
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 4, PP. 889-898

Manuscript received October 10, 2022; revised November 2022. DOI: 10.24425/ijet.2022.143899

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Distributed Denial of Service (DDoS) attacks

constitute a major threat in the current Internet. These

cyber-attacks aim to flood the target system with tailored malicious

network traffic overwhelming its service capacity and

consequently severely limiting legitimate users from using the

service. This paper builds on the state-of-the-art AATAC

algorithm (Autonomous Algorithm for Traffic Anomaly Detection)

and provides a concept of a dedicated inline DDoS detector capable

of real-time monitoring of network traffic and near-real-time

anomaly detection.

The inline DDoS detector consists of two main elements: 1) inline

probe(s) responsible for link-rate real-time processing and

monitoring of network traffic with custom-built packet feature

counters, and 2) an analyser that performs the near-real-time

statistical analysis of these counters for anomaly detection. These

elements communicate asynchronously via the Redis database,

facilitating a wide range of deployment scenarios. The inline probes

are based on COTS servers and utilise the DPDK framework

(Data Plane Development Kit) and parallel packet processing on

multiple CPU cores to achieve link rate traffic analysis, including

tailored DPI analysis.

Keywords—DDoS; Distributed Denial of Service; traffic

anomaly detection; AATAC; performance; DPDK

I. INTRODUCTION

ISTRIBUTED Denial of Service (DDoS) attacks aim to

overwhelm a target system’s capacity in order to severely

reduce its accessibility to legitimate users. An attacker uses

a number of geographically distributed nodes to generate

malicious traffic. Usually, the nodes are machines infected with

malware that cedes their control to an attacker. A group of these

zombies under the control of an attacker constitutes a botnet that

enables the attacker to perform a distributed attack. Nowadays,

even DDoS as a service (DaaS) is available [1]. The DaaS

providers sell their services at a very low cost (from 1 USD),

and directly via websites (called booters). The low cost and ease

of access make the DDoS accessible to a wide variety of entities,

from big companies wanting to hurt their competition to a single

student wanting to disrupt his remote exam [2].

The DDoS attacks may be broadly categorised into

1) extensive and 2) intensive [1]. The extensive attacks are based

on generating a massive volume of relatively simple traffic.

E.g., an attacker may fill up the capacity of a resource like link

bandwidth with malicious traffic. In such a case,

This work was supported by the Polish National Centre for Research and

Development under Project CYBERSECIDENT/381651/II/NCBR/2018
(TAMA project). The project was realized by a consortium of EXATEL and

Warsaw University of Technology.

Piotr Wiśniewski, Maciej Sosnowski and Wojciech Burakowski are with
Warsaw University of Technology, Institute of Telecommunications (e-mail:

{piotr.wisniewski2, maciej.sosnowski, wojciech.burakowski} @pw.edu.pl).

an amplification technique1 may be applied since the type of

traffic is irrelevant. Some more sophisticated attacks belong to

this category too. E.g. within SynFlood attack, a relatively

massive amount of TCP SYN packets from many spoofed IP

addresses is generated to exhaust the victim’s TCP connection

table preventing legitimate connections from setting up.

The intensive attacks utilise knowledge about design flaws

of specific protocols and applications to tailor packets’ content

to exploit these flaws. E.g., the well-known Slowloris, where the

attacker initiates subsequent HTTP connections and holds them

open as long as possible. Specifically, zombies send packets

containing only parts of an HTTP request without ever finishing

these requests. The consecutive packets are sent just before

a server timeout preventing the connection from being closed.

Consequently, a maximum number of concurrent connections is

reached in the HTTP server (e.g., 256 in the case of Apache Web

server in default configuration [3]), and the legitimate requests

are not accepted. Note that the volume of traffic is not noticeably

increased. Consequently, the Slowloris attack is resistant to

classical detection and mitigation techniques [4]. A survey of

DDoS attack tools is provided in [5].

In order to defend against DDoS attacks, they need to be

detected quickly. The following types of DDoS detection

techniques are commonly considered [6]: 1) knowledge based,

2) statistical, and 3) machine learning based. Knowledge based

techniques, e.g. [7], are focused on the detection of a priori

known attacks. Traffic information is gathered and compared

with attack-related signatures. If traffic fits an attack pattern,

an alarm is raised. Note that these techniques need frequent

signatures update to follow new types of attacks, which is

resource-demanding. Statistical and machine learning based

techniques detect unusual traffic patterns. Traffic features are

compared with the historical data (or a model), and an alarm is

raised when a significant deviation is detected. Machine

learning requires a lot of computing power and vast datasets of

training data to train the model (supervised learning, e.g. [8]) or

to characterising the traffic without any previous knowledge

(unsupervised learning, e.g. [9]), while the statistical methods

(e.g. [10]) are relatively lightweight. Note that statistical

techniques do not identify the type of attack but just detect

anomalies.

In this paper, we build on a state-of-the-art statistical

algorithm called AATAC by proposing and evaluating an inline

DDoS detector. A brief overview of AATAC algorithm is

1 Amplification DDoS attacks use the connectionlessness property of UDP.

An attacker sends a requests to a server (e.g., DNS) with spoofed source IP to
the victim’s IP. Then, the server sends a response to the victim. It is called

amplification attack since the responses are much bigger than the requests.

On Implementation of Efficient Inline DDoS

Detector Based on AATAC Algorithm
Piotr Wiśniewski, Maciej Sosnowski, and Wojciech Burakowski

D

https://creativecommons.org/licenses/by/4.0/
mailto:maciej.sosnowski

890 P.WIŚNIEWSKI, M.SOSNOWSKI, W.BURAKOWSKI

provided in Section II. The inline DDoS detector

implementation concept, covering the primary design principles

together with a detailed characterisation of the inline probe and

analyser elements, is introduced in Section III. Sections IV and

V present the testing effort, where Section IV focuses on the

performance of the inline probe and the analyser elements,

while Section V offers exemplary end-to-end results. Finally,

Section VI summarises the paper and Section VII concisely

describes future works.

II. AATAC OVERVIEW

The AATAC method [6] detects anomalies in network

traffic. An anomaly is understood as the rapid change of the

values of some packet stream features. These features are of two

types: 1) global features associated with the absolute number of

packets of a specific type (e.g., TCP / UDP, TCP SYN) and

2) feature distributions associated with the relative number of

packets within the range of a specific feature (e.g., source port

number distribution). The feature values are calculated as

so-called densities at consecutive time moments. The current

value of a feature density is compared with a number of stored

historical densities. For this purpose, the 𝑘-nearest neighbours

(𝑘 − 𝑁𝑁) [11] algorithm is used, and the result of it is

normalised to the previously observed density changes. This

method determines how uncommon the current density change

is – the value of this “unusualness” is called an anomaly level.

Let us briefly summarise the anomaly level calculation for

a global feature. Feature density is calculated in an incremental

fashion:

 𝐷(𝑡2) = 𝜆𝑡2−𝑡1𝐷(𝑡1) + 𝑤(𝑡1, 𝑡2) (1)

where: 𝐷(𝑡) is the density at time 𝑡, 𝑤(𝑡1, 𝑡2) is the number of

the feature occurrences in the period between 𝑡1 and 𝑡2, and 𝜆 is

the decay factor. Usage of densities instead of consecutive

𝑤(𝑡1, 𝑡2) values reduces the impact of natural fast-changing

fluctuations.

Each density has a corresponding distance related to the

previous density. The distance is the absolute value of the two

densities’ numerical difference. A number (say 𝑁) of

consecutive densities and their corresponding distances are

stored together with the mean value of the distances, µ, and the

corresponding standard deviation, σ. When a new density is

calculated, it is added to the densities list, and its distance to the

previous density is added to the distances list. The oldest density

and its corresponding distance are removed, and the values of µ

and σ are updated. Next, the temporary set of distances between

the new density and all the stored densities is calculated. Then,

the k-th smallest value (k-nearest neighbour) of the newly

obtained distances is selected: X. Finally, the anomaly level is

calculated by normalising the value of 𝑋 with respect to µ and 𝜎:

𝐴 = {
 0, 𝑓𝑜𝑟 𝑋 = µ

𝑎𝑏𝑠 (
𝑋−µ

𝜎
) , 𝑓𝑜𝑟 𝑋 ≠ µ

 (2)

Anomaly level 𝐴 says how many standard deviations, 𝜎, the

value 𝑋 is away from the mean value of the density changes, µ.

When the anomaly level exceeds the predefined threshold,

an anomaly is detected, and an alarm is raised. As the value of

2 Identification of direction enables to monitor traffic towards the IP address,

from the IP address or in both directions simultaneously.

𝐴 is expressed in standard deviations, different features may be

compared even if their densities differ by orders of magnitude.

For example, when the traffic rate doubles, the anomaly level is

the same regardless of the actual traffic rate (no matter if the

traffic rate increases from 10 kbps to 20 kbps or 200 Gbps to

400 Gbps). Note that the last traffic change is compared with its

previous behaviour as a reference. Therefore, even a significant

density change does not strongly impact the anomaly level if

such density changes were previously common. Consequently,

the anomaly threshold that raises an alarm is the same for all

features.

III. INLINE DDOS DETECTOR IMPLEMENTATION CONCEPT

A. Introduction and design principles

The main idea behind the inline DDoS detector is to provide

the implementation concept for efficient, scalable, and elastic

deployment of real-time AATAC-based method in high-speed

networks that constitutes autonomous systems of the current

Internet. Specifically, the concept is mainly suited for Tier 3

Internet Service Providers (ISPs) primarily engaged in

delivering Internet access to end customers.

The mitigation of the DDoS attacks requires two main

elements: 1) the detector element responsible for identifying the

attacks/anomalies in network traffic, and 2) the discarder

responsible for dropping the packet flows identified as attacks.

This paper provides the concept of the inline DDoS detector

element with further remarks regarding its integration with the

discarder element.

The following two main approaches for the realisation of

an AATAC-based inline DDoS detector may be considered:

1) implementation of dedicated devices (inline probes) in the

network responsible for network traffic analysis and calculation

of real-time flow characteristics and 2) exploitation of statistics

provided by inline network devices (usually routers).

The former enables a thorough examination of network traffic

characteristics tailored for anomaly detection, but it requires

efficient devices capable of performing deep packet inspection

(DPI) at link rate speed. The latter utilises the capabilities of

routers (already deployed in the network), but it provides traffic

analysis options limited to flow statistics provided by the router,

usually with NetFlow, IPFIX, or J-Flow solutions [12].

Moreover, the latter relay heavily on traffic sampling [13] due

to router CPU power constraints. Note that traffic sampling

negatively impacts anomaly detection accuracy.

This paper proposes the concept of an AATAC-based inline

DDoS detector accordingly to the first approach. The following

paragraphs present the primary design principles behind our

inline DDoS detector concept.

1) Service-tailored anomaly detection

We assume that an organisation (usually an ISP) provides

the DDoS mitigation service (DDoS shield) for a number of

clients. Each client is assigned with a set of monitored entities

identified by the couple consisting of IP address together with

direction2. Each monitored entity is assigned with a monitoring

policy defining a set of packet feature filters.

ON IMPLEMENTATION OF EFFICIENT INLINE DDOS DETECTOR BASED ON AATAC ALGORITHM 891

This approach enables high flexibility of the DDoS shield

adoption in the network. Each client of the DDoS shield service

may define a set of servers (identified by IP addresses) running

services that should be protected. Depending on the service

characteristics, a monitoring policy is defined (e.g., in the case

of a web service, it is crucial to detect traffic anomalies

indicating slow HTTP DDoS attacks, whereas, in the case of

a VPN service, such detection is unnecessary). Moreover,

a different monitoring policy may be assigned depending on

the traffic direction (towards or from the IP address).

Consequently, the approach enables to detect of attacks targeted

against predefined services with customisable monitoring

policies dependent on the service characteristics.

Additionally, two special monitoring entities are defined,

so-called otherIn and otherOut. These cumulative entities cover

all traffic that would not be monitored otherwise (the traffic

destined to or coming from the IP addresses not-covered by

already defined monitoring entities). These entities may be

assigned with monitoring policy (as any other). The idea behind

the otherIn and otherOut entities is to enable a cumulative

analysis of the background traffic.

2) High scalability and deployment elasticity

Our inline DDoS detector consists of two main elements

1) inline probe(s) responsible for link-rate real-time forwarding

and monitoring of network traffic with custom-built packet

feature counters, and 2) an analyser that performs

the near-real-time statistical analysis for anomaly detection.

These elements communicate asynchronously via the Redis

database. Note that the database and the analyser may be located

anywhere in the network, e.g., in the ISP cloud. The decoupling

of the AATAC-based inline DDoS detector into two main

elements facilities high scalability and a wide range of

deployment scenarios. The inline probes may be located either

at: 1) client links (so they process and forward traffic limited to

specific clients), 2) at inter-domain ingress links, so they

monitor traffic at the ISP network edge, or 3) in other locations

following ISP specific requirements. The analyser is able to

aggregate information (related to monitored entities) from

different inline probes, see subsection III.C for details.

Consequently, additional probes may be deployed in the

network if an ISP requires to scale up the solution.

3) Custom packet feature filters

The primary idea behind the inline probe is to overcome

the limitations of statistics provided by IPFIX-like solutions in

routers. The accuracy of these flow statistics is cramped due to

the required high traffic sampling rates, and the depth of the

analysis is limited to the available standard statistics, e.g. DPI

analysis of the HTTP body required to detect the previously

mentioned Slowloris attack is not possible. Consequently, such

solutions are considered unsatisfactory from the AATAC-based

method deployment.

The inline probes introduce the concept of a custom packet

feature filter that is able to analyse the whole packet content in

the context of a defined feature, including DPI on the entire

packet content if necessary. Specifically, a packet feature filter

defines a set of (packet feature) counters describing packet

features that are monitored. Building on the AATAC method,

we distinguish two types of filters: global and distribution

filters.

Global packet feature filters constitute a set of counters,

each associated with the absolute number of packets of

a specific type, e.g., TcpFlagFilter contains a set of counters for

different flag options in the TCP header. Each counter is of

absolute/global type: one traffic feature is described by exactly

TABLE I

GLOBAL PACKET FILTERS

Global packet feature filter

- list of counters
Filter description

Invalid&FragmentedFilter

- Invalid, Fragmented

Filter covers invalid and fragmented IP packets. Invalid counter covers packets for which for which the declared TCP/UDP

header length in inconsistent with the actual length. Only packets caring TCP or UDP datagrams may increment this counter.

Fragmented counter covers packets being a fragment of bigger packet based on IP header (fragment offset field and more
fragments (MF) flag in case of IPv4; Fragmentation header in case of IPv6). Only IPv4 and IPv6 packets may increment this

counter.

EtherType&ProtocolFilter

- EtherType counters: IPv4,

IPv6, ARP, OTHER

- Protocol counters: ICMP,
TCP, UDP, OTHER

Filter covers packets base on the values of EtherType field of Ethernet header and Protocol/NextHeader filed of IPv4/IPv6
header. Each processed packet increments: 1) exactly one of EtherType counters depending on the value of EtherType field

of Ethernet header (IPv4, IPv6, ARP or OTHER), and 2) exactly one Protocol counter depending on the value of

Protocol/NextHeader filed of IPv4/IPv6 header (ICMP, TCP, UDP or OTHER).

TcpFlagFilter

- SYN, SYN&ACK, RST,

FIN, FIN&ACK

Filter covers packets carrying TCP datagrams based on TCP flags. Each processed packet carrying TCP datagram increments
at most one of the TCP flag counters depending on the active flags in TCP header (SYN, SYN&ACK, RST)

SlowHttp filter

- SlowHttp

Filter covers packets characteristic for Slow Http Header attack (Slowloris). It covers HTTP packets that are not ended with

the characteristic "\r\n\r\n" end symbol. Specifically, it counts packets that match the following: 1) encapsulation: IPv4 or

IPv6, TCP, HTTP (identified by destination port equal to 80), 2) two last bytes equal to \r\n, 3) two penultimate two bytes not
equal to \r\n.

SlowHttpGet filter

- SlowHttpGet

Filter covers packets characteristic for Slow Http Header attack (Slowloris) similarly to SlowHttp counter. It covers HTTP

GET packets that are not ended with the characteristic "\r\n\r\n" end symbol. Specifically, it counts packets that match the

following: 1) encapsulation: IPv4 or IPv6, TCP, HTTP (identified by destination port equal to 80), 2) first tree bytes of TCP
payload correspond to “GET” keyword, 3) two last bytes equal to \r\n, 4) two penultimate two bytes not equal to \r\n.

SlowHttpPost filter

- SlowHttpPost

Filter covers packets characteristic for Slow Http body attack (RUDY). It covers HTTP POST packets that are not ended with

the characteristic "\r\n\r\n" end symbol. Consecutively, it counts packets that match the following: 1) encapsulation: IPv4 or

IPv6, TCP, HTTP (identified by destination port equal to 80), 2) first three bytes of TCP payload correspond to “POST”
keyword, 3) two last bytes equal to \r\n, 4) two penultimate bytes not equal to \r\n.

892 P.WIŚNIEWSKI, M.SOSNOWSKI, W.BURAKOWSKI

one counter. The description of the implemented global packet

filters (6 filters with 18 counters covering 18 traffic features) is

presented in Table I. Note that SlowHttp, SlowHttpGet, and

SlowHttpPost filters perform application layer analysis for slow

attacks detection [4].

Distribution packet filters constitute a set of counters, each

associated with the relative number of packets within the range

of a specific feature, e.g., FrameSizeFilter contains a set of

counters covering the histogram of frame sizes. Each counter is

of relative type: one traffic feature is covered by a set of

counters. The description of the implemented distribution

packet features filters (5 filters with 49 counters covering

5 traffic features) is presented in Table II.

Additionally, each filter is implemented in two versions:

1) standard version, where each matching packet increments

a counter by one, and 2) byte version, where each matching

packet increments a counter by the packet’s length denominated

in bytes.

4) Commodity hardware-based solution

In order to provide a cost-effective, readily available, and

easily upgradable solution, we designed and implemented our

inline DDoS detector using COTS (Commercial Off-The-Shelf)

hardware and software. Even the performance-critical inline

probe requires a standard COTS Linux x86 server with

a commonly available DPDK-supported NIC (Network

Interface Card).

5) Link rate traffic analysis

The efficiency of the inline probe handling of the actual

network traffic is critical for deploying the inline DDoS

detector. In order to achieve link rate traffic analysis on COST

hardware, the Data Plane Development Kit technology (libraries

for the acceleration of packet processing workloads) was

utilised together with the application of parallel packet

processing on multiple CPU cores [14].

3 The logical cores assigned to each port are configured via start-up parameter.

Each port may be assigned to a different number of cores.

6) Inline DDoS detector and discarder seamless integration

The inline probe element of our inline DDoS detector is

directly forwarding packets, as its name suggests. Note that the

Fig. 1. Inline probe processing phases

discarder device is also of inline nature as it drops the packets

identified as attacks.

Our inline probe was implemented as an extension of

the Gladdos discarder [15], both developed and tested in the

TAMA project. Thanks to that, the inline probe and discarder

may run as one software component on the COST server.

Depending on the start-up command line argument, this

software serves as: 1) inline probe solely, 2) discarder solely,

or 3) inline probe and discarder simultaneously. Note that the

discarder’s details are out of this paper’s scope.

B. Inline probe

The inline probe realises packet processing in three

distinctive phases: P1) packet parsing and counter actualisation,

P2) feature destinies calculation, and P3) data formatting and

export. These phases are depicted in Fig. 1 and further described

in the following sections.

1) Phase P1: packet parsing and counter actualisation

Phase P1 is the most computationally demanding phase as

it requires link-rate processing of network packet traffic

(e.g., 10 Gbps of traffic equals about 1 225 490 frames per

second, assuming 1000 B frame size). Consequently, the packet

traffic is load balanced on the set of available CPU logical cores.

Each NIC physical port is assigned to be served by a number of

CPU logical cores (one or more)3, each bound to a number of

TABLE II

 DISTRIBUTION PACKET FILTERS

Distribution packet

feature filter

- number of counters

Filter description

FrameSizeFilter

- 9 counters

Filter covers Ethernet frame size distribution. Each packet increments exactly one of 9 counters (bins) depending on the Ethernet

frame length. Counters 0, 1, …, 8 cover, accordingly, the following frame size ranges: [0-200), [200-400), [400-600), [600-800),
[800-1000), [1000-1200), [1200-1400), [1400-1600), [1600- inf).

SrcIPFilter

- 10 counters

Filter covers source IP address distribution. Each IP packet increments exactly one of 10 counters (bins) depending on IP source

address. The counter id determined as source IP address (128-byte variable: uint128) modulo 10.

SrcPortFilter

- 10 counters

Filter covers source port distribution (TCP or UDP source port). Each packet carrying TCP or UDP datagram increments exactly one

of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following source port ranges: [0-7000), [7000-14000), [14000-

21000), [21000-28000), [21000-35000), [35000-42000), [42000-49000), [49000-56000), [56000-63000), [63000- 65535].

DstPortFilter

- 10 counters

Filter covers source port distribution (TCP or UDP source port). Each packet carrying TCP or UDP datagram increments exactly one

of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following source port ranges: [0-7000), [7000-14000), [14000-
21000), [21000-28000), [21000-35000), [35000-42000), [42000-49000), [49000-56000), [56000-63000), [63000- 65535].

TTLFilter

- 10 counters

Filter covers TTL distribution (TTL head field value in the case of IPv4 packets and hop limit header field value in the case of IPv6

packets). Each IP packet increments exactly one of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following TTL/hop
limit ranges: [0-26), [26-52), [52-78), [78-104), [104-130), [130-156), [156-182), [182-208), [208-234), [234- 255].

ON IMPLEMENTATION OF EFFICIENT INLINE DDOS DETECTOR BASED ON AATAC ALGORITHM 893

RX queues4. The packets are distributed among the assigned RX

queues using the RSS (Receive Side Scaling) feature. The RX

queue is determined by hashing the appropriate IP addresses and

Fig. 2. Parallel packets processing on multiple cores in phase P1 - simplified

TCP/UDP port numbers, so there is no packet reordering in any

flow5. The simplified logical scheme of this process is depicted

in Fig. 2.

Each logical core runs a thread implementing a pipeline of

packet feature filters. Depending on the monitoring policy

assigned to a given monitored entity, appropriate filters are

activated, and associated counters6 are updated in real-time.

Cumulatively, the whole set of counters {𝑤𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)} is

updated in real-time, where 𝐼 denotes a set of monitored entities

and 𝐽(𝑖) denotes a set of features associated with 𝑖-th entity via

a monitoring policy7.

Note that the {𝑤𝑖,𝑗} abbreviation for {𝑤𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)}

is used in the rest of the paper. Similarly, the abbreviation {𝐷𝑖,𝑗}

is used for the set of densities {𝐷𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)}. A set of

densities associated with a monitored entity constitute

a snapshot describing this entity at a given time moment.

The {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖} abbreviation is used for the set of snapshots

{𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖: 𝑖 ∈ 𝐼} where each 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖 covers all densities

associated with the i-th monitored entity.

2) Phase P2: feature destinies calculation

Phases P2 and P3 are implemented in the main thread

destined to run on a CPU core different from P1 phase threads.

The phase P2 covers the calculation of the set of feature

densities {𝐷𝑖,𝑗} corresponding to {𝑤𝑖,𝑗} counters. While

the feature counters are updated in real-time, the densities are

calculated at constant intervals Δ𝑡, as depicted in Fig. 1. At these

time intervals, the main thread fetches all current values of the

feature counters. Number of feature occurrences during the Δ𝑡

interval, 𝑤𝑖,𝑗(𝑡1, 𝑡2), is a difference between the current and the

previous counter 𝑤𝑖,𝑗 values8.

Each density 𝐷 ∈ {𝐷𝑖,𝑗} is calculated as follows:

4 By default, the number of queues per logical core equals one, this can be

increased up to 12 via start-up parameter.
5 Packets in RX queue are processed by assigned logical core in FIFO (First In
First Out) fashion. Packets may be reordered only if they are processed on

different cores.
6 A monitoring policy defines a set of packet filters each constituting a set of
counters.

𝐷(𝑡2) = 𝐶1 𝐷(𝑡1) + 𝐶2 𝑤(𝑡1, 𝑡2), (3)

where 𝐶1and 𝐶2 are constants that are precomputed as9:

𝐶1 = 𝜆𝛥𝑡 , 𝐶2 =
1−𝜆𝛥𝑡

𝛥𝑡
. (4)

We replaced the original equation (1) with (3) in order to

reduce the computation complexity and make the density value

easier to interpret. Specifically, having constant Δ𝑡 allows us to

pre-calculate values of 𝐶1 and 𝐶2 and use them as constants

during inline probe operation. This reduces the computational

complexity of phase P2 as the formula (3) contains only three

easy operations: two multiplications and one addition.

In comparison to equation (1), we divided 𝑤(𝑡1, 𝑡2) term by

Δ𝑡. Consequently, the densities are now denoted in units of [1/s],

regardless of the actual Δ𝑡 interval length. Moreover, we

multiplied 𝑤(𝑡1, 𝑡2) term by (1 − 𝜆Δ𝑡) to apply EWMA

(Exponentially Weighted Moving Average) method to density

calculation. Thanks to it, the calculated densities provide

information about the current smoothed average of packets per

second.

Let us consider a simple example concerning a single

feature: constant bitrate traffic with the rate of 400 pps (packets

per second), Δ𝑡 = 0.1s, and 𝜆 = 0.5. Consequently

 𝑤(𝑡1, 𝑡2) = 40 and 𝐶1 = 𝜆Δ𝑡 ≈ 0.93, 𝐶2 ≈ 0.7.

In the steady-state, density 𝐷 calculated accordingly to formula

(1) equals:

𝐷 = 0.93𝐷 + 40 → 𝐷 ≈ 571 [packets], (5)

while density 𝐷 calculated accordingly to formula (3):

𝐷 = 0.93𝐷 + 0.7 ∙ 40 → 𝐷 ≈ 400 [pps]. (6)

One can see that the latter provides an easily interpretable

value of smoothed packet rate, while the former does not.

It should be noted that from the point of view of anomaly

detection, both equations (1) and (3) can be used. However, the

introduced adjustments provide that the density is not only an

intermediate result but also carries information that might be

used to detect specific types of DDoS attacks. This issue is

further described in Section VI.

3) Phase 3: data formatting and export

The phase P3 covers the preparation and export of

snapshots {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖} for all entities, see Fig. 1. Densities

{𝐷𝑖,𝑗} are read at constant intervals Δ𝑇 and the snapshots are

prepared and sent to the Redis database. The Δ𝑇 satisfies

the following:

 𝛥𝑡 ≤ 𝛥𝑇. (7)

This enables to maximise the accuracy of {𝐷𝑖,𝑗} calculation

while bounding the amount of exported data10.

Each record sent to the database is a set of key-value pairs

where nested structures are allowed. Each record consists of:

7 Note that each counter may be in one of the two versions as described in

Section III.3.
8 The 𝑤(𝑡1, 𝑡2) is the number of the feature occurrences in the period between

𝑡1 and 𝑡2, as described in Section II. Note this period’s length is constant. It

equals to Δ𝑡 as we assume that the densities are calculated at constant intervals.
9 The 𝜆 parameter is the decay factor, as described in Section II.
10 The accuracy of calculation of {𝐷𝑖,𝑗} depends on the Δ𝑡 length. Smaller Δ𝑡

value corresponds to better accuracy.

894 P.WIŚNIEWSKI, M.SOSNOWSKI, W.BURAKOWSKI

1) Unique ID. The ID is concatenated from the inline probe ID

and monitored entity ID (IP address and direction of traffic:

DST – towards the address, or SRC – from the address).

An exemplary ID is as follows:

 “PROBE:0:DENSITIES:ENTITY:70.0.0.202:SRC”.

Fig. 3. Analyser processing phases

2) Set of densities (𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖). Each density has a name and

value. In the case of distribution features, there is a number of

name-value pairs corresponding to the feature bins, e.g.,

TTL_0, TTL_1, …, TTL_9 (the bins distribution is defined

in Table II).

3) Timestamp of the snapshot.

The Unique ID is the key of a record stored in the database,

while the set of densities (with a timestamp) is its corresponding

value. Note that updating records overrides data, so only the last

snapshot is stored for each Unique ID.

C. Analyser

The analyser is responsible for the statistical processing of

measurement data {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖}, detecting attacks (anomalies),

and generating alarms. The process is realised in two phases:

P4) import data and object creation, and P5) anomaly level

calculation and alarm raising. At the end of phase P5, a data

export job is created and pushed to a task queue that is run as

another container. These phases are depicted in Fig. 3 and

further described in the following sections.

1) Phase P4: data import and objects creation

The analyser periodically fetches the records stored in the

Redis database (at Δ𝑇 interval). Information about entities and

their monitored features is extracted from these records, the

corresponding objects are created11. The analyser stores a list of

inline probes with their entities’ data. Specifically, for each

entity, the following information is stored: 1) entity ID

(ENTITY_IP:{DST/SRC}), 2) timestamp of the last

snapshot, 3) N most recent snapshots, 4) anomaly levels for all

features, and 5) active alarms. If several inline probes monitor

one entity, an aggregated object that sums up densities is

created. Depending on the configuration, the analyser calculates

the anomaly levels only for the aggregated object or for every

single object. In the first case, the processing is faster. In the

second case, a higher granularity of information is provided to

detect the direction from which the attack originates.

Additionally, timestamps are used to determine whether

an entity is actively monitored by an inline probe (so its

timestamps change) and whether inline probes work correctly

(so its consecutive timestamps intervals do not differ

significantly from assumed Δ𝑇), any abnormal result generates

a warning.

11 Each record is related to an inline probe and its entities, so if the analyser does

not have an object for the probe and/or entity, it creates such an object.

2) Phase P5: anomaly level calculation and alarm raising

The anomaly level calculation follows the procedure

described in Section II for each entity’s feature. An alarm is

raised when an anomaly level exceeds the client-defined

threshold. Information about current densities, anomaly levels,

alarms, and warnings is stored in a time series database

(e.g., Elastic Search) and might be visualised (e.g., in Grafana).

Uploading the data to the time series database is performed by

a task queue where the analyser outsources the job.

Our analyser stores not only densities and distances (as the

original AATAC algorithm), but also differences between

consecutive densities. Summing up all stored differences, we

get a positive or negative number, the (𝑠𝑖𝑔𝑛) equals 1 or -1.

This sign identifies whether the anomaly is related to an unusual

increase or decrease in the observed traffic, allowing to identify

the start and the end of the attack accordingly. We enhanced the

anomaly level formula with the sign of the anomaly to include

this information:

 𝐴 = {
 0, 𝑓𝑜𝑟 𝑋 = µ

(𝑠𝑖𝑔𝑛) ∙ 𝑎𝑏𝑠 (
𝑋−µ

𝜎
) , 𝑓𝑜𝑟 𝑋 ≠ µ

. (8)

Let us mention that the calculation of the µ and 𝜎 from a set

of 𝑁 distances is computationally expensive. This calculation is

performed for each new difference value accordingly to the

AATAC algorithm (see Section II for details). Thus, we

developed and implemented simplified formulas for updating 𝜇

and 𝜎2 (and thus 𝜎) of the set when a new difference value is

obtained:

µ𝑛𝑒𝑤 = µ𝑜𝑙𝑑 +
𝑥𝑁−𝑥0

𝑁
, (9)

𝜎𝑛𝑒𝑤
2 = 𝜎𝑜𝑙𝑑

2 +
(𝑥𝑁−𝜇𝑛𝑒𝑤 + 𝑥0−𝜇𝑜𝑙𝑑)(𝑥𝑁 – 𝑥0)

𝑁−1
. (10)

where 𝑥𝑁 is the oldest difference value removed from the set

(on 𝑁 values) and 𝑥0 is a new one.

The analyser (as well as a task queue) is implemented in

python and runs as a docker container. Consequently, it is

possible to run multiple instances of this module and specify

a range of monitored entities that each instance should process.

This enables to scale-up of the solution if needed.

IV. FEASIBILITY STUDY

 To assess the inline DDoS detector’s feasibility, we

performed several studies of implementation covering the whole

solution. The functional tests proved that our implementation is

correct. Among others, the packets with a given feature were

correctly counted, the corresponding densities and anomaly

levels were correctly calculated.

The following subsection briefly describes the aspect of

performance studies of our implementation covering both

elements: the inline probe and the analyser.

A. Inline probe

The inline probe’s performance is critical for deploying

the inline DDoS detector, as the inline probe is responsible for

handling network traffic. Consequently, some traffic is lost if

the incoming traffic overloads its capacity.

ON IMPLEMENTATION OF EFFICIENT INLINE DDOS DETECTOR BASED ON AATAC ALGORITHM 895

In order to qualify the performance of the implementation,

we performed a number of measurements experiments based

benchmarking methodology defined in the RFC 2544 [16] for

the throughput metric defined in the RFC 1242 [17]. The

throughput is defined as the fastest rate at which none of

 Fig. 4. Test topology

the offered frames is dropped by the device under test (DUT).

We assumed that each single measurement iteration lasts 20

seconds with the inter-interaction break equal to 15 s.

The measurements were performed with an inline probe

running on HP ProLiant DL380 Gen 9 server (DUT) equipped

with Intel Xeon CPU E5-2690 v3 @ 2.60GHz, 125,86 GB RAM

(including 96 hugepages of 1 GB each), four Intel 82599ES

10-Gigabit SFI/SFP+ NICs. The tests were performed using

Ixia hardware XM2 tester equipped with 10 Gbps Ethernet

(SFP+) ports.

Here we describe two exemplary test cases, as presented in

Fig. 4. The first test case (#1) assumes the 10 standard entities

in the DST direction. Each entity is assigned with monitoring

policies covering all 11 packet feature filters (67 counters) in the

DST direction (towards the monitor object). Additionally, each

filter is applied in both configurations7, effectively doubling the

number of active counters. The DUT is offered a traffic stream

generated by Ixia tester, constituting of 10 IP flows associated

with the monitored objects. Each flow’s destination IP address

matches IP address of one of the monitored entities. Each NIC

physical interface has been assigned to be served by exactly one

CPU logical core. Consequently, 3 logical cores are used: one

handling the main thread (phases P2 and P3), one handling the

packets incoming via NIC_1 (phase P1), and one handling

packets incoming via NIC_2 (phase P1). Note that the last core

actually does not process any packets in this scenario, as no

packets are received by DUT on NIC_2.

The measured throughput for different frame sizes is

depicted in Fig. 5, together with maximal theoretical values on

10 Gbps link. The measurement results were not precisely

repeatable, the statistical processing was applied. Specifically,

the RFC 2544 throughput procedure was repeated 10 times for

each frame size, and 95% confidence intervals were calculated.

The obtained results show that the inline probe can achieve near

link-rate traffic handling (at least 95% of link speed) for frames

bigger than 758B using just one logical core handling packet

processing (P1 phase). More CPU logical cores may be assigned

to a physical NIC port if higher performance is required. The

12 The confidence intervals for all measurement points are overlapping so there

is no statistically significant difference between the results.

incoming traffic would then be load-balanced using the RSS

mechanism as described in Section III.B.1.

The second test case (#2) extends the previous scenario

with bidirectional traffic. It assumes the 10 standard entities in

both DST and SRC directions. All entities are assigned with

a policy covering all 11 packet feature filters (as previously).

Fig. 5. Throughput achieved on single CPU logical core handling P1 phase

The DUT is offered two traffic streams, one on each interface.

Each traffic flow constitutes od 10 IP flows associated with

the monitored objects. For flows received by DUT on NIC_1,

the flow’s destination IP address matches the IP address of one

of the monitored entities in the DST direction. For flows

received by DUT on NIC_2, the flow’s source IP address

matches IP address of one of the monitored entities in the SRC

direction. Each NIC physical interface has been assigned to be

served by exactly one CPU logical core, as previously.

Consequently, 3 logical cores are used, one handling the main

thread, one handling the packets in the DST direction incoming

via NIC_1, and one handling packets in the SRC direction

incoming via NIC_2.

Similarly, as in the previous test case, the RFC 2544

throughput procedure was repeated 10 times for each frame size,

and 95% confidence intervals were calculated. The obtained

results for each direction are statistically equivalent to

the results obtained in the first test case12, thus, they are not

plotted in Fig. 5. This derives from the fact that the traffic

incoming by each NIC was handled by a different CPU logical

core (phase P1). Consequently, the performance of the inline

probe may be easily scaled up by increasing the number of

assigned CPU logical cores.

A. Analyser

The analyser performs its primary functions, phases P4 and

P5, cyclically every Δ𝑇13. Within this time, the module needs to

execute the following actions: 1) download data from Redis, 2)

update entities’ statistics with new snapshots, 3) calculate

anomaly levels for each entity’s features and compare them with

alarm thresholds, 4) add the uploading data job to a task queue.

These actions are realised by the main loop of the analyser.

13 The default value of Δ𝑇 is 1 s.

896 P.WIŚNIEWSKI, M.SOSNOWSKI, W.BURAKOWSKI

After executing each round of the main loop, the process sleeps

for some time to start a new cycle exactly after Δ𝑇 from the

previous one.

In order to assess the analyser’s performance, we measured

how long the main loop round takes depending on the number

of monitored entities. The analyser ran as a container on

a virtual machine (VM) with the following characteristic:

4 vCPU @ 2.60GHz cores, 16 GB RAM, Debian Stretch

(Release 9.8, kernel 4.9.0) with Docker 18.09.4 installed.

The Redis database ran as a container on the same VM to

minimise the impact caused by network delays.

In the first scenario, the analyser processed data obtained

from one inline probe. All entities were assigned the same

monitoring policy, with all feature filters being active. Results

of the measurements are presented in Fig. 6. Measurements

were repeated 60 times for each number of monitored entities,

and 95% confidence intervals were calculated. When there are

no entities’ data in the Redis database, the round takes only 2.4

ms as no calculations are performed (only communication with

the database is required). When some entities’ data is in the

database, the analyser executes an anomaly detection process

for each entity’s features. Consequently, the main loop

execution time increases proportionally to the number of

monitored entities (as all entities are assigned the same

monitoring policy). It takes approx. 7-10 ms to process one

entity’s data.

In the second scenario, a number of inline probes are

considered14. The results are presented in Tab. III. We assumed

that all probes together are assigned with 32 entities in different

configurations. The analyser was configured to calculate

anomaly level for all single objects (not only for an aggregated

object, if it’s present). The first three columns cover the cases

where 1, 2, and 4 inline probes are considered, and each inline

probe monitors different entities. One can see that the mean time

per entity increases with the number of inline probes. It derives

from the fact that the analyser performs some procedures per

inline probe, e.g., it checks if an entity is also monitored by

other inline probes (so an aggregated object should be created).

The last two columns cover the cases where 2 and 4 inline

probes monitor common entities. In the case of 2 inline probes,

the first monitors entities 1-16, and the second monitors entities

9-24. In the case of 4 probes, all monitor the same 8 entities.

One can see that the results for these cases do not differ.

Comparing different columns, we see that where the inline

probes monitor common entities, the main loop execution is

a little bit faster (as alarms are handled only for the aggregated

objects).

14 Since didn’t have required number of the inline probes, we use a mock

imitating several of them.

Fig. 6. Analyser efficiency as a function of monitored entities

TABLE III

ANALYSER EFFICIENCY – COMMON MONITORED ENTITIES.

Number of inline probes 1 2 4 2 4

Number of entities
per inline probe

32 16 8 16 8

Number of

common entities
- 0 0 8 8

Mean time of main loop

execution [ms]
232 264 330 284 288

95% confidence [ms] 4,9 9,9 9,8 11,7 6,1

Mean time

per entity [ms]
7,3 8,3 10,3 8,9 9,0

We can conclude that the analyser’s efficiency is sufficient

to handle all the presented cases. The main loop execution time

for such a number of inline probes and entities equals

250-350 ms (7-10 ms per entity). It means that the analyser is

able to calculate data for approx. 100 entities within assumed

Δ𝑇 = 1 𝑠. If there is a need to monitor more entities, as

mentioned earlier, many analysers may be run and configured

to process only a subset of entities, or Δ𝑇 may be increased.

V. EXEMPLARY RESULTS

This section presents exemplary end-to-end anomaly

detection results performed by our inline DDoS detector.

We consider two test scenarios, both following a scheme

presented in Fig. 7. The traffic is sent by Ixia BreakingPoint

directly to our inline DDoS detector. It consists of 15 minutes

of background traffic and an attack conducted between

the 6th and the 9th minute (360 – 540 s). We used “BreakingPoint

Enterprise 2018” traffic profile consisting of a mix of

application traffic.

To focus the attention, we consider a single traffic feature

measured by the inline DDoS detector: Ipv4 packets (covered

by EtherType&ProtocolFilter). Figures 8 and 9 present the

densities and anomaly levels measured by the inline DDoS

detector in the default configuration15. These figures were

plotted based on the data exported to the time series database by

the analyser. In the first scenario (Fig. 8), the traffic rate rapidly

increases by 60% and stays the same during the attack period.

15 Parameters values: 𝜆 = 0.6, Δ𝑡 = 0.1 𝑠, Δ𝑇 = 1 𝑠, 𝑁 = 50, and 𝑘 = 11.

ON IMPLEMENTATION OF EFFICIENT INLINE DDOS DETECTOR BASED ON AATAC ALGORITHM 897

In the second scenario (Fig. 9), the malicious traffic is

significantly more irregular.

The anomaly results appear after 50 seconds, as

the algorithm needs to collect 𝑁 = 50 snapshots to start

statistical processing. In the first case (Fig. 8), the anomaly level

has two outstanding values – at the attack’s beginning and end.

In these moments, the traffic changes are abnormally rapid and

strong.

Fig. 7. Timeline of DDoS attack scenarios

Fig. 8. Visualisation of the anomaly level for exemplary traffic – regular

malicious traffic

Fig. 9. Visualisation of the anomaly level for exemplary traffic – irregular

malicious traffic

In the second case (Fig. 9), there are three outstanding

values of anomaly level – approx. in 360, 380, and 540 s. Note

that the decrease in the traffic rate in 400 s does not produce

a noticeable (negative) anomaly level. This is because

1) 60 000 pps is not an abnormal value considering the last 50

seconds, and 2) another significant change (from 60 000 to

80 000 pps) was observed in the last 50 seconds, so such

changes are considered normal. In 540 s, there is a (negative)

anomaly level since, during the previous 50 s, there were

approximately 65 000 – 75 000 pps that rapidly decreased to

50 000 pps.

Note that real-time monitoring may be performed by

reading data stored in from Elastic Search with Graphana

reading. A sample visualisation of such monitoring is shown in

Fig. 10. The density of total traffic, measured in Mbps (green

transparent chart, left y-axis), with its corresponding anomaly

level (white plot, right y-axis), is monitored. Additionally, two

constant client-defined anomaly levels are marked (𝐴 = 2 and

𝐴 = 3) to easily identify moments of unusual traffic behaviour.

Fig. 10. Visualisation of the anomaly level of exemplary traffic – Graphana

VI. CONCLUSIONS

This paper provides a concept of the inline DDoS detector

capable of real-time network traffic monitoring for

near-real-time anomaly detection. Our inline DDoS detector is

based on the state-of-the-art AATAC algorithm with a few

enhancements reducing computational complexity and

improving results utility for DDoS detection. The inline DDoS

detector provides service-tailored anomaly detection where

each monitored entity is assigned with a configurable set of

custom packet feature filters, including application layer DPI.

The solution is decoupled into inline probe(s) and analyser

elements facilitating high scalability and a wide range of

deployment scenarios.

The inline probes provide link-rate real-time forwarding

and network monitoring on the commodity hardware thanks to

the utilisation of the DPDK framework and parallel packet

processing on multiple CPU cores. The inline probes export

per-entity traffic features status in the form of snapshots at

regular intervals. The analyser aggregates this information from

different inline probes. Based on a number of the most recent

snapshots, it detects attacks (anomalies) using statistical

analysis and handles corresponding alarms.

The inline DDoS detector has been implemented for

the feasibility study, focusing on performance evaluation.

Our studies proved that the inline DDoS detector is capable of

real-time network traffic monitoring and near-real-time

anomaly detection.

VII. FUTURE WORKS

This paper proved the feasibility of our inline DDoS

detector for detecting and alarming about DDoS attacks in near

real-time. An alarm informing of a susceptible DDoS attack is

raised when an anomaly level exceeds the client-defined

threshold. Note that the type of attack is not automatically

898 P.WIŚNIEWSKI, M.SOSNOWSKI, W.BURAKOWSKI

determined. This identification must be done by

an administrator based on the real-time monitoring statistics of

different traffic features. This task is not trivial, as: 1) up to

23 traffic features may be monitored (18 global features and

5 histogram features) in each direction for each client’s service,

and 2) each feature is described by the density and

the corresponding anomaly level. The density carries

the information of smothered traffic rate with a specific feature,

while the anomaly level allows to detect rapid changes in this

rate easily. Both factors should be used simultaneously to

improve detection accuracy. Consequently, the inline DDoS

detector may be further significantly enhanced with automatic

identification of DDoS attack type to facilitate automatic attack

mitigation.

Moreover, our inline DDoS detector enables to assign

a different monitoring policy (defining a set of packet feature

filters) for each client’s service. Nevertheless, it is not obvious

how this policy should be constructed for different applications.

Specifically, which packet feature filters should be enabled to

detect attacks against the most popular Internet services.

We plan to address both of the above topics in our future works.

REFERENCES

[1] A. Zand, G. Modelo-Howard, A. Tongaonkar, S. -J. Lee, C. Kruegel and

G. Vigna, “Demystifying DDoS as a Service,” in IEEE Communications
Magazine, vol. 55, no. 7, pp. 14-21, July 2017,

https://doi.org/10.1109/MCOM.2017.1600980

[2] J. J. Santanna et al., “Booters — An analysis of DDoS-as-a-service

attacks,” 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), 2015, pp. 243-251,

https://doi.org/10.1109/INM.2015.7140298
[3] Apache documentation, ServerLimit Directive [online]. Available from:

https://httpd.apache.org/docs/2.4/mod/mpm_common.html#serverlimit

[Accessed 21.10.2022]
[4] M. Sikora, T. Gerlich and L. Malina, “On Detection and Mitigation of

Slow Rate Denial of Service Attacks,” 11th International

Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2019, pp. 1-5,

https://doi.org/10.1109/ICUMT48472.2019.8970844

[5] H. Kaur, S. Behal and K. Kumar, “Characterisation and comparison of
Distributed Denial of Service attack tools,” 2015 International Conference

on Green Computing and Internet of Things (ICGCIoT), 2015,

pp. 1139-1145, https://doi.org/10.1109/ICGCIoT.2015.7380634
[6] G. Roudière and P. Owezarski, “A lightweight snapshot-based DDoS

detector,” in Proc. of 2017 13th International Conference on

Network and Service Management (CNSM), 2017, pp. 1-7,
https://doi.org/10.23919/CNSM.2017.8256014

[7] J. Wang, R. C. . -W. Phan, J. N. Whitley and D. J. Parish, “Augmented

Attack Tree Modeling of Distributed Denial of Services and Tree Based
Attack Detection Method,” 2010 10th IEEE International Conference on

Computer and Information Technology, 2010, pp. 1009-1014,

https://doi.org/10.1109/CIT.2010.185

[8] Y. -C. Wu, H. -R. Tseng, W. Yang and R. -H. Jan, “DDoS Detection and

Traceback with Decision Tree and Grey Relational Analysis,” 2009 Third

International Conference on Multimedia and Ubiquitous Engineering,

2009, pp. 306-314, https://doi.org/10.1109/MUE.2009.60
[9] A. Saied, R. E. Overill, and T. Radzik, “Detection of known and unknown

DDoS attacks using Artificial Neural Networks,” Neurocomputing, vol.

172, January 2016, pp. 385–393,
https://doi.org/10.1016/j.neucom.2015.04.101

[10] X. Qin, T. Xu and C. Wang, “DDoS Attack Detection Using Flow Entropy

and Clustering Technique,” 2015 11th International Conference on
Computational Intelligence and Security (CIS), 2015, pp. 412-415,

https://doi.org/10.1109/CIS.2015.105
[11] S. Ramaswamy, R. Rastogi and K. Shim, “Efficient algorithms for mining

outliers from large data sets,” ACM SIGMOD Rec., vol. 29, no. 2,

pp. 427-438, 2000.
[12] R. Hofstede, V. Bartoš, A. Sperotto and A. Pras, “Towards real-time

intrusion detection for NetFlow and IPFIX,” Proceedings of the 9th

International Conference on Network and Service Management (CNSM

2013), 2013, pp. 227-234, https://doi.org/10.1109/CNSM.2013.6727841

[13] G. Roudière and P. Owezarski, “Evaluating the Impact of Traffic

Sampling on AATAC’s DDoS Detection” in Proc. of the 2018 Workshop
on Traffic Measurements for Cybersecurity (WTMC ‘18). Association for

Computing Machinery, New York, NY, USA, 27–32.

https://doi.org/10.1145/3229598.3229605
[14] M. Jin, C. Wang, P. Li and Z. Han, “Survey of Load Balancing Method

Based on DPDK,” 2018 IEEE 4th International Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing, (HPSC) and IEEE International

Conference on Intelligent Data and Security (IDS), 2018, pp. 222-224,

https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00054
[15] Information about the TAMA project, Exatel webpage [online]. Available

from: https://exatel.pl/en/research-and-development/exatel-tama/

 [Accessed 21.10.2022]
[16] S. Bradner, and J. McQuaid, “Benchmarking Methodology for Network

Interconnect Devices”, RFC 2544, https://doi.org/10.17487/RFC2544,

March 1999
[17] S. Bradner, “Benchmarking Terminology for Network Interconnection

Devices”, RFC 1242, https://doi.org/10.17487/RFC1242 , July 1991

https://doi.org/10.1109/MCOM.2017.1600980
https://doi.org/10.1109/INM.2015.7140298
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#serverlimit
https://doi.org/10.1109/ICUMT48472.2019.8970844
https://doi.org/10.1109/ICGCIoT.2015.7380634
https://doi.org/10.23919/CNSM.2017.8256014
https://doi.org/10.1109/CIT.2010.185
https://doi.org/10.1109/MUE.2009.60
https://doi.org/10.1016/j.neucom.2015.04.101
https://doi.org/10.1109/CIS.2015.105
https://doi.org/10.1109/CNSM.2013.6727841
https://doi.org/10.1145/3229598.3229605
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00054
https://exatel.pl/en/research-and-development/exatel-tama/
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC1242

