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 An adaptive and precise peak wavelength detection algorithm for fibre Bragg grating using 

generative adversarial network is proposed. The algorithm consists of generative model and 

discriminative model. The generative model generates a synthetic signal and is sampled for 

training using a deep neural network. The discriminative model predicts the real fibre Bragg 

grating signal by the calculation of the loss functions. The maxima of loss function of the 

discriminative signal and the minima of loss function of the generative signal are matched 

and the desired peak wavelength of fibre Bragg grating is determined. The proposed 

algorithm is verified theoretically and experimentally for a single fibre Bragg grating peak. 

The accuracy has been obtained as ±0.2 pm. The proposed algorithm is adaptive in the sense 

that any random fibre Bragg grating peak can be identified within a short wavelength range. 
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1. Introduction  

Fibre Bragg grating (FBG) is an optical fibre sensor that 

has wide applications to measure physical parameters such 

as temperature, strain, torque, fault detection in 

transmission lines, humidity, magnetic field, etc [1]. The 

FBGs can be used for static, as well as dynamic sensing 

with high repeatability and in hard conditions. Due to its 

small size, longer life, and less maintenance, it has a 

superior sensing capability over traditional electronic 

sensors. It has a better capability to be immune to the 

electromagnetic interference [2]. FBGs have been used in 

different fields of industries, including aerospace, 

structural health monitoring, micro seismic wave detection, 

inclination measurement, and load measurement systems 

[3–7]. The reflected spectral data of FBG is generally 

measured by an optical spectrum analyser (OSA), but it is 

not suitable for a dynamic peak measurement. To 

effectively measure the FBG peak, the spectral data is 

collected, and some suitable peak detection algorithm is 

generally applied through a computer device. Several peak 

detection techniques have been developed, e.g., polynomial 

curve fitting [8], direct method [9], centroid detection 

method [10], a non-linear Gaussian method [11], etc., for a 

single FBG peak, and matched filtering technique [12], 

Hilbert transforms [13], cross-correlation and Hilbert 

transform [14], self-adaptive [15], invariant moment 

retrieval [16], etc., for a multiple FBG peak detection. 

However, these techniques are not dynamic and have a 

slow time response. However, to improve the speed of peak 

detection, different machine learning techniques have been 

developed such as support vector machine (SVM) [17], 

decision tree with SVM [18], extreme learning machine 

[19], K-nearest neighbours’ algorithm [20], deep learning 

network [21], feature extraction support vector machine 

(FE-SVM) [22], deep convolutional neural network [23], 

etc. In these techniques, however, there are some 

drawbacks regarding mean square error and speed, etc.  

In this paper, the peak detection algorithm for FBG 

using a generative adversarial network is proposed.  

The algorithm consists of generative model and 

discriminative model. The generative model generates a 

synthetic signal and is sampled for training using a deep 

neural network. The discriminative model predicts the real 

FBG signal by the calculation of the loss function. The 

maxima of loss function of the discriminative signal and 

the minima of loss function of the generative signal are 

matched and the desired peak wavelength of FBG is 
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determined. The proposed algorithm is verified 

theoretically and experimentally for a single FBG peak. 

2. Theory of algorithm 

FBG has reflective characteristics at a particular 

wavelength when a monochromatic light source is incident 

on it. The reflected wavelength is written as  

𝜆𝐵 = 2Λ𝑛𝑒𝑓𝑓 , (1) 

where 𝜆𝐵 is the Bragg wavelength, Λ is the grating period, 

and 𝑛𝑒𝑓𝑓 is the effective refractive index of the core mode 

of the optical fibre. The change in Bragg wavelength is 

proportional to the change in the physical parameters as 

temperature, strain, etc. The proposed FBG peak detection 

algorithm using a generative adversarial network (GAN) 

based machine learning is described in Fig. 1. The GAN is 

based on generative model (GM) and discriminative model 

(DM). The function of the GM is to generate a synthetic 

signal as the FBG signal. In the GM, the gaussian function 

is used to generate a synthetic signal in this proposed 

technique. Also, a model signal is assumed, the wavelength 

range of which is considered as the same as the FBG signal. 

Next, the generated model signal is sampled and trained 

using a deep neural network (DNN), for fast processing. 

After sampling and training, the generator model signal is 

passed through the discriminator model. The FBG or real 

signal is also passed through discriminator model for 

sampling. The DM discriminates the real signal and 

synthetic signal using DNN by calculating the loss function 

of the discriminated real signal and generated signal. The 

loss function of the discriminated signal is maximized, and 

the loss functions of the generated signal is minimized at a 

specific wavelength which is the desired peak wavelength. 

The GAN training model using DNN for the peak 

detection algorithm of FBG is illustrated in Fig. 2. The 

training model is classified by two states, the first state is a 

reference signal generated by GM and the second state is 

the FBG signal collection. The GM and DM are trained 

separately, and then the respective signals are sampled at 

different levels. The levels as 𝐼1, …, 𝐼𝑘 are for generated 

signal and 𝑅1, …, 𝑅𝑘 are for reflectivity spectrum of FBG. 

The sampled data of both the generated and the FBG 

signals are mapped into discriminator levels.  

The training of GM and DM in GAN is described as: 

a) discriminator model training 

As mentioned, the GAN model includes the generator 

model and discriminator model. During the GAN training, 

only one model is trained at a time, and the other model is 

kept as untrained. During the training of DM, the GM is 

assumed as untrained or fixed. Using the cross entropy, as 

given in (3), the loss function is derived as 

𝐹(𝐷(𝜆), 𝐺(𝜆)) =  𝐸(log(𝐷(𝜆)) + 𝐸(log(1 − 𝐺(𝜆)), () 

where log(𝐷(𝜆)) is the loss function of the discriminator 

model and log(1 − 𝐺(𝜆)) is the loss function of the 

generator model. 

The goal of discriminator is to maximize the loss 

function F(𝑅(𝜆), 𝐼(𝜆)) through differentiation with respect 

to 𝐷(𝜆) to find the optimal value of discriminator as 

𝐷∗(𝜆) =
𝑃𝑅(𝜆)

𝑃𝑅(𝜆) + 𝑃𝐼(𝜆)

, (3) 

where 𝑃𝑅(𝜆) is the probability estimation of the real signal 

and 𝑃𝑔(𝜆) is the probability estimation of the generated 

signal. To optimize 𝐷∗(𝜆), 𝑃𝑅(𝜆) should be maximum and 

would approach 1, 𝑃𝐼(𝜆) is minimum at a given position 

point. 

b) generator model training  

To train the generator model, the discriminator model 

was held fixed and a training process was using a 

mathematical expression, given as 

𝐹(𝐺(𝜆), 𝐷∗(𝜆)) =  𝐸(log(𝐷∗(𝜆)) + 𝐸(log(1 − 𝐷∗(𝜆)). (4) 

By combining (3) and (4), it can be written: 

𝐹(𝐺(𝜆), 𝐷∗(𝜆)) =  𝐸 [log
𝑃𝑅(𝜆)

𝑃𝑅(𝜆) + 𝑃𝐼(𝜆)
]

+ 𝐸 [log
𝑃𝑔(𝜆)

𝑃𝑅(𝜆) + 𝑃𝐼(𝜆)
]. 

(5) 

By using the Kullback-Leibler (KL) concept of 

divergence, in (5), 𝐹(𝐺(𝜆), 𝐷∗(𝜆)) is minimum when 𝑃𝑔(𝜆) 

is minimum, say equal to zero. Thus, the minimum of 𝑃𝑔(𝜆) 

means that the true signal is identified by calculating the 

loss functions of the generated signal and the real FBG 

signal. The loss function is maximum for the discriminated 

signal and minimum for the generated signal at a specific 

wavelength. 

 

Fig. 1. Block diagram of the GAN model: SM – sampling, 

GL – generator loss, DL – discriminator loss. 

 

 

Fig. 2. DNN structure for FBG peak detection. 
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The mathematical model of the DNN mentioned in 

Fig. 2, is explained by (6) to (10). Equation (6) calculates 

the min-max loss function using the discriminator levels 

𝑔1, …, 𝑔𝑚 and the comparison of weights 𝑤1, …, 𝑤𝑚. 

Equation (7) calculates the different discriminator levels 

𝑔1, …, 𝑔𝑚 using the convolution function 𝑓(𝐼𝑗 , 𝑅𝑗) and the 

weight factor 𝑊𝑖,𝑗(𝑖 = 1, …, 𝑘, 𝑗 = 1, …, 𝑚). The function 

𝑓(𝐼𝑗 , 𝑅𝑗) is nothing but the convolution of sampled versions 

of the generated signal and the FBG signal, which is 

explained in (8). The weight factor 𝑊𝑖,𝑗 used in (7) is 

updated each time until the minima of the generated signal 

and maxima of the discriminated signal arrives at the same 

point. This is achieved by finding the zero points of the 

differentiation of the function 𝑓(𝐼𝑗 , 𝑅𝑗) with respect to 𝜆 

and adding the old weight factor. This is expressed in (9). 

Similarly, the weight factor 𝑤𝑖  used in (10) is updated 

according to the expression given in (10). After training 

and peak matching of the generated signal and the 

discriminated signal, the loss functions of discriminator 

model signal and of generator model signal are calculated 

using (11), and using (12), the desired peak wavelength as 

𝜆𝐵 is determined. 

 𝑌0 = ∑ 𝑔𝑖 𝑊𝑖 

𝑚

𝑖=1

 (6) 

∑ 𝑔𝑖 = ∑ 𝑓(𝐼𝑗 , 𝑅𝑗)

𝑘

𝑗=1

𝑚

𝑖=1

𝑊𝑖,𝑗 (7) 

𝑓(𝐼𝑗 , 𝑅𝑗) = (𝑤𝑘𝐼𝑗) ∙ (𝑤𝑘𝑅𝑗) (8) 

𝑊𝑖, 𝑗𝑛𝑒𝑤 = 𝑊𝑖, 𝑗𝑜𝑙𝑑 + zero_P (
𝑑𝑓(𝐼𝑗 , 𝑅𝑗)

𝑑𝜆
) (9) 

𝑤𝑖 = max(𝑊𝑛𝑒𝑤) +  zero_P (
𝑑(𝑔)

𝑑𝜆
) (10) 

𝐿 = Loss (∑ 𝑔𝑖

𝑚

𝑖=1

) (11) 

𝑑𝐿

𝑑𝜆
= 0 (12) 

3. Simulation of the FBG peak detection algorithm 

using GAN 

The proposed FBG peak detection algorithm using 

GAN has been simulated for a single FBG peak. The 

coupled-mode theory [16] is used and the simulated 

reflected spectrum for FBG is represented as 

𝑅𝑠(𝜆) =
sinh2(√𝑘2 − 𝑠2L)

cosh2(√𝑘2 − 𝑠2L) −
𝑠2

𝑘2

 , (13) 

𝑘 =
2𝜋

𝜆
∙ 𝑣 ∙ 𝑑𝑛𝑒𝑓𝑓 ,  𝑑 = 2𝑛𝜋 (

1

𝜆
−

1

𝜆𝐵
), 

𝑆 =
2𝜋

𝜆
∙ 𝑑𝑛𝑒𝑓𝑓  and  𝑠 = 𝑆 + 𝑑, 

where 𝑘 is the ac-coupling factor, 𝑆 is the dc-coupling 

factor, 𝑑 is the detuning factor. A single FBG peak within 

the wavelength range from 1542 nm to 1544 nm with a 

central peak at 1543 nm was considered. The reflectivity of 

a single FBG spectrum is calculated and plotted in 

Fig. 3(a). According the GAN structure, the gaussian 

model is used as a generator model to generate a synthetic 

signal having a similar shape to the FBG reflected spectrum 

and written as 

𝐼(𝜆) = 𝑎𝑒

(𝜆−𝜆𝑡)2

2𝐷𝜆
2

, (14) 

where ‘𝑎’ is the height of the generated signal, 𝐷𝜆 is the 

bandwidth deviation, 𝜆𝑡 is the central peak of the generated 

signal. It is plotted in Fig. 3(b).  

The data for training is generated by the reflectivity 

formula, which is derived from the coupled-mode theory 

using simulation, and the proposed algorithm is applied to 

the simulation data. 

According to the algorithm, 𝜆𝑡 will be changed and 

matched with the peak wavelength of FBG by DNN 

training. The corresponding generated signal and the FBG 

signal are plotted in Fig. 4. The regression analysis is 

performed by calculating the regression (R) value, which is 

plotted in Fig. 5. To analyse the regression, the DNN is 

used for training, testing, and validation. 70% of the FBG 

simulated data is used for training and 30% of the simulated 

data is used for testing. The performances of training and 

testing are calculated in terms of R-values as 0.9999 and 

0.99983, respectively. The overall performance of 

regression is calculated as 0.99988 and it can be seen that 

the regression value is high when the peak of the FBG 

spectrum and the generated signal are matched. If the 

regression value is low, then the peaks are not matched 

properly. The high R-value means that the mean square 

error (MSE) is very low, which is calculated as 0.00001147 

 

Fig. 3. Reflectivity of simulated FBG spectrum (a). Generated 

synthetic signal (b). 

 

               

               
                        

                        

 

   

 

 

   

 

 

Fig. 4. Trained signal of the simulated FBG spectrum and the 

generated signal for peak matching using GAN. 
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at epoch 62, as plotted in Fig. 6. After 62 epochs, the 

training, testing, and validation lines cross the line of the 

best set with very less error. The performance of training is 

plotted in Fig. 7, and it is found that the best validation 

performance is 0.00001147 at epoch 62. The low vali-

dation performance means the MSE is very low and nearly 

equal to zero.  

After regression, the loss function of discriminated signal 

and the loss function of generated signal is calculated and 

expressed as 

𝐿𝑔 = log(1 − 𝐼(𝜆)), (15) 

𝐿𝑑 = log(𝑅(𝜆)). (16) 

The maxima of the loss function of the discriminated signal 

and the minima of the loss function of the generated signal 

lie at the same wavelength as 1543.1 nm for the assumed 

single FBG plotted in Fig. 8. The derivatives of the loss 

function are equal to zero to find the exact peak wavelength 

of FBG. The simulated result was verified experimentally 

and explained in section 4. 

4. Experiment setup and results 

The proposed algorithm for peak detection of FBG 

using GAN is performed experimentally. The experimental 

setup is mentioned in Fig. 9. The light is coupled into the 

FBG from a broadband light source through a Y-coupler. 

At the port-1 of the Y-coupler, the broadband light source 

is entered and emerges at port-2 of the Y-coupler. The 

emerged light on port-2 is incident on a single FBG with a 

wavelength range from 1548 nm to 1552 nm with a central 

peak at 1549.5 nm. The reflected spectrum of FBG is fed 

back into port-2 of the Y-coupler and emerges at port-3. 

The reflected spectrum data at port-3 is collected by a 

computer device from an optical spectrum analyser through 

a GPIB cable. 

The experimental data are generated through the 

experimental setup which is mentioned in Fig. 9. The 

proposed algorithm is applied to the collected experimental 

data. The discriminator model trains the generated sampled 

data and the real FBG sampled data. The average mean 

value, variance and the loss function are calculated in each 

training state and the desired peak wavelength is deter-

mined by the discriminator using the loss function.  

 
Fig. 5. Regression analysis of training, testing, validation, and 

overall training performance of GAN. 

 

            

            

 
 
  
 
  
 
 
  
  
 
  
 
  
 
  
 
  
 
 
 
 

 
 
  
 
  
 
 
  
  
 
  
 
  
 
  
 
  
 
 
 
 

 
 
  
 
  
 
 
  
  
 
  
 
  
 
  
  
 
  
 

 
 
  
 
  
 
 
  
  
 
  
 
  
 
  
 
  
 
 
 
 

    

   

     

    

   

     

    

   

     

    

   

     

                                

                                           

             

   

   

   

   

 
             

   

   

   

   

 

             

   

   

   

   

 
             

   

   

   

   

 

 

Fig. 6. Training performance analysis. 

 

Fig. 7. Training state of regression. 

 

Fig. 8. Loss function of discriminated signal (a), loss function of 

generated signal (b). 
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The normalized FBG reflectivity spectrum is plotted in 

Fig. 10 and is sampled for training using DNN. The 

generated synthetic signal is also sampled and trained using 

DNN. The trained FBG signal and the generated signal are 

analysed by regression process. The regression analysis 

shows the characteristics of the training, testing, and 

validation which are performed efficiently and plotted in 

Fig. 11. It is seen that the regression value approaches 1 

with a value of 0.999 and the performance of validation or 

MSE is very low, close to zero, as shown in Fig. 12. This 

indicates that the loss function of the discriminated signal 

would be maximum. Furthermore, the min-max of the loss 

functions of the discriminated signal and the generated 

signal were analysed by the training state as plotted in 

Fig. 13. It can be seen that the μ-parameter is very low as 

e−7 with a low gradient value of 0.000002 at epoch 18. 

During the regression it is found that the R-value is high, it 

means that the peak of the FBG signal and the generated 

signal are matched, as it was previously explained in Fig. 10. 

The matched signal is realised by the discriminator by calcu-

lating the loss function of the generated signal and the 

discriminated real signal. As a result, the loss function of the 

real signal is maximum and that of the generated signal is 

minimum at a particular wavelength which is the desired peak 

wavelength. The equi-point of both positions of loss func-

tions is calculated as 1549.5002 nm and plotted in Fig. 14. 

The measured peak wavelength is closest to the central 

peak of the FBG used in the experiment as 1549.5000 nm, 

and it can be seen that the error is very small like 0.2 pm. 

Thus, the proposed peak detection algorithm for FBG using 

GAN is experimentally verified with good accuracy. 

In the proposed method of detecting FBG peaks using 

GAN, a statistical analysis method is applied after training 

the model to find the p-value and confidence interval (𝐶𝐼) 

using the expression as: 

𝐶𝐼𝑈 = mean(𝑋) +  𝑡 ∙
𝑠

square(𝑛)
 , (17) 

𝐶𝐼𝐿 = mean(𝑋) −  t ∙
𝑠

square(𝑛)
 , (18) 

𝑝-value = 2 ∙ (1 − 𝑐𝑑𝑓(𝑡𝜆)), (19) 

where, 𝐶𝐼𝑈 is the upper 𝐶𝐼 value and 𝐶𝐼𝐿 is the lower 𝐶𝐼 

value, 𝑐𝑑𝑓 (𝑡𝜆) is the cumulative distribution function of 

test statics. 

 

Fig. 9. Experimental setup for FBG spectral data. 

 

           
          

            

         
     

 

Fig. 12. Performance analysis of trained GAN. 

 

Fig. 13. Training state analysis using DNN-GAN. 

 

         

 
 
 
 
  
 
 
 
  
 
  
  
 
  
  

 
 
                                                      

        

          

    

    

      

   

    

         

                                  

                       

                                  

 
  
 
  
 
 

 
 
  
  
 
  

   

    

    

     

 

 
      

 

Fig. 10. Trained signal of the experimental FBG signal and 

generated signal for peak matching using GAN in the 

experimental data. 

 

Fig. 11. Regression analysis of training, testing, and validation 

of the experimental data. 
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Using (17), (18), and (19), the p-value is calculated as 

1.0296∙10−77 and the 𝐶𝐼 is [0.0707–0.0865]. Here, the  

p-value is less than the significance value of 0.05, this 

means that the hypothesis is more significant and there is a 

99.9 chance that a specific interval contains the true peak 

wavelength. Thus, based on the analysis, it can be said that 

the proposed FBG peak detection method has good 

accuracy. 

A comparison of different peak detection methods is 

given in Table 1. 

Table 1.  

Comparison of different peak detection methods. 

Ref.  

no. 

FGB peak 

detection  

methods based on: 

3-dB 

bandwidth of 

the considered 

FBG signal 

Mean MSE 

[13] Hilbert transform 0.212 nm 5.80 pm – 

[16] 
Invariants moment 

interval 
0.3 nm 0.19 pm 0.5 pm 

[18] 

Machine learning 

techniques for 

liquid level 

estimation 

0.5 nm – 3.58 pm 

[22] 
Deep learning 

algorithms for FBG 
– 7.8 pm 8.48 pm 

[24] Machine learning – – 0.258 pm 

– 
GAN  

(present work) 
0.3 nm 0.008 pm 0.20 pm 

The different peak detection techniques are compared 

with the proposed FBG peak detection techniques using 

GAN-based machine learning and the authors found the 

mean value as 0.008 pm and the MSE value of 0.20 pm 

which are the lowest compared with other methods. 

5. Conclusions 

A peak detection algorithm for FBG using GAN-based 

machine learning is proposed. It has been verified both 

theoretically and experimentally. In GAN, a random 

gaussian spectral signal is considered as the GM and the 

real FBG signal is used in the discriminator model. The loss 

functions are calculated for the generated signal and 

discriminated signal. The peak of the generated signal 

matches with the peak of the real signal after training for at 

least 1 or 2 epochs. The proposed algorithm is very much 

suitable for a dynamic change of the FBG peak but limited 

in the short wavelength range. For the long wavelength 

range, it would require, however, more epochs, i.e., around 

30 epochs. The proposed algorithm can be extended for 

multi-FBG peak detection with good accuracy and can 

even be suitably applied for overlapped peaks. 

      s’ s         

In the manuscript “Adaptive and precise peak detection 

algorithm for fibre Bragg grating using generative 

adversarial network”, the authors have contributed as 

follows: S. K carried out the study of all the parameters 

which are used in the proposed peak detection technique, 

the design of peak detection algorithm, and the result 

analysis. Drafting and writing of the manuscript was 

carried out by S. S. 
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