ 𝜌) + 𝑠1))

× 𝑓 2 +𝑔(𝑔 + 𝑠1 + 𝑠2) + 𝑓 (𝑔(2+ 𝜌) + 𝑠1 + 𝑠2)
(𝑔 + 𝑠2)2 (𝑔(𝑔 + 𝑠2) + 𝑓 (𝑔(1+ 𝜌) + 𝑠2))

. (27)

On the base of (27), we may obtain exact formula for dis-
tribution function 𝐷 (𝑥1, 𝑥2) e.g. using Mathematica environ-
ment (we only must run InverseLaplaceTransform function
to 𝛿(𝑠1, 𝑠2)/𝑠1𝑠2) [42]. Finally, we can calculate moments of
vector (𝜎1,𝜎2):

𝛿
(1)
1 =

3(1− 𝑝0)
𝑓

+ 𝑝0 −1
𝑓 +𝑔 −

𝑝0𝜌(1+ 𝜌)
[
( 𝑓 +𝑔)2 + 𝑓 𝑔𝜌

]
𝑓 ( 𝑓 +𝑔 + 𝑓 𝜌) ( 𝑓 +𝑔 +𝑔𝜌) , (28)

𝛿
(1)
2 =

2(3 𝑓 +6𝑔− 𝑝0 (5 𝑓 +8𝑔))
𝑓 2 ( 𝑓 +𝑔)

− 4𝑝0

𝑓 2

− 2𝑝0 (2 𝑓 2𝑔 + 𝑓 𝑔2 −𝑔3)
𝑓 2 ( 𝑓 −𝑔)2 ( 𝑓 +𝑔 + 𝑓 𝜌)

+ 2( 𝑓 +𝑔)2𝑝0

𝑓 ( 𝑓 −𝑔) ( 𝑓 +𝑔 +𝑔𝜌)2

+ 2𝑝0 ( 𝑓 3 +𝑔3)
𝑓 2 ( 𝑓 −𝑔)2 ( 𝑓 +𝑔 +𝑔𝜌)

. (29)

The above formulae for the first indication of total volume vec-
tor can be also used to compute analogous characteristics for
the second one. We only have to change 𝑓 into 𝑔 and vice versa.
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Whereas mixed (1+1)th moment of (𝜎1,𝜎2) is equal:

𝛿11 =
9(1− 𝑝0)

𝑓 𝑔
+ 3(𝑝0 −1)

𝑓 +𝑔

(
1
𝑓
+ 1
𝑔

)
−
𝑝0𝜌(1+ 𝜌) ( 𝑓 +𝑔)

(
( 𝑓 +𝑔)2 + 𝑓 𝑔𝜌

)(
𝑓 2 + 𝑓 𝑔(1+ 𝜌)

) (
𝑔2 + 𝑓 𝑔(1+ 𝜌)

)
×
[

𝑔

𝑔2 + 𝑓 𝑔(1+ 𝜌)
− 𝑓

𝑓 2 + 𝑓 𝑔(1+ 𝜌)

]
−

𝑝0𝜌(1+ 𝜌)
[
2( 𝑓 +𝑔)2 +3 𝑓 𝑔𝜌

](
𝑓 2 + 𝑓 𝑔(1+ 𝜌)

) (
𝑔2 + 𝑓 𝑔(1+ 𝜌)

) . (30)

In (28)–(30) we substitute 𝑝0 =
1− 𝜌

1− 𝜌3 , if 𝜌 ≠ 1 or 𝑝0 =
1
3

oth-

erwise

8. CONCLUSIONS AND FINAL REMARKS
In the present paper, we have investigated the model of
𝑀/𝐺/1/𝑚 queueing system with random volume customers
and sectorized memory buffer. We proved general formula for
the Laplace–Stieltjes transform of steady-state distribution of
total volume vector for this system and presented exact results
for some special cases of the model. Moreover, we showed that
well–known results for the 𝑀/𝐺/1/∞ queueing system may
be obtained with the help of limitary calculations for the ana-
lyzed model. Besides, we discussed the cases of one and two-
dimensional memory buffers together with presentation of nu-
merical computations in practical situations when service time
of a customer is proportional to his length. Finally, we paid at-
tention to the fact that the character of dependency between cus-
tomer service time and his volume vector has a substantial in-
fluence on total volume vector characteristics (even on his first
moments). Our work can be used by engineers and scientists
who are involved in the process of computer or telecommu-
nication networks designing (e.g. calculating needed sizes of
memory buffers).
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