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Abstract—Distributed Denial of Service (DDoS) attacks 

constitute a major threat in the current Internet. These 

cyber-attacks aim to flood the target system with tailored malicious 

network traffic overwhelming its service capacity and 

consequently severely limiting legitimate users from using the 

service. This paper builds on the state-of-the-art AATAC 

algorithm (Autonomous Algorithm for Traffic Anomaly Detection) 

and provides a concept of a dedicated inline DDoS detector capable 

of real-time monitoring of network traffic and near-real-time 

anomaly detection. 

The inline DDoS detector consists of two main elements: 1) inline 

probe(s) responsible for link-rate real-time processing and 

monitoring of network traffic with custom-built packet feature 

counters, and 2) an analyser that performs the near-real-time 

statistical analysis of these counters for anomaly detection. These 

elements communicate asynchronously via the Redis database, 

facilitating a wide range of deployment scenarios. The inline probes 

are based on COTS servers and utilise the DPDK framework 

(Data Plane Development Kit) and parallel packet processing on 

multiple CPU cores to achieve link rate traffic analysis, including 

tailored DPI analysis. 

 
Keywords—DDoS; Distributed Denial of Service; traffic 

anomaly detection; AATAC; performance; DPDK 

I. INTRODUCTION 

ISTRIBUTED Denial of Service (DDoS) attacks aim to 

overwhelm a target system’s capacity in order to severely 

reduce its accessibility to legitimate users. An attacker uses 

a number of geographically distributed nodes to generate 

malicious traffic. Usually, the nodes are machines infected with 

malware that cedes their control to an attacker. A group of these 

zombies under the control of an attacker constitutes a botnet that 

enables the attacker to perform a distributed attack. Nowadays, 

even DDoS as a service (DaaS) is available [1]. The DaaS 

providers sell their services at a very low cost (from 1 USD), 

and directly via websites (called booters). The low cost and ease 

of access make the DDoS accessible to a wide variety of entities, 

from big companies wanting to hurt their competition to a single 

student wanting to disrupt his remote exam [2].  

The DDoS attacks may be broadly categorised into 

1) extensive and 2) intensive [1]. The extensive attacks are based 

on generating a massive volume of relatively simple traffic. 

E.g., an attacker may fill up the capacity of a resource like link 

bandwidth with malicious traffic. In such a case, 
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an amplification technique1 may be applied since the type of 

traffic is irrelevant. Some more sophisticated attacks belong to 

this category too. E.g. within SynFlood attack, a relatively 

massive amount of TCP SYN packets from many spoofed IP 

addresses is generated to exhaust the victim’s TCP connection 

table preventing legitimate connections from setting up.  

The intensive attacks utilise knowledge about design flaws 

of specific protocols and applications to tailor packets’ content 

to exploit these flaws. E.g., the well-known Slowloris, where the 

attacker initiates subsequent HTTP connections and holds them 

open as long as possible. Specifically, zombies send packets 

containing only parts of an HTTP request without ever finishing 

these requests. The consecutive packets are sent just before 

a server timeout preventing the connection from being closed. 

Consequently, a maximum number of concurrent connections is 

reached in the HTTP server (e.g., 256 in the case of Apache Web 

server in default configuration [3]), and the legitimate requests 

are not accepted. Note that the volume of traffic is not noticeably 

increased. Consequently, the Slowloris attack is resistant to 

classical detection and mitigation techniques [4]. A survey of 

DDoS attack tools is provided in [5]. 

In order to defend against DDoS attacks, they need to be 

detected quickly. The following types of DDoS detection 

techniques are commonly considered [6]: 1) knowledge based, 

2) statistical, and 3) machine learning based. Knowledge based 

techniques, e.g. [7], are focused on the detection of a priori 

known attacks. Traffic information is gathered and compared 

with attack-related signatures. If traffic fits an attack pattern, 

an alarm is raised. Note that these techniques need frequent 

signatures update to follow new types of attacks, which is 

resource-demanding. Statistical and machine learning based 

techniques detect unusual traffic patterns. Traffic features are 

compared with the historical data (or a model), and an alarm is 

raised when a significant deviation is detected. Machine 

learning requires a lot of computing power and vast datasets of 

training data to train the model (supervised learning, e.g. [8]) or 

to characterising the traffic without any previous knowledge 

(unsupervised learning, e.g. [9]), while the statistical methods 

(e.g. [10]) are relatively lightweight. Note that statistical 

techniques do not identify the type of attack but just detect 

anomalies.  

In this paper, we build on a state-of-the-art statistical 

algorithm called AATAC by proposing and evaluating an inline 

DDoS detector. A brief overview of AATAC algorithm is 

1 Amplification DDoS attacks use the connectionlessness property of UDP. 

An attacker sends a requests to a server (e.g., DNS) with spoofed source IP to 
the victim’s IP. Then, the server sends a response to the victim. It is called 

amplification attack since the responses are much bigger than the requests. 
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provided in Section II. The inline DDoS detector 

implementation concept, covering the primary design principles 

together with a detailed characterisation of the inline probe and 

analyser elements, is introduced in Section III. Sections IV and 

V present the testing effort, where Section IV focuses on the 

performance of the inline probe and the analyser elements, 

while Section V offers exemplary end-to-end results. Finally, 

Section VI summarises the paper and Section VII concisely 

describes future works. 

II. AATAC OVERVIEW 

The AATAC method [6] detects anomalies in network 

traffic. An anomaly is understood as the rapid change of the 

values of some packet stream features. These features are of two 

types: 1) global features associated with the absolute number of 

packets of a specific type (e.g., TCP / UDP, TCP SYN) and 

2) feature distributions associated with the relative number of 

packets within the range of a specific feature (e.g., source port 

number distribution). The feature values are calculated as 

so-called densities at consecutive time moments. The current 

value of a feature density is compared with a number of stored 

historical densities. For this purpose, the 𝑘-nearest neighbours 

(𝑘 − 𝑁𝑁) [11] algorithm is used, and the result of it is 

normalised to the previously observed density changes. This 

method determines how uncommon the current density change 

is – the value of this “unusualness” is called an anomaly level.  

Let us briefly summarise the anomaly level calculation for 

a global feature. Feature density is calculated in an incremental 

fashion: 

 𝐷(𝑡2) = 𝜆𝑡2−𝑡1𝐷(𝑡1) + 𝑤(𝑡1, 𝑡2)                      (1) 

where: 𝐷(𝑡) is the density at time 𝑡, 𝑤(𝑡1, 𝑡2) is the number of 

the feature occurrences in the period between 𝑡1 and 𝑡2, and 𝜆 is 

the decay factor. Usage of densities instead of consecutive  

𝑤(𝑡1, 𝑡2) values reduces the impact of natural fast-changing 

fluctuations.  

Each density has a corresponding distance related to the 

previous density. The distance is the absolute value of the two 

densities’ numerical difference. A number (say 𝑁) of 

consecutive densities and their corresponding distances are 

stored together with the mean value of the distances, µ, and the 

corresponding standard deviation, σ. When a new density is 

calculated, it is added to the densities list, and its distance to the 

previous density is added to the distances list. The oldest density 

and its corresponding distance are removed, and the values of µ 

and σ are updated. Next, the temporary set of distances between 

the new density and all the stored densities is calculated. Then, 

the k-th smallest value (k-nearest neighbour) of the newly 

obtained distances is selected: X. Finally, the anomaly level is 

calculated by normalising the value of 𝑋 with respect to µ and 𝜎:  

𝐴 = {
    0,              𝑓𝑜𝑟 𝑋 = µ

𝑎𝑏𝑠 (
𝑋−µ

𝜎
) , 𝑓𝑜𝑟 𝑋 ≠ µ

                           (2) 

Anomaly level 𝐴 says how many standard deviations, 𝜎, the 

value 𝑋 is away from the mean value of the density changes, µ. 

When the anomaly level exceeds the predefined threshold, 

an anomaly is detected, and an alarm is raised. As the value of 
 

 
2 Identification of direction enables to monitor traffic towards the IP address, 

from the IP address or in both directions simultaneously. 

𝐴 is expressed in standard deviations, different features may be 

compared even if their densities differ by orders of magnitude. 

For example, when the traffic rate doubles, the anomaly level is 

the same regardless of the actual traffic rate (no matter if the 

traffic rate increases from 10 kbps to 20 kbps or 200 Gbps to 

400 Gbps). Note that the last traffic change is compared with its 

previous behaviour as a reference. Therefore, even a significant 

density change does not strongly impact the anomaly level if 

such density changes were previously common. Consequently, 

the anomaly threshold that raises an alarm is the same for all 

features. 

III. INLINE DDOS DETECTOR IMPLEMENTATION CONCEPT 

A. Introduction and design principles 

The main idea behind the inline DDoS detector is to provide 

the implementation concept for efficient, scalable, and elastic 

deployment of real-time AATAC-based method in high-speed 

networks that constitutes autonomous systems of the current 

Internet. Specifically, the concept is mainly suited for Tier 3 

Internet Service Providers (ISPs) primarily engaged in 

delivering Internet access to end customers.   

The mitigation of the DDoS attacks requires two main 

elements: 1) the detector element responsible for identifying the 

attacks/anomalies in network traffic, and 2) the discarder 

responsible for dropping the packet flows identified as attacks. 

This paper provides the concept of the inline DDoS detector 

element with further remarks regarding its integration with the 

discarder element. 

The following two main approaches for the realisation of 

an AATAC-based inline DDoS detector may be considered: 

1) implementation of dedicated devices (inline probes) in the 

network responsible for network traffic analysis and calculation 

of real-time flow characteristics and 2) exploitation of statistics 

provided by inline network devices (usually routers). 

The former enables a thorough examination of network traffic 

characteristics tailored for anomaly detection, but it requires 

efficient devices capable of performing deep packet inspection 

(DPI) at link rate speed. The latter utilises the capabilities of 

routers (already deployed in the network), but it provides traffic 

analysis options limited to flow statistics provided by the router, 

usually with NetFlow, IPFIX, or J-Flow solutions [12]. 

Moreover, the latter relay heavily on traffic sampling [13] due 

to router CPU power constraints. Note that traffic sampling 

negatively impacts anomaly detection accuracy.  

This paper proposes the concept of an AATAC-based inline 

DDoS detector accordingly to the first approach. The following 

paragraphs present the primary design principles behind our 

inline DDoS detector concept. 

 

1) Service-tailored anomaly detection 

We assume that an organisation (usually an ISP) provides 

the DDoS mitigation service (DDoS shield) for a number of 

clients. Each client is assigned with a set of monitored entities 

identified by the couple consisting of IP address together with 

direction2. Each monitored entity is assigned with a monitoring 

policy defining a set of packet feature filters. 
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This approach enables high flexibility of the DDoS shield 

adoption in the network. Each client of the DDoS shield service 

may define a set of servers (identified by IP addresses) running 

services that should be protected. Depending on the service 

characteristics, a monitoring policy is defined (e.g., in the case 

of a web service, it is crucial to detect traffic anomalies 

indicating slow HTTP DDoS attacks, whereas, in the case of 

a VPN service, such detection is unnecessary). Moreover, 

a different monitoring policy may be assigned depending on 

the traffic direction (towards or from the IP address). 

Consequently, the approach enables to detect of attacks targeted 

against predefined services with customisable monitoring 

policies dependent on the service characteristics. 

Additionally, two special monitoring entities are defined, 

so-called otherIn and otherOut. These cumulative entities cover 

all traffic that would not be monitored otherwise (the traffic 

destined to or coming from the IP addresses not-covered by 

already defined monitoring entities). These entities may be 

assigned with monitoring policy (as any other). The idea behind 

the otherIn and otherOut entities is to enable a cumulative 

analysis of the background traffic. 

 

2) High scalability and deployment elasticity 

Our inline DDoS detector consists of two main elements 

1) inline probe(s) responsible for link-rate real-time forwarding 

and monitoring of network traffic with custom-built packet 

feature counters, and 2) an analyser that performs 

the near-real-time statistical analysis for anomaly detection. 

These elements communicate asynchronously via the Redis 

database. Note that the database and the analyser may be located 

anywhere in the network, e.g., in the ISP cloud. The decoupling 

of the AATAC-based inline DDoS detector into two main 

elements facilities high scalability and a wide range of 

deployment scenarios. The inline probes may be located either 

at: 1) client links (so they process and forward traffic limited to 

specific clients), 2) at inter-domain ingress links, so they 

monitor traffic at the ISP network edge, or 3) in other locations 

following ISP specific requirements. The analyser is able to 

aggregate information (related to monitored entities) from 

different inline probes, see subsection III.C for details. 

Consequently, additional probes may be deployed in the 

network if an ISP requires to scale up the solution.  

 

3) Custom packet feature filters 

The primary idea behind the inline probe is to overcome 

the limitations of statistics provided by IPFIX-like solutions in 

routers. The accuracy of these flow statistics is cramped due to 

the required high traffic sampling rates, and the depth of the 

analysis is limited to the available standard statistics, e.g. DPI 

analysis of the HTTP body required to detect the previously 

mentioned Slowloris attack is not possible. Consequently, such 

solutions are considered unsatisfactory from the AATAC-based 

method deployment. 

The inline probes introduce the concept of a custom packet 

feature filter that is able to analyse the whole packet content in 

the context of a defined feature, including DPI on the entire 

packet content if necessary. Specifically, a packet feature filter 

defines a set of (packet feature) counters describing packet 

features that are monitored. Building on the AATAC method, 

we distinguish two types of filters: global and distribution 

filters. 

Global packet feature filters constitute a set of counters, 

each associated with the absolute number of packets of 

a specific type, e.g., TcpFlagFilter contains a set of counters for 

different flag options in the TCP header. Each counter is of 

absolute/global type: one traffic feature is described by exactly 

TABLE I  

GLOBAL PACKET FILTERS 

Global packet feature filter   

-  list of counters 
Filter description 

Invalid&FragmentedFilter 

- Invalid, Fragmented 

Filter covers invalid and fragmented IP packets. Invalid counter covers packets for which for which the declared TCP/UDP 

header length in inconsistent with the actual length. Only packets caring TCP or UDP datagrams may increment this counter. 

Fragmented counter covers packets being a fragment of bigger packet based on IP header (fragment offset field and more 
fragments (MF) flag in case of IPv4; Fragmentation header in case of IPv6). Only IPv4 and IPv6 packets may increment this 

counter. 

EtherType&ProtocolFilter 

- EtherType counters: IPv4, 

IPv6, ARP, OTHER 

- Protocol counters: ICMP, 
TCP, UDP, OTHER 

Filter covers packets base on the values of EtherType field of Ethernet header and Protocol/NextHeader filed of IPv4/IPv6 
header. Each processed packet increments: 1) exactly one of EtherType counters depending on the value of EtherType field 

of Ethernet header (IPv4, IPv6, ARP or OTHER), and 2) exactly one Protocol counter depending on the value of 

Protocol/NextHeader filed of IPv4/IPv6 header (ICMP, TCP, UDP or OTHER). 

TcpFlagFilter 

- SYN, SYN&ACK, RST, 

FIN, FIN&ACK 

Filter covers packets carrying TCP datagrams based on TCP flags. Each processed packet carrying TCP datagram increments 
at most one of the TCP flag counters depending on the active flags in TCP header (SYN, SYN&ACK, RST) 

SlowHttp filter 

- SlowHttp 

Filter covers packets characteristic for Slow Http Header attack (Slowloris). It covers HTTP packets that are not ended with 

the characteristic "\r\n\r\n" end symbol. Specifically, it counts packets that match the following: 1) encapsulation: IPv4 or 

IPv6, TCP, HTTP (identified by destination port equal to 80), 2) two last bytes equal to \r\n, 3) two penultimate two bytes not 
equal to \r\n. 

SlowHttpGet filter 

- SlowHttpGet 

Filter covers packets characteristic for Slow Http Header attack (Slowloris) similarly to SlowHttp counter. It covers HTTP 

GET packets that are not ended with the characteristic "\r\n\r\n" end symbol. Specifically, it counts packets that match the 

following: 1) encapsulation: IPv4 or IPv6, TCP, HTTP (identified by destination port equal to 80), 2) first tree bytes of TCP 
payload correspond to “GET” keyword, 3) two last bytes equal to \r\n, 4) two penultimate two bytes not equal to \r\n. 

SlowHttpPost filter 

- SlowHttpPost 

Filter covers packets characteristic for Slow Http body attack (RUDY). It covers HTTP POST packets that are not ended with 

the characteristic "\r\n\r\n" end symbol. Consecutively, it counts packets that match the following: 1) encapsulation: IPv4 or 

IPv6, TCP, HTTP (identified by destination port equal to 80), 2) first three bytes of TCP payload correspond to “POST” 
keyword, 3) two last bytes equal to \r\n, 4) two penultimate bytes not equal to \r\n. 
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one counter. The description of the implemented global packet 

filters (6 filters with 18 counters covering 18 traffic features) is 

presented in Table I. Note that SlowHttp, SlowHttpGet, and 

SlowHttpPost filters perform application layer analysis for slow 

attacks detection [4]. 

Distribution packet filters constitute a set of counters, each 

associated with the relative number of packets within the range 

of a specific feature, e.g., FrameSizeFilter contains a set of 

counters covering the histogram of frame sizes. Each counter is 

of relative type: one traffic feature is covered by a set of 

counters. The description of the implemented distribution 

packet features filters (5 filters with 49 counters covering 

5 traffic features) is presented in Table II.  

Additionally, each filter is implemented in two versions: 

1) standard version, where each matching packet increments 

a counter by one, and 2) byte version, where each matching 

packet increments a counter by the packet’s length denominated 

in bytes. 

 

4) Commodity hardware-based solution 

In order to provide a cost-effective, readily available, and 

easily upgradable solution, we designed and implemented our 

inline DDoS detector using COTS (Commercial Off-The-Shelf) 

hardware and software. Even the performance-critical inline 

probe requires a standard COTS Linux x86 server with 

a commonly available DPDK-supported NIC (Network 

Interface Card).  

 

5) Link rate traffic analysis 

The efficiency of the inline probe handling of the actual 

network traffic is critical for deploying the inline DDoS 

detector. In order to achieve link rate traffic analysis on COST 

hardware, the Data Plane Development Kit technology (libraries 

for the acceleration of packet processing workloads) was 

utilised together with the application of parallel packet 

processing on multiple CPU cores [14].  

 

 

 
3 The logical cores assigned to each port are configured via start-up parameter. 

Each port may be assigned to a different number of cores. 

6) Inline DDoS detector and discarder seamless integration  

The inline probe element of our inline DDoS detector is 

directly forwarding packets, as its name suggests. Note that the 

 
Fig. 1. Inline probe processing phases 

discarder device is also of inline nature as it drops the packets 

identified as attacks.  

Our inline probe was implemented as an extension of 

the Gladdos discarder [15], both developed and tested in the 

TAMA project. Thanks to that, the inline probe and discarder 

may run as one software component on the COST server. 

Depending on the start-up command line argument, this 

software serves as: 1) inline probe solely, 2) discarder solely, 

or 3) inline probe and discarder simultaneously. Note that the 

discarder’s details are out of this paper’s scope.  

B. Inline probe 

The inline probe realises packet processing in three 

distinctive phases: P1) packet parsing and counter actualisation, 

P2) feature destinies calculation, and P3) data formatting and 

export. These phases are depicted in  Fig. 1 and further described 

in the following sections. 

 

1) Phase P1: packet parsing and counter actualisation 

Phase P1 is the most computationally demanding phase as 

it requires link-rate processing of network packet traffic 

(e.g., 10 Gbps of traffic equals about 1 225 490 frames per 

second, assuming 1000 B frame size). Consequently, the packet 

traffic is load balanced on the set of available CPU logical cores. 

Each NIC physical port is assigned to be served by a number of 

CPU logical cores (one or more)3, each bound to a number of 

TABLE II 

 DISTRIBUTION PACKET FILTERS 

Distribution packet 

feature filter   

-  number of counters 

Filter description 

FrameSizeFilter 

- 9 counters 

Filter covers Ethernet frame size distribution. Each packet increments exactly one of 9 counters (bins) depending on the Ethernet 

frame length. Counters 0, 1, …, 8 cover, accordingly, the following frame size ranges: [0-200), [200-400), [400-600), [600-800), 
[800-1000), [1000-1200), [1200-1400), [1400-1600), [1600- inf). 

SrcIPFilter 

- 10 counters 

Filter covers source IP address distribution. Each IP packet increments exactly one of 10 counters (bins) depending on IP source 

address. The counter id determined as source IP address (128-byte variable: uint128) modulo 10. 

SrcPortFilter 

- 10 counters 

Filter covers source port distribution (TCP or UDP source port). Each packet carrying TCP or UDP datagram increments exactly one 

of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following source port ranges: [0-7000), [7000-14000), [14000-

21000), [21000-28000), [21000-35000), [35000-42000), [42000-49000), [49000-56000), [56000-63000), [63000- 65535]. 

DstPortFilter 

- 10 counters 

Filter covers source port distribution (TCP or UDP source port). Each packet carrying TCP or UDP datagram increments exactly one 

of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following source port ranges: [0-7000), [7000-14000), [14000-
21000), [21000-28000), [21000-35000), [35000-42000), [42000-49000), [49000-56000), [56000-63000), [63000- 65535]. 

TTLFilter 

- 10 counters 

Filter covers TTL distribution (TTL head field value in the case of IPv4 packets and hop limit header field value in the case of IPv6 

packets). Each IP packet increments exactly one of 10 counters (bins). Counters 0, 1, …, 9 cover, accordingly, the following TTL/hop 
limit ranges: [0-26), [26-52), [52-78), [78-104), [104-130), [130-156), [156-182), [182-208), [208-234), [234- 255]. 

 



ON IMPLEMENTATION OF EFFICIENT INLINE DDOS DETECTOR BASED ON AATAC ALGORITHM 893 

 

RX queues4. The packets are distributed among the assigned RX 

queues using the RSS (Receive Side Scaling) feature. The RX 

queue is determined by hashing the appropriate IP addresses and  

 
Fig. 2. Parallel packets processing on multiple cores in phase P1 - simplified 

TCP/UDP port numbers, so there is no packet reordering in any 

flow5. The simplified logical scheme of this process is depicted 

in Fig. 2. 

Each logical core runs a thread implementing a pipeline of 

packet feature filters. Depending on the monitoring policy 

assigned to a given monitored entity, appropriate filters are 

activated, and associated counters6 are updated in real-time. 

Cumulatively, the whole set of counters {𝑤𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)} is 

updated in real-time, where 𝐼 denotes a set of monitored entities 

and 𝐽(𝑖) denotes a set of features associated with 𝑖-th entity via 

a monitoring policy7.  

Note that the {𝑤𝑖,𝑗} abbreviation for {𝑤𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)} 

is used in the rest of the paper. Similarly, the abbreviation {𝐷𝑖,𝑗} 

is used for the set of densities {𝐷𝑖,𝑗: 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽(𝑖)}. A set of 

densities associated with a monitored entity constitute 

a snapshot describing this entity at a given time moment. 

The {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖} abbreviation is used for the set of snapshots 

{𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖: 𝑖 ∈ 𝐼} where each 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖  covers all densities 

associated with the i-th monitored entity. 

 

2) Phase P2: feature destinies calculation 

Phases P2 and P3 are implemented in the main thread 

destined to run on a CPU core different from P1 phase threads. 

The phase P2 covers the calculation of the set of feature 

densities {𝐷𝑖,𝑗} corresponding to {𝑤𝑖,𝑗} counters. While 

the feature counters are updated in real-time, the densities are 

calculated at constant intervals Δ𝑡, as depicted in  Fig. 1. At these 

time intervals, the main thread fetches all current values of the 

feature counters. Number of feature occurrences during the Δ𝑡 

interval, 𝑤𝑖,𝑗(𝑡1, 𝑡2), is a difference between the current and the 

previous counter 𝑤𝑖,𝑗 values8.  

Each density 𝐷 ∈ {𝐷𝑖,𝑗} is calculated as follows: 
 

 
4 By default, the number of queues per logical core equals one, this can be 

increased up to 12 via start-up parameter. 
5 Packets in RX queue are processed by assigned logical core in FIFO (First In 
First Out) fashion. Packets may be reordered only if they are processed on 

different cores.  
6 A monitoring policy defines a set of packet filters each constituting a set of 
counters. 

𝐷(𝑡2) = 𝐶1 𝐷(𝑡1) + 𝐶2 𝑤(𝑡1, 𝑡2),            (3) 

where 𝐶1and 𝐶2 are constants that are precomputed as9: 

𝐶1 = 𝜆𝛥𝑡 ,     𝐶2 =
1−𝜆𝛥𝑡

𝛥𝑡
.                  (4)  

We replaced the original equation (1) with (3) in order to 

reduce the computation complexity and make the density value 

easier to interpret. Specifically, having constant Δ𝑡 allows us to 

pre-calculate values of 𝐶1 and 𝐶2 and use them as constants 

during inline probe operation. This reduces the computational 

complexity of phase P2 as the formula (3) contains only three 

easy operations: two multiplications and one addition. 

In comparison to equation (1), we divided 𝑤(𝑡1, 𝑡2) term by 

Δ𝑡. Consequently, the densities are now denoted in units of [1/s], 

regardless of the actual Δ𝑡 interval length. Moreover, we 

multiplied 𝑤(𝑡1, 𝑡2) term by (1 − 𝜆Δ𝑡) to apply EWMA 

(Exponentially Weighted Moving Average) method to density 

calculation. Thanks to it, the calculated densities provide 

information about the current smoothed average of packets per 

second. 

Let us consider a simple example concerning a single 

feature: constant bitrate traffic with the rate of 400 pps (packets 

per second), Δ𝑡 = 0.1s, and 𝜆 = 0.5. Consequently 

 𝑤(𝑡1, 𝑡2) = 40 and 𝐶1 = 𝜆Δ𝑡 ≈ 0.93, 𝐶2 ≈ 0.7. 

In the steady-state, density 𝐷 calculated accordingly to formula 

(1) equals: 

𝐷 = 0.93𝐷 + 40   →   𝐷 ≈ 571 [packets],           (5) 

while density 𝐷 calculated accordingly to formula (3): 

𝐷 = 0.93𝐷 + 0.7 ∙ 40    →     𝐷 ≈ 400  [pps].          (6) 

One can see that the latter provides an easily interpretable 

value of smoothed packet rate, while the former does not. 

It should be noted that from the point of view of anomaly 

detection, both equations (1) and (3) can be used. However, the 

introduced adjustments provide that the density is not only an 

intermediate result but also carries information that might be 

used to detect specific types of DDoS attacks. This issue is 

further described in Section VI. 

 

3) Phase 3: data formatting and export 

The phase P3 covers the preparation and export of 

snapshots {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖} for all entities, see  Fig. 1. Densities 

{𝐷𝑖,𝑗} are read at constant intervals Δ𝑇 and the snapshots are 

prepared and sent to the Redis database. The Δ𝑇 satisfies 

the following:  

                                𝛥𝑡 ≤ 𝛥𝑇.                                         (7) 

This enables to maximise the accuracy of {𝐷𝑖,𝑗} calculation 

while bounding the amount of exported data10.  

Each record sent to the database is a set of key-value pairs 

where nested structures are allowed. Each record consists of: 

7 Note that each counter may be in one of the two versions as described in 

Section III.3. 
8 The 𝑤(𝑡1, 𝑡2) is the number of the feature occurrences in the period between 

𝑡1 and 𝑡2, as described in Section II. Note this period’s length is constant. It 

equals to Δ𝑡 as we assume that the densities are calculated at constant intervals.  
9 The 𝜆 parameter is the decay factor, as described in Section II. 
10 The accuracy of calculation of {𝐷𝑖,𝑗} depends on the Δ𝑡 length. Smaller Δ𝑡 

value corresponds to better accuracy. 
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1) Unique ID. The ID is concatenated from the inline probe ID 

and monitored entity ID (IP address and direction of traffic:  

DST – towards the address, or SRC – from the address). 

An exemplary ID is as follows: 

 “PROBE:0:DENSITIES:ENTITY:70.0.0.202:SRC”.    

 
Fig. 3. Analyser processing phases 

2) Set of densities (𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖). Each density has a name and 

value. In the case of distribution features, there is a number of 

name-value pairs corresponding to the feature bins, e.g., 

TTL_0, TTL_1, …, TTL_9 (the bins distribution is defined 

in Table II).  

3) Timestamp of the snapshot. 

The Unique ID is the key of a record stored in the database, 

while the set of densities (with a timestamp) is its corresponding 

value. Note that updating records overrides data, so only the last 

snapshot is stored for each Unique ID. 

C. Analyser 

The analyser is responsible for the statistical processing of 

measurement data {𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑖}, detecting attacks (anomalies), 

and generating alarms. The process is realised in two phases: 

P4) import data and object creation, and P5) anomaly level 

calculation and alarm raising. At the end of phase P5, a data 

export job is created and pushed to a task queue that is run as 

another container. These phases are depicted in Fig. 3 and 

further described in the following sections. 

 

1) Phase P4: data import and objects creation 

The analyser periodically fetches the records stored in the 

Redis database (at Δ𝑇 interval). Information about entities and 

their monitored features is extracted from these records, the 

corresponding objects are created11. The analyser stores a list of 

inline probes with their entities’ data. Specifically, for each 

entity, the following information is stored: 1) entity ID 

(ENTITY_IP:{DST/SRC}), 2) timestamp of the last 

snapshot, 3) N most recent snapshots, 4) anomaly levels for all 

features, and 5) active alarms. If several inline probes monitor 

one entity, an aggregated object that sums up densities is 

created. Depending on the configuration, the analyser calculates 

the anomaly levels only for the aggregated object or for every 

single object. In the first case, the processing is faster. In the 

second case, a higher granularity of information is provided to 

detect the direction from which the attack originates. 

Additionally, timestamps are used to determine whether 

an entity is actively monitored by an inline probe (so its 

timestamps change) and whether inline probes work correctly 

(so its consecutive timestamps intervals do not differ 

significantly from assumed Δ𝑇), any abnormal result generates 

a warning.  

 
 

 
11 Each record is related to an inline probe and its entities, so if the analyser does 

not have an object for the probe and/or entity, it creates such an object. 

2) Phase P5: anomaly level calculation and alarm raising 

The anomaly level calculation follows the procedure 

described in Section II for each entity’s feature. An alarm is 

raised when an anomaly level exceeds the client-defined 

threshold. Information about current densities, anomaly levels, 

alarms, and warnings is stored in a time series database 

(e.g., Elastic Search) and might be visualised (e.g., in Grafana). 

Uploading the data to the time series database is performed by 

a task queue where the analyser outsources the job.  

Our analyser stores not only densities and distances (as the 

original AATAC algorithm), but also differences between 

consecutive densities. Summing up all stored differences, we 

get a positive or negative number, the (𝑠𝑖𝑔𝑛) equals 1 or -1. 

This sign identifies whether the anomaly is related to an unusual 

increase or decrease in the observed traffic, allowing to identify 

the start and the end of the attack accordingly. We enhanced the 

anomaly level formula with the sign of the anomaly to include 

this information: 

 𝐴 = {
    0,              𝑓𝑜𝑟 𝑋 = µ

(𝑠𝑖𝑔𝑛) ∙ 𝑎𝑏𝑠 (
𝑋−µ

𝜎
) , 𝑓𝑜𝑟 𝑋 ≠ µ

.                         (8) 

Let us mention that the calculation of the µ and 𝜎 from a set 

of 𝑁 distances is computationally expensive. This calculation is 

performed for each new difference value accordingly to the 

AATAC algorithm (see Section II for details). Thus, we 

developed and implemented simplified formulas for updating 𝜇 

and 𝜎2 (and thus 𝜎) of the set when a new difference value is 

obtained: 

µ𝑛𝑒𝑤  =  µ𝑜𝑙𝑑  +
𝑥𝑁−𝑥0

𝑁
,                             (9) 

𝜎𝑛𝑒𝑤
2  =  𝜎𝑜𝑙𝑑

2  +
(𝑥𝑁−𝜇𝑛𝑒𝑤 + 𝑥0−𝜇𝑜𝑙𝑑)(𝑥𝑁 – 𝑥0)

𝑁−1
.       (10) 

where 𝑥𝑁 is the oldest difference value removed from the set 

(on 𝑁 values) and 𝑥0 is a new one. 

The analyser (as well as a task queue) is implemented in 

python and runs as a docker container. Consequently, it is 

possible to run multiple instances of this module and specify 

a range of monitored entities that each instance should process. 

This enables to scale-up of the solution if needed. 

IV. FEASIBILITY STUDY 

 To assess the inline DDoS detector’s feasibility, we 

performed several studies of implementation covering the whole 

solution. The functional tests proved that our implementation is 

correct. Among others, the packets with a given feature were 

correctly counted, the corresponding densities and anomaly 

levels were correctly calculated.  

The following subsection briefly describes the aspect of 

performance studies of our implementation covering both 

elements: the inline probe and the analyser.  

A. Inline probe 

The inline probe’s performance is critical for deploying 

the inline DDoS detector, as the inline probe is responsible for 

handling network traffic. Consequently, some traffic is lost if 

the incoming traffic overloads its capacity.  
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In order to qualify the performance of the implementation, 

we performed a number of measurements experiments based 

benchmarking methodology defined in the RFC 2544 [16] for 

the throughput metric defined in the RFC 1242 [17]. The 

throughput is defined as the fastest rate at which none of 

       
                                             Fig. 4. Test topology 

 

the offered frames is dropped by the device under test (DUT). 

We assumed that each single measurement iteration lasts 20 

seconds with the inter-interaction break equal to 15 s. 

The measurements were performed with an inline probe 

running on HP ProLiant DL380 Gen 9 server (DUT) equipped 

with Intel Xeon CPU E5-2690 v3 @ 2.60GHz, 125,86 GB RAM 

(including 96 hugepages of 1 GB each), four Intel 82599ES 

10-Gigabit SFI/SFP+ NICs. The tests were performed using 

Ixia hardware XM2 tester equipped with 10 Gbps Ethernet 

(SFP+) ports.  

Here we describe two exemplary test cases, as presented in                                              

Fig. 4. The first test case (#1) assumes the 10 standard entities 

in the DST direction. Each entity is assigned with monitoring 

policies covering all 11 packet feature filters (67 counters) in the 

DST direction (towards the monitor object). Additionally, each 

filter is applied in both configurations7, effectively doubling the 

number of active counters. The DUT is offered a traffic stream 

generated by Ixia tester, constituting of 10 IP flows associated 

with the monitored objects. Each flow’s destination IP address 

matches IP address of one of the monitored entities. Each NIC 

physical interface has been assigned to be served by exactly one 

CPU logical core. Consequently, 3 logical cores are used: one 

handling the main thread (phases P2 and P3), one handling the 

packets incoming via NIC_1 (phase P1), and one handling 

packets incoming via NIC_2 (phase P1). Note that the last core 

actually does not process any packets in this scenario, as no 

packets are received by DUT on NIC_2. 

The measured throughput for different frame sizes is 

depicted in Fig. 5, together with maximal theoretical values on 

10 Gbps link. The measurement results were not precisely 

repeatable, the statistical processing was applied. Specifically, 

the RFC 2544 throughput procedure was repeated 10 times for 

each frame size, and 95% confidence intervals were calculated. 

The obtained results show that the inline probe can achieve near 

link-rate traffic handling (at least 95% of link speed) for frames 

bigger than 758B using just one logical core handling packet 

processing (P1 phase). More CPU logical cores may be assigned 

to a physical NIC port if higher performance is required. The 

 

 
12 The confidence intervals for all measurement points are overlapping so there 

is no statistically significant difference between the results. 

incoming traffic would then be load-balanced using the RSS 

mechanism as described in Section III.B.1. 

The second test case (#2) extends the previous scenario 

with bidirectional traffic. It assumes the 10 standard entities in 

both DST and SRC directions. All entities are assigned with 

a policy covering all 11 packet feature filters (as previously). 
 

 
Fig. 5. Throughput achieved on single CPU logical core handling P1 phase 

The DUT is offered two traffic streams, one on each interface. 

Each traffic flow constitutes od 10 IP flows associated with 

the monitored objects. For flows received by DUT on NIC_1, 

the flow’s destination IP address matches the IP address of one 

of the monitored entities in the DST direction. For flows 

received by DUT on NIC_2, the flow’s source IP address 

matches IP address of one of the monitored entities in the SRC 

direction. Each NIC physical interface has been assigned to be 

served by exactly one CPU logical core, as previously. 

Consequently, 3 logical cores are used, one handling the main 

thread, one handling the packets in the DST direction incoming 

via NIC_1, and one handling packets in the SRC direction 

incoming via NIC_2.  

Similarly, as in the previous test case, the RFC 2544 

throughput procedure was repeated 10 times for each frame size, 

and 95% confidence intervals were calculated. The obtained 

results for each direction are statistically equivalent to 

the results obtained in the first test case12, thus, they are not 

plotted in Fig. 5. This derives from the fact that the traffic 

incoming by each NIC was handled by a different CPU logical 

core (phase P1). Consequently, the performance of the inline 

probe may be easily scaled up by increasing the number of 

assigned CPU logical cores. 

A. Analyser 

The analyser performs its primary functions, phases P4 and 

P5, cyclically every Δ𝑇13. Within this time, the module needs to 

execute the following actions: 1) download data from Redis, 2) 

update entities’ statistics with new snapshots, 3) calculate 

anomaly levels for each entity’s features and compare them with 

alarm thresholds, 4) add the uploading data job to a task queue. 

These actions are realised by the main loop of the analyser. 

13 The default value of Δ𝑇 is 1 s. 
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After executing each round of the main loop, the process sleeps 

for some time to start a new cycle exactly after Δ𝑇 from the 

previous one.  

In order to assess the analyser’s performance, we measured 

how long the main loop round takes depending on the number 

of monitored entities. The analyser ran as a container on 

a virtual machine (VM) with the following characteristic: 

4 vCPU @ 2.60GHz cores, 16 GB RAM, Debian Stretch 

(Release 9.8, kernel 4.9.0) with Docker 18.09.4 installed. 

The Redis database ran as a container on the same VM to 

minimise the impact caused by network delays. 

In the first scenario, the analyser processed data obtained 

from one inline probe. All entities were assigned the same 

monitoring policy, with all feature filters being active. Results 

of the measurements are presented in Fig. 6. Measurements 

were repeated 60 times for each number of monitored entities, 

and 95% confidence intervals were calculated. When there are 

no entities’ data in the Redis database, the round takes only 2.4 

ms as no calculations are performed (only communication with 

the database is required). When some entities’ data is in the 

database, the analyser executes an anomaly detection process 

for each entity’s features. Consequently, the main loop 

execution time increases proportionally to the number of 

monitored entities (as all entities are assigned the same 

monitoring policy). It takes approx. 7-10 ms to process one 

entity’s data.   

In the second scenario, a number of inline probes are 

considered14. The results are presented in Tab. III. We assumed 

that all probes together are assigned with 32 entities in different 

configurations. The analyser was configured to calculate 

anomaly level for all single objects (not only for an aggregated 

object, if it’s present). The first three columns cover the cases 

where 1, 2, and 4 inline probes are considered, and each inline 

probe monitors different entities. One can see that the mean time 

per entity increases with the number of inline probes. It derives 

from the fact that the analyser performs some procedures per 

inline probe, e.g., it checks if an entity is also monitored by 

other inline probes (so an aggregated object should be created). 

The last two columns cover the cases where 2 and 4 inline 

probes monitor common entities. In the case of 2 inline probes, 

the first monitors entities 1-16, and the second monitors entities 

9-24. In the case of 4 probes, all monitor the same 8 entities. 

One can see that the results for these cases do not differ. 

Comparing different columns, we see that where the inline 

probes monitor common entities, the main loop execution is 

a little bit faster (as alarms are handled only for the aggregated 

objects). 

  

 

 
14 Since didn’t have required number of the inline probes, we use a mock 

imitating several of them. 

 
Fig. 6. Analyser efficiency as a function of monitored entities 

 

TABLE III  

ANALYSER EFFICIENCY – COMMON MONITORED ENTITIES. 

Number of inline probes 1 2 4 2 4 

Number of entities  
per inline probe 

32 16 8 16 8 

Number of  

common entities 
- 0 0 8 8 

Mean time of main loop 

execution [ms] 
232 264 330 284 288 

95% confidence [ms] 4,9 9,9 9,8 11,7 6,1 

Mean time  

per entity [ms] 
7,3 8,3 10,3 8,9 9,0 

 

We can conclude that the analyser’s efficiency is sufficient 

to handle all the presented cases. The main loop execution time 

for such a number of inline probes and entities equals 

250-350 ms (7-10 ms per entity). It means that the analyser is 

able to calculate data for approx. 100 entities within assumed 

Δ𝑇 = 1 𝑠. If there is a need to monitor more entities, as 

mentioned earlier, many analysers may be run and configured 

to process only a subset of entities, or Δ𝑇 may be increased. 

V. EXEMPLARY RESULTS 

This section presents exemplary end-to-end anomaly 

detection results performed by our inline DDoS detector. 

We consider two test scenarios, both following a scheme 

presented in Fig. 7. The traffic is sent by Ixia BreakingPoint 

directly to our inline DDoS detector. It consists of 15 minutes 

of background traffic and an attack conducted between 

the 6th and the 9th minute (360 – 540 s). We used “BreakingPoint 

Enterprise 2018” traffic profile consisting of a mix of 

application traffic.  

To focus the attention, we consider a single traffic feature 

measured by the inline DDoS detector: Ipv4 packets (covered 

by EtherType&ProtocolFilter). Figures 8 and 9 present the 

densities and anomaly levels measured by the inline DDoS 

detector in the default configuration15. These figures were 

plotted based on the data exported to the time series database by 

the analyser. In the first scenario (Fig. 8), the traffic rate rapidly 

increases by 60% and stays the same during the attack period. 

15 Parameters values: 𝜆 = 0.6, Δ𝑡 = 0.1 𝑠, Δ𝑇 = 1 𝑠, 𝑁 = 50, and 𝑘 = 11. 
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In the second scenario (Fig. 9), the malicious traffic is 

significantly more irregular.  

The anomaly results appear after 50 seconds, as 

the algorithm needs to collect 𝑁 = 50 snapshots to start 

statistical processing. In the first case (Fig. 8), the anomaly level 

has two outstanding values – at the attack’s beginning and end. 

In these moments, the traffic changes are abnormally rapid and 

strong.  

 
Fig. 7. Timeline of DDoS attack scenarios 

 
Fig. 8. Visualisation of the anomaly level for exemplary traffic – regular 

malicious traffic 

 
Fig. 9. Visualisation of the anomaly level for exemplary traffic – irregular 

malicious traffic 

In the second case (Fig. 9), there are three outstanding 

values of anomaly level – approx. in 360, 380, and 540 s. Note 

that the decrease in the traffic rate in 400 s does not produce 

a noticeable (negative) anomaly level. This is because 

1) 60 000 pps is not an abnormal value considering the last 50 

seconds, and 2) another significant change (from 60 000 to 

80 000 pps) was observed in the last 50 seconds, so such 

changes are considered normal. In 540 s, there is a (negative) 

anomaly level since, during the previous 50 s, there were 

approximately 65 000 – 75 000 pps that rapidly decreased to 

50 000 pps.   

Note that real-time monitoring may be performed by 

reading data stored in from Elastic Search with Graphana 

reading. A sample visualisation of such monitoring is shown in 

Fig. 10. The density of total traffic, measured in Mbps (green 

transparent chart, left y-axis), with its corresponding anomaly 

level (white plot, right y-axis), is monitored. Additionally, two 

constant client-defined anomaly levels are marked (𝐴 = 2 and 

𝐴 = 3) to easily identify moments of unusual traffic behaviour. 

 

 
Fig. 10. Visualisation of the anomaly level of exemplary traffic – Graphana 

VI. CONCLUSIONS  

This paper provides a concept of the inline DDoS detector 

capable of real-time network traffic monitoring for 

near-real-time anomaly detection. Our inline DDoS detector is 

based on the state-of-the-art AATAC algorithm with a few 

enhancements reducing computational complexity and 

improving results utility for DDoS detection. The inline DDoS 

detector provides service-tailored anomaly detection where 

each monitored entity is assigned with a configurable set of 

custom packet feature filters, including application layer DPI. 

The solution is decoupled into inline probe(s) and analyser 

elements facilitating high scalability and a wide range of 

deployment scenarios. 

The inline probes provide link-rate real-time forwarding 

and network monitoring on the commodity hardware thanks to 

the utilisation of the DPDK framework and parallel packet 

processing on multiple CPU cores. The inline probes export 

per-entity traffic features status in the form of snapshots at 

regular intervals. The analyser aggregates this information from 

different inline probes. Based on a number of the most recent 

snapshots, it detects attacks (anomalies) using statistical 

analysis and handles corresponding alarms. 

The inline DDoS detector has been implemented for 

the feasibility study, focusing on performance evaluation. 

Our studies proved that the inline DDoS detector is capable of 

real-time network traffic monitoring and near-real-time 

anomaly detection. 

VII. FUTURE WORKS 

This paper proved the feasibility of our inline DDoS 

detector for detecting and alarming about DDoS attacks in near 

real-time. An alarm informing of a susceptible DDoS attack is 

raised when an anomaly level exceeds the client-defined 

threshold. Note that the type of attack is not automatically 
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determined. This identification must be done by 

an administrator based on the real-time monitoring statistics of 

different traffic features. This task is not trivial, as: 1) up to 

23 traffic features may be monitored (18 global features and 

5 histogram features) in each direction for each client’s service, 

and 2) each feature is described by the density and 

the corresponding anomaly level. The density carries 

the information of smothered traffic rate with a specific feature, 

while the anomaly level allows to detect rapid changes in this 

rate easily. Both factors should be used simultaneously to 

improve detection accuracy. Consequently, the inline DDoS 

detector may be further significantly enhanced with automatic 

identification of DDoS attack type to facilitate automatic attack 

mitigation. 

Moreover, our inline DDoS detector enables to assign 

a different monitoring policy (defining a set of packet feature 

filters) for each client’s service. Nevertheless, it is not obvious 

how this policy should be constructed for different applications. 

Specifically, which packet feature filters should be enabled to 

detect attacks against the most popular Internet services. 

We plan to address both of the above topics in our future works. 
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