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Appraising Economic Uncertainty in Open-Pit Mining Based  
on Fixed and Variable Metallurgical Recovery

Given that a source is located underground and detected by sounds that cannot be completely known 
or predicted, every stage of the operation from grade changes to product sales exhibits uncertainties. 
Parameters and constraints used in mining optimizations (sales price, costs, efficiency, etc.) comprise 
uncertainties. In this research, chrome open-pit resource optimization activities were performed in the 
province of Adana, Turkey. Metallurgical recovery, which is considered a constant as an optimization 
parameter in mining software, has been optimized as a variable based on fixed and variable values rela-
ted to the waste material grade of processing. Based on scenario number 7, which yields the highest net 
present value in both optimizations, this difference corresponds with an additional $1.4 million, i.e., 7% 
minimum. When the number of products sold were compared, a difference of 25,977 tons of concentrate 
production was noted (Optimization II produces less than Optimization I). In summary, concentrated 
efficiency and economic findings show that using variable metallurgical recovery parameters in NPV 
estimation improves optimization success by reducing the level of uncertainty.
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1.	I ntroduction

Mining operations are capital-intensive pursuits involving perceptive decision-making, 
strategic timing of each investment, and produce valuable products in the long term [1]. Geo-
logical measurement mechanisms comprise uncertainties because of the natural structure and 
complexity of measurement processes. These uncertainties can originate from natural formation, 
sampling methods and mechanical equipment and may also be caused by environmental factors. 
Measurements obtained in various parts of ore deposits are further subject to uncertainty for the 
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stated reasons. These uncertainties have a negative impact, particularly on economic evaluation, 
investment, and decision-making processes [2,3].

Field examinations conducted with search methods provided information for every point of 
the resource because sampling within the scope of scale and possibilities determines the avail-
ability of data. The effect of uncertainty is present in all processes from detecting all dimensions 
of a mineral deposit investigated through drilling to extraction. From economic dimensions, 
the purpose function, parameters, and constraints (e.g., sales price, costs, and recovery) used in 
the three-dimensional optimization of the mineral reserve being examined comprised uncertainties 
to a certain extent. At this point, numerous uncertainties should be considered when planning the 
optimal open-pit operation, to minimize the overall uncertainty level [4-6].

2.	L iterature Survey

Numerous studies included in the literature focused on metallurgical recovery beyond basic 
qualitative approaches; Boisvert et al. [7] emphasize the importance of performing multivariate 
metal recovery and plant performance analysis by using effective statistical tools. Garrido et al. 
[8] used simulations to estimate copper grades and metallurgical recoveries at drilling locations, 
and the results were used to construct composites [8]. Freire et al. [9] evaluated metallurgical 
recovery by using plant tailing data in a study where chromium tailing behavior in the concentrate 
plant was investigated [9].

Fixed recovery, mining, and processing costs are used in conventional approaches [10,11]. 
By contrast, an ore body’s recovery is not constant, and recovery and throughput can change if 
fixed costs are used [12,13]. In one of the optimization-based approaches in a recovery analysis, 
Moosavi and Gholamnejad [14] emphasized that the dynamic cut-off criterion must be considered 
when determining the optimal production pattern for open-pit mining. The findings of this study 
indicate that in addition to metal recovery, mining and process costs are affected by effective 
decision making, which enables predicting the economic life of the block during the mine life. 
In a study on a similar subject, the amounts of metal gained from materials sent to different pro-
cesses fluctuated because of uncertainties in the grade and material type, and the metallurgical 
recovery varied depending on the type of material [15]. A recent optimization study revealed 
that metallurgical recovery and grinding performance are parameters directly affecting planned 
production and thus the timing of cash flows; subsequently, they directly affect predictions for 
the early stages of a mining operation [16].

In this study, economic parameters, such as dynamic (variable) metallurgical recovery, are 
focused on net present value (NPV) estimation, and the optimization of the mine site is per-
formed. Metallurgical recovery is one of the parameters used in enamel optimization software 
that assumes to be constant for all blocks. To see the results at different metallurgical recovery 
values, it is necessary to perform an uncertainty analysis by running the optimizations with 
a fixed but different recovery value for each scenario or assigning a predefined distribution of 
recovery because of optimization and comparison of the results. In the first method, optimiza-
tion periods become excessively long, and in the second method, the already obtained results of 
the optimization in the software are compared with the NPV results of an uncertainty analysis. 
By contrast, the method used here is at the initial stage of optimization, where a metallurgical 
recovery value is close to the actual value for the site and is based on the analysis values at hand; 
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this value is applied to all blocks separately, and optimization is implemented by calculating 
the economic values of blocks.

Therefore, significant differences are reported in the solution of scenarios planned as fixed 
or variable. Concentrated recovery and economic findings show that using the variable metal-
lurgical recovery parameter in the NPV estimation improves optimization success by reducing 
the uncertainty level.

3.	P roblem Definition

The ultimate pit limit and pit economic value obtained by mining optimization software 
are determined following certain algorithms. In these software, parameters, such as revenue 
factor (RF), cut-off grade, and metallurgical recovery, are commonly taken in certain patterns 
for the quarry economic value, and in particular, metallurgical recovery is considered a constant 
value throughout the entire quarry life. In this study, instead of a fixed metallurgical recovery 
or constant metallurgical recovery value, the study was performed to come up with a projection 
based on the feeding and tailing analysis obtained from the quarry that depended on the ore 
structure of the pit; this projection was then applied to the grade of all blocks. A metallurgical 
recovery value was found for each block. The projection plot was made for small ores, and 
the results were compared to observe the economic value of the quarry and compare ultimate  
quarry limits.

4.	M ethodology

4.1.	M etallurgical Recovery

Many approaches can be used to increase recovery in integrated mining and metallurgical 
solutions. One of the approaches is to determine the optimal strategy for producing concentrates 
from ore. Resources, infrastructure, mining site, processing, and metallurgy are interdependent 
and positively interact with one another in mining and metallurgical operations [17].

Between the input grades of minerals and output grades, equality of the metal balance is 
observed. This equality can be expressed as follows [18]:

	 F · f = C · c + T · t	 [1]

In Equation [1], C represents concentrate quantity (tons), c represents concentrate grade (%), F 
represents feed quantity (tons), f represents feed grade (%), T represents tailing quantity (tons), 
and t represents tailing grade (%).

The aim is to produce value at the highest quality from the raw material entering the process 
[19]. The recovery rate (R recovery) is defined as the ratio of precious metal weight in the con
centrate to precious metal weight in the run-of-mine ore and is generally expressed in percen
tage [18].

	

100% C cRecovery R
F f
 

 


	 [2]
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In Equation [2], considering the equality of material balance, recovery is defined as follows:

	

 
 

100
% 

c f t
Recovery R

f c t
 

 


	 [3]

Rearranging Equation [2], the quantity of concentrate can be determined as follows:

	 .100
F f RC
c
 

 	 [4]

4.2.	D irect Block Scheduling

The mine planning process is based on the timetables of more blocks to produce over time 
and the development of long-term programs by assigning targets to the blocks. This program-
ming is subject to various accounting and strategic constraints (processing capacity and slope 
inclination angles).

It is usually aimed at optimizing the value of the project expressed in NPV [20].
This task can be completed using two main approaches. The first is based on the Lerch-

Grossmann (LG) algorithm, which generates nested pits [21]. The second approach is based on 
direct block scheduling (DBS), which entails taking the economic values of blocks within the 
framework of constraints and directly assigning production periods to the blocks through a fun-
damental optimization problem. The primary features of DBS are as follows:

1.	 Integer programming is how it is expressed. The system is limited by slopes, mining, 
and processing. The goal is to maximize the discounted value of production over time 
by determining the optimal location for each block.

2.	 Integer Programming? (IP) is a mathematical structure leading to a solution as a linear 
programming tool and providing a substantially faster solution.

3.	 DBS develops a solution overcoming the LG method’s limitations on nested pits by 
calculating production time, block destination, and production goals and capacities [22].

4.3.	 Assigning Economic Value to Blocks

Each block in the ore block model performed economic or non-economic value based on 
the assigned grade. This value is determined by a cut-off in some optimization software, i.e., 
threshold grade, in some software is determined directly according to the economic value of the 
block based on its grade (Fig. 1) and its interaction with other blocks. If the block has a value 
that is sent to the plant after the optimization algorithm operation, it is referred to as an “economic 
block;” otherwise, it is referred to as a “non-economic block” and will be sent to the waste site.

The economic values of the blocks are defined in two ways, similar to those in Fig. 1 [23]:
1)	 Economic Value Process: A block is perceived to be economically based on its cost value 

and sent to the process plant.

	       $EVP Ct SP SC Bt PC MC       	 [5]

EVP stands for economic value, Ct stands for the amount of obtained concentrate, 
SP stands  for the sales price, SC stands for sales cost, Bt stands for block weight, 
PC stands for process cost, and MC stands for mining cost.
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For instance; if a block’s grade is 6.00% Cr2O3 (at the same time, this is feeding grade 
for processing plant) then with coefficient 2.107 the tailing grade will be from F/T 2.85% 
Cr2O3. Metallurgical recovery if the concentrate grade is 46% Cr2O3 for this block is 
from equation [3];

	

 
 

46.00  6.00 2.85
% 100 %56

6.00  46.00 2.85
Recovery

 
  

 
 

	

For a 10 m × 10 m × 10 m size of block and with 2.7 t/m3 of specific gravity, the amount 
of concentrate ton (named as Ct for optimization formula) is from equation [4];

	
2700  6.00  0.56 197.24 tons

46.00
Ct  

   
	

Economic value for this block for a 227 $/t of the selling price, 20 $/t of selling cost, 
2.51 $/t of processing cost, and 2.01 $ of mining cost is from equation [5];

	

 
 

197.24  227.00 20.00
28624 $

2700  2.51 2.01
EVP

 
 

 
 
	

2)	 Economic Value Waste: A block is not evaluated as economical in terms of its value and 
is discharged from the pit to the waste area.

	 EVW ($) = –(Bt · MC)	 [6]

Here, EVW is the economic value of waste.

Because the algorithm can analyze each block separately, this method is more realistic than 
the conventional one. Nested pits are not required because it optimizes and plans in a single pass 
to yield the highest NPV in the shortest time.

Based on the system of the LG methodology, blocks are divided to achieve the proposed 
ore production; however, DBS is more reliable because it aims to extract the complete block 
only at a certain time. With its ability to put high-quality blocks into production first, DBS can 
predict the waste involved in accessing blocks with a higher economic value [24]. In summary, 
it shapes the pit by trying to reach the maximum NPV value for each period in the optimization.

Fig. 1. Block separation in optimization according to economic value
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4.4.	 Application

4.4.1.	Case Study Location

The chrome site, which uses application data, is located within the boundaries of Aladağ 
Township, Adana Province, Turkey. The site covers an area of 1 388 ha and comprises chrome 
quarries that are operated as large-scale open pits. Low-grade run-of-the-mine chromium ore pro-
duced from the site is increased to 46% Cr2O3 and above at the concentrate plant at the site. The 
process is the gravity method for chromite. Material size is reduced and goes to the shaking tables 
after grinding processes. There are 3 types of material after shaking table; concentrate, middling 
and, tailing. The concentrate produced is exported to countries, such as China, Japan, and Russia.

4.4.2.	Data and Parameter Analysis

The analysis results of 70 samples revealed that daily metallurgical recovery values can 
reach a maximum of 63%, and Table I summarized the measurement values.

Table I

Results of process plant analysis

Sample 
No.

Feed Grade 
%

Tailing Grade 
%

Concentrate Grade 
%

Recovery 
% Feed/Tailing Rate

1 7.34 3.63 46.38 55 2.02
2 7.85 3.39 45.63 61 2.32
3 9.03 4.39 45.23 57 2.06
4 13.10 6.38 47.88 59 2.05
5 7.63 3.66 46.32 56 2.08
6 7.53 3.36 44.56 60 2.24
7 7.50 3.40 44.50 59 2.21
8 7.85 3.62 45.53 59 2.17

65 7.05 3.12 46.15 60 2.26
66 6.24 2.72 45.79 60 2.29
67 7.46 3.60 45.02 56 2.07
68 7.65 3.70 46.97 56 2.07
69 8.70 4.62 47.03 52 1.88
70 8.40 4.20 46.80 55 2.00

Table II shows correlation coefficients indicating the relationship between the parameters. 
The correlation coefficient between the feed and tailing grades is 0.635, and a negative relation-
ship is observed between the tailing grade and recovery. Furthermore, a positive correlation is 
noted between the proportion of feed/tailing grade and recovery with the ratio of the established 
feed to the tailing grade. Table III presents descriptive statistical values of the data.

The grade value is contained in each block (if the block is sent to the plant as the material 
being fed) is divided by the average value of the Gamma coefficient determined by Fig. 2 to find 
the tailing grade. Therefore, the grades of all 868 019 blocks (e.g., tailing, waste, and ore) were 
divided by the value of 2 107, tailing tenors were assigned to the blocks, and their metallurgical 
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recoveries were calculated separately (for each block). In this way, economic values (process and 
waste) of all blocks are calculated separately according to blocks’ grades. All the blocks have 
10 m × 10 m × 10 m of dimensions. There are two types of blocks in the block model as one is 
ore blocks which are inside of the solid ore model and the other one is waste blocks which contain 
blocks that are out of the solid model. Waste blocks have zero grade in percent.

Table II

Correlation matrix of analysis results

Feed Tailing Concentrate Recovery F/T Rate
Feed 1.000

Tailing 0.635 1.000
Concentrate −0.077 0.044 1.000

Recovery 0.199 −0.552 −0.173 1.000
F/T Rate 0.050 −0.681 −0.167 0.968 1.000

Table III

Statistical results of sample analyses and distribution charts

Parameter Distribution Graph Minimum Maximum Mean St. Dev. 5% 95% Count

Feed 6.24 13.10 7.56 0.84 6.72 8.69 70.00

Tailing 2.72 6.38 3.61 0.50 3.18 4.39 70.00

Concentrate 42.24 47.88 45.41 1.37 42.90 47.28 70.00

Recovery 0.43 0.63 0.57 0.03 0.53 0.61 70.00

F/T Rate 1.61 2.43 2.11 0.13 1.94 2.32 70.00
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Fig. 2. Feeding/tailing distribution graph

The operational costs were calculated based on an annual production of 1,800,000 tons of 
run-of-mine ore and 5,200,000 tons of stripping. The process costs were calculated according 
to the processing of 1,800,000 tons of run-of-the mine chromium ore annually and were sum-
marized in Table IV.

Table IV

Open-pit, processing, and sales costs

Cost Unit
Open Pit Processing Sales Cost

Cost – $ Unit Cost 
– $/ton Cost – $ Unit Cost 

– $/ton Cost – $ Unit Cost 
– $/ton

Labour 515 368 0.29 288 158 0.16 — —
Equipment 2 397 953 1.33 420 074 0.23 — —

G.P.E* 500 405 0.28 2 308 879 1.28 — —
Indirect Costs 206 930 0.11 1 492 351 0.84 — —

Ore Transportation to Port — — — — — 9.00
F.O.B. etc. — — — — — 9.00
G&A Costs — — — — — 2.00

Total 3 620 657  2.01 4 509 462 2.51 — 20.00
* G.P.E.: General production costs (electricity, maintenance-repair, etc.)

4.4.3.	Optimization Study

In this study, the economic values of blocks were calculated as ore and waste for each block 
through Equations [5] and [6]. The blocks with calculated grades, recoveries, block tonnages, and 
economic values were transferred to SimSched DBS (version 1.0.1) software, and optimizations 
were performed (Figs 3 and 4).
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Fig. 3. SimSched DBS data transfer control screen

Fig. 4 shows optimization parameters used for scenarios. In this screen, the Geometric 
constraints are constraints for the optimization process. Minimum widths (mining) represent 
working lengths in horizontal so 30 m means that can be maximum of 30 m advance in the pit 
per period and Minimum widths (bottom) represent working space to work in the pit bottom the 
during loading and excavating proceses. The vertical rate of advance is a value represent vertical 
advance in the pit per year as maximum.

Fig. 4. SimSched DBS optimization screen

4.4.4.	Scenarios and Evaluation

Two studies were established with the optimization parameters of the seven scenarios 
specified in Table V to obtain the optimum pit boundaries required to achieve the maximum 
NPV as 1) Optimization I (Opt. I): sale price 227 $/ton with fixed metallurgical recovery (60%) 
and 2) Optimization II (Opt. II): sale price $227/ton with metallurgical recovery varying by block.

Tables V and VI show the optimization parameters and results based on these parameters, 
and Fig. 5 shows a comparison of these results.
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Table V

Parameters used in optimization scenarios

Scenarios
DBS Optimization Parameters

Discount Rate 
– %

Slope  
– degree

Mining Width 
– m

Bottom Width 
– m

Vertical Rate of 
Advance – m

1 10 45 30 30 100
2 10 40 30 30 100
3 10 50 30 30 100
4 10 50 20 40 100
5 10 50 50 30 100
6 10 50 30 30 50
7 10 50 30 30 150

Table VI

Optimization output results

Parameters

Scenarios
1 2 3 4 5 6 7

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Opt. 
I

Opt. 
II

Production 
– Mt 6.75 6.24 6.60 6.28 7.60 6.62 6.84 7.15 6.38 6.18 6.67 6.79 7.83 7.86

Waste – Mt 15.68 13.81 17.75 16.49 13.84 13.39 15.74 13.13 16.05 13.83 15.76 13.22 14.61 12.15
NPV –$M 17.80 13.80 14.50 10.50 24.10 16.70 17.60 18.20 16.30 14.00 18.80 19.10 24.00 22.60

Concentrate 
– kt 420 362 414 368 459 386 422 404 407 368 425 401 462 430

Period 5 4 5 4 5 5 5 5 5 5 5 4 5 5

Fig. 5. Chart of comparison of optimization results
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The highest NPV was obtained in scenarios with an overall slope angle of 50, whereas 
increasing the amount of vertical advance increased the NPV (Fig. 6).

Fig. 6. NPV comparison chart of Optimization I and II scenarios

According to the results (Table VII and Fig. 7), in optimization scenarios with a fixed re-
covery value, the average grades of the blocks sent to the plant were seen to be lower than those 
in variable-recovery scenarios because blocks with lower grades are also considered. After all, 
the fixed recovery value is greater than the variable calculated value.

Table VII

Plant feeding tonnages and average grades produced by optimizations

Scenarios
Optimization-I Optimization-II Avg. Grade  

Difference %  
(Opt. I-Opt. II)

Feeding  
– ton

Avg. Grade  
– %

Feeding  
– ton

Avg. Grade  
– %

1 6 751 170 4.77 6 241 550 4.79 −0.02
2 6 600 360 4.81 6 278 850 4.85 −0.04
3 7 608 820 4.62 6 619 590 4.82 −0.20
4 6 846 160 4.73 7 152 550 4.68 +0.05
5 6 383 890 4.89 6 178 210 4.92 −0.03
6 6 672 220 4.89 6 788 140 4.89 0.00
7 7 829 080 4.53 7 858 930 4.54 −0.01

A significant difference was noted in the NPVs that will be based on the results of optimi-
zation studies. Therefore, it was determined that a variable-recovery value that produces close 
to actual results would be preferable to a fixed recovery value. The NPV difference can reach 
$7.4 million in Optimization II, scenario number 3. This finding corresponds to a difference of 
approximately 30% in Optimization I and II. The difference is $1.4 million based on scenario 
number 7, which has the highest NPV. Based on variable recovery, this corresponds to a differ-
ence of approximately 7%. (Fig. 8).

Table VIII compares the Optimization II recovery values with fixed recoveries. In Optimi-
zation II scenarios, the maximum average recovery value is 56.28%, and a 3.71% difference is 
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observed when compared with the fixed recovery value of 60% used in Optimization I. When 
compared with variable-recovery trials, optimization using fixed recovery produced 25 977 tons 
or 7% more concentrates. Therefore, it should be underlined that this optimization solution on 
a product basis can be misleading.

Table VIII

Comparison of Optimization-II recoveries with fixed recovery

Optimization-II Minimum Maximum
Fixed metallurgical recovery – % 60 60

Variable metallurgical recovery – % 54.85 56.28
Recovery difference – % −5.14 −3.71

Produced concentrate amount by recovery difference – ton 35 980 25 977
Average concentrate amount produced by scenarios – ton 388 452

Concentrate difference by recovery – % 9% 7%

5.	R esults/Discussion

Because this study wants to underline that a fixed yield value as a metallurgical yield value 
from optimization parameters was applied to the blocks, 25,977 tons of concentrated product to 
be obtained would not have been evaluated within the economy of the quarry. Of course, because 
this is also a probability, it can be considered results obtained with the best- and worst-case sce-
narios as offered by many software today. However, the final economic values to be obtained 
will not correspond with the degree of the economic value to be obtained using variable recovery.

6.	C onclusion

In the study on metal production and recovery, solutions were generated by conducting 
uncertainty-based analyses. A variable-recovery solution scenario offers a realistic optimiza-

Fig. 7. Comparison of plant feed tonnage and mean grades produced by optimizations
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Fig. 8. Image comparison of scenarios 3 and 7 from Optimization I and II
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tion scenario providing the maximum NPV for a pit. The results were compared with the fixed 
recovery solution.

It is believed that in large-scale mines, using variable recovery instead of a fixed recovery 
parameter throughout the mine life will reveal differences, albeit very small. The approach in the 
optimization solution to represent the dynamic nature of the site and process has increased the 
success of calculations. Variable recoveries based on the mineralization analysis results produce 
effective, successful, and more realistic NPV results than fixed metallurgical recoveries.

Future Scope

With the algorithm or process steps presented in this study, projection parameters, such as the RF,  
cut-off grade, or metallurgical recovery, which are considered constant will be open to developing 
among themselves in the future. The F/T ratio will be able to make metallurgical recovery more 
plausible in all blocks. The limitedness of this method is that computer technology and speed in its 
application to a large number of blocks to be obtained from larger ores as well as the processing speed 
for transferring these blocks to the software can be difficult for the user, and the data to be transferred 
to the software needs to be controlled carefully.
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