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Power-Ground Plane Impedance Modeling Using
Deep Neural Networks and an Adaptive Sampling

Process
Chan Hong Goay, Zheng Quan Cheong, Chen Eng Low, Nur Syazreen Ahmad, and Patrick Goh

Abstract—This paper proposes a deep neural network (DNN)
based method for the purpose of power-ground plane impedance
modeling. A composite DNN model, which is a combination
of two DNNs is used to predict the Z-parameters of power
ground planes from their design parameters. The first DNN
predicts the normalized Z-parameters whereas the second DNN
predicts the original maximum and minimum values of the non-
normalized Z-parameters. This allows the method to retain a high
accuracy when predicting responses that have large variations
across designs, as is the case with the Z-parameters of the
power-ground planes. We use the adaptive sampling algorithm to
generate the training and validation samples for the DNNs. The
adaptive sampling algorithm starts with only a few samples, then
slowly generates more samples in the non-linear regions within
the design parameters space. The level of non-linearity of the
regions is determined by a surrogate model which is also trained
using the generated samples as well. If the surrogate model has
poor prediction accuracy in a region, then the adaptive sampling
algorithm will generate more samples in that region. A shallow
neural network is used as the surrogate model for non-linearity
determination of the regions since it is faster to train and update.
Once all the samples have been generated, they will be used to
train and validate the composite DNN models. Finally, we present
two examples, a square-shaped power ground plane and a square-
shaped power ground plane with a hollow square at the center
to demonstrate the robustness of the DNN composite models.

Keywords—adaptive sampling, deep neural networks, deep
learning, power-ground plane, Z-parameters

I. INTRODUCTION

The analysis of power distribution and quality on the power-
ground planes in modern electronic circuits is one of the major
challenges faced by circuit designers of high-speed systems.
To ensure proper power integrity, the impedance parameters of
the planes must be analyzed by performing simulations of the
planes, in order to satisfy the maximum allowable impedance
across the design frequencies [1]. Traditionally, this simulation
is performed using a full wave simulator, which has a high
accuracy. However, the computations necessary in a full wave
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simulator is computationally very expensive especially for
highly complicated designs. Other than that, since the design
process often has a lot of design parameters, multiple full-
wave simulations will have to be performed, one for each set
of unique design parameters. The number of simulations can
get prohibitively big when the number of design parameters
is large, thus making the whole design a very time consuming
process.

Artificial neural networks (ANNs) have been applied to
the field of RF and microwave circuit modeling for more
than a decade, including for example the works in [2]–[5].
The main idea behind these works is to use the ANNs to
replace the expensive full-wave simulators once they have
being properly trained. Since the ANNs take almost no time
during the prediction process, the cost of using ANNs mainly
comes from generating the training and validation samples
and the training process itself. The generation of training and
validation samples can be very time consuming. Therefore,
it is important to use a proper sampling technique to avoid
the occurrences of oversampling and undersampling. Oversam-
pling can increase the cost to construct the ANN model due to
having redundancy in the samples and undersampling can re-
sult in a poor performing ANN model. The adaptive sampling
algorithm is a sampling method that starts with a small number
of samples within a design parameters space, and trains an
ANN model with those samples. Then, it iteratively generates
more samples in the regions with the worst prediction errors.
The ANN model will also be updated iteratively with the new
samples until its validation performance reaches the goal [6].
A modification to the adaptive sampling algorithm is proposed
in [7], such that the algorithm is more balanced in terms of
exploration and exploitation, and avoid getting ”stuck” in a
region when the simulator produces erroneous results.

In the past, the most popular neural network structure for
circuit modeling application is the shallow neural network
which usually has only one or two hidden layers due to its
simplicity and good performance. Recently, deep neural net-
works (DNNs) have gained popularity in the circuit modeling
community as well. For example, DNNs have been used for
the modeling of high-speed channels [8], [9], microwave filters
[10], [11], and high power amplifiers [12]. Some studies show
that the capability of shallow neural networks is very limited
when compared to the DNNs, especially for modeling non-
uniform highly complex functions or when there are missing
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values in the dataset [13], [14]. The readers are referred to
[15] for the background and basics of DNNs.

In this paper, we present a method that uses the modified
adaptive sampling algorithm for generating training and val-
idation datasets, and then use the datasets to build the DNN
models to model the Z-parameters of power-ground planes.
We will demonstrate the capability of the DNN models using
a two-dimensional (square-shaped power ground plane) and a
three-dimensional (square-shaped power ground plane with a
hollow square at the center) example.

II. MODIFIED ADAPTIVE SAMPLING

During initialization, the adaptive sampling algorithm de-
fines the entire d-dimensional design parameters space as a
single region, R, and training and validation samples are
generated in the region. In this paper, we use a 2k-DoE
distribution plus a center point for the training samples, and a
star distribution for the testing samples. Then, these samples
are used to construct an intermediate surrogate model which
is used to determine the linearity of every region. The region
with the largest validation error will be identified as the worst
performing region and it will be split into 2d regions of equal
volume. Then, samples are generated in the new regions and
appended to the existing samples. After that, the surrogate
model will be updated using the newly generated samples and
the algorithm will search for the new worst performing region
again. This process is repeated until the stopping criteria is
met. Figure 1 shows an example for a 2-dimensional design
parameters space (d = 2), where the worst performing region
is split into 4 regions with equal volume during the first to
third iterations.

The original adaptive sampling only uses the validation
errors to determine the performances of every region [6].
The modified adaptive sampling algorithm modifies this by
assigning a value, n for each region where the ni for the ith
region, Ri is defined as:

ni = log2d

(
volume of entire design parameters space

volume of region Ri

)
+1.

(1)
The region error, Ei of the ith region is then defined as:

Ei =
validation error of Ri

ni
. (2)

The modified adaptive sampling algorithm will then select the
region with the largest region error as the worst performing
region. The purpose of dividing the validation errors with n is
to prevent the algorithm from being ”stuck” in a small outlier
region. It can be seen from (1) and (2), when a region, Ri has
a very small volume, its ni value will be large, thus decreasing
the chance of it being identified as the worst performing
region. This can occur when the simulator gives erroneous
results or when the data in that region behaves completely
different than the rest of the region. The readers are referred
to [7] for more details on the modified adaptive sampling
algorithm. In this paper, we use a shallow neural network
with only a hidden layer as our surrogate model because it has
a faster training time than the DNNs. This is also based on

the assumption that shallow neural networks have comparable
performance to DNNs when the dataset is small [16]. We will
discard the intermediate surrogate model, and build a DNN
model once the sampling process is complete.
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Fig. 1. The positions of training and validation samples from the first to third
iterations of a 2-dimensional design parameters space

III. POWER GROUND PLANE MODELING USING DNNS

A power-ground plane is a large layer of copper foil which
distributes the direct current (DC) power to active devices and
acts as a voltage reference on a multilayer printed circuit board
(PCB) [17]. Power-ground planes are also referred to as power
distribution networks (PDNs) in PCB designs, as they provide
a current path for power transmission from the source to the
loads on the PCB. A PDN should be designed to provide a
low-noise power supply to the loads on the PCB within some
peak voltage ripple to meet the system requirements of the IC
[18], [19]. Although PDNs can be modeled as passive devices
such as resistors, capacitors and inductors, or by transmission
lines between source and loads [20], a more accurate result can
be obtained by simulating the behavior of the PDNs directly
from the physical dimensions and parameters. Figure 2 shows
the structures of a square-shaped power ground plane and a
square-shaped power ground plane with a hollow square at the
center. The square-shaped power ground plane is represented
by two design parameters: side length, l, and substrate height,
h. On the other hand, the square-shaped power ground plane
with a hollow square at the center is represented by three
design parameters: l, h, and the ratio, r, between the side
length of the outer square and the inner square.

In this paper, we use DNNs to model the Z-parameters of
the power ground planes from the design parameters. However,
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the Z-parameters of every set of design parameters can have
vastly different magnitudes. For example, Figure 3 shows
the magnitude of Z12 of four different power-ground planes.
During the training process, the larger magnitude will have a
larger effect on the training errors, which the network relies on
for its weights update. In order to ensure that every design has
the same level of importance during the training process, we
will normalize the Z-parameters of each design, independently,
to a maximum value of one and a minimum value of zero,
as can be seen in Figure 4. However, normalization is not
performed across the designs. As can be seen in Figure 5,
the problem of the difference in magnitudes will still exist if
normalization is performed across the designs.

Since the Z-parameters of every design are normalized
independently, the information about the original magnitude
of the Z-parameters is lost. Thus, we need another model to
predict the original maximum and minimum values of the
Z-parameters for every design. We propose the use of two
DNN models for the power-ground plane modeling task, where
model 1 predicts the normalized Z-parameters from the design
parameters, x, and frequency, f , while model 2 predicts the
maximum and minimum values for the Z-parameters from x,
which will be used to perform the denormalization process.
Figure 6 shows the structure of the proposed DNN-based
composite model for the power ground plane modeling task,
which consists of the DNN models and a denormalization
block. All the DNN models are constructed using TensorFlow
2 [21]. We use the Adam optimizer [22], which is an adaptive
learning rate optimization algorithm for training our DNN
models. The Adam optimizer has low memory requirements,
and is robust and well-suited to a wide range of non-convex
optimization problems. Since the choice of hyperparameters
can also have a very large impact on the performances of
the models, a Bayesian optimization algorithm [23] is used to
perform hyperparameters tuning for all the DNN models.

IV. RESULTS AND DISCUSSION

The design parameters space for the 2-dimensional and 3-
dimensional examples are tabulated in Table 1. The other
design parameters are kept constant such as the dielectric
constant, ϵr = 4.2, relative permeability, µ = 1, dielectric
loss tan = 0.02, metal conductivity, σ=6.8e-7 S/m, and metal
thickness = 0.03556 mils. For both examples, the modified
adaptive sampling algorithm will be run for 20 iterations.
The Z-parameters (Z11, Z12, Z13, and Z14) will be modeled
from 3 GHz to 9 GHz, with a step of 0.02 GHz. For both
examples, we will generate 100 test samples within the design
parameters space using random sampling. The validation and
testing performances of each model are measured using the
coefficient of determination (R-squared).

A. 2-Dimensional Example

Fig. 7 shows the distributions of the training and validation
samples in the 1st iteration, 5th iteration, 10th iteration, and 20th

iteration in the 2-dimensional design parameters space, R. The
optimal set of hyperparameters for DNN model 1 is found to
be as follows: number of hidden feedforward layers = 3 and

TABLE I
THE DESIGN PARAMETERS SEARCH SPACE FOR THE 2-DIMENSIONAL AND

3-DIMENSIONAL EXAMPLES

Design Parameters 2-dimensional example 3-dimensional example
l (mm) 10-15 10-15
h (mm) 0.4-0.6 0.4-0.6
r — 0.45-0.55

number of hidden neurons in each layer = [231, 27, 106], and
the optimal set of hyperparameters for DNN model 2 is found
to be: number of hidden feedforward layers = 3 and number
of hidden neurons in each layer = [182, 390, 276]. Table 2
compares the performance of the shallow neural network from
the 1st to the 20th iteration of the modified adaptive sampling
algorithm with the final DNN model. It can be seen that the
validation performance of the surrogate model (shallow neural
network) improves when the number of iterations increases.
Also, the composite DNN model performs better than all the
shallow neural networks, which verifies the hypothesis made
earlier. Fig. 8 and Fig. 9 show the actual and predicted Z-
parameters of test case 1 (l = 14.1458 mm, h = 0.4433
mm) and test case 2 (l = 11.6770 mm, h = 0.4048 mm)
respectively.

B. 3-Dimensional Example

Fig. 10 shows the distributions of the training and validation
samples in the 1st iteration, 5th iteration, 10th iteration, and
20th iteration in the 3-dimensional design parameters space,
R. The optimal set of hyperparameters for DNN model 1
is found to be as follows: number of hidden feedforward
layers = 3 and number of hidden neurons in each layer =
[31, 146, 190], and the optimal set of hyperparameters for
DNN model 2 is found to be: number of hidden feedforward
layers = 4 and number of hidden neurons in each layer =
[328, 368, 114, 182]. Table 3 compares the performance of
the shallow neural network from the 1st to the 20th iteration
of the modified adaptive sampling algorithm with the final
DNN model. The validation performance of the surrogate
model (shallow neural network) improves when the number
of iterations increases, which is consistent with the previous
example. Also, the improvement in performance for the DNN
composite model over the shallow neural network is larger if
compared to the previous example because the 3-dimensional
modeling problem has a higher degree of non-linearity than the
2-dimensional modeling problem, and DNNs are superior in
this regard. Fig. 11 and Fig. 12 show the actual and predicted
Z-parameters of test case 1 (l = 14.8598 mm, h = 0.4655 mm,
r = 0.5334) and test case 2 (l = 11.9782 mm, h = 0.4107
mm, r = 0.4573) respectively.

V. CONCLUSION

A DNN based method for power-ground plane modeling
has been proposed. The modified adaptive sampling is used to
prevent the problem of undersampling or oversampling. Two
modeling examples, a square-shaped power ground plane, and
a square-shaped power ground plane with a hollow square at
the center are used to illustrate the method. Results show that
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Fig. 2. A square-shaped power ground plane (left) and a square-shaped power ground plane with a hollow square at the center (right)
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Fig. 3. Z-parameters of four different designs
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Fig. 4. Z-parameters of four different designs, normalized independently
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Fig. 5. Z-parameters of four different designs, normalized across all designs
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Fig. 6. Structure of the proposed DNN-based composite model for power ground plane modeling

TABLE II
PERFORMANCES OF THE SHALLOW NEURAL NETWORKS IN VARIOUS ITERATIONS

OF THE MODIFIED ADAPTIVE SAMPLING ALGORITHM AND THE DNN COMPOSITE MODEL FOR THE 2-DIMENSIONAL EXAMPLE

Model Validation performance Testing performance
1st iteration shallow neural network -3.7323 —
5th iteration shallow neural network 0.9237 —
10th iteration shallow neural network 0.9707 —
20th iteration shallow neural network 0.9851 0.9807
Composite DNN model 0.9949 0.9946
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Fig. 7. Distributions of training and validation samples in the 1st iteration, 5th iteration, 10th iteration, and 20th iteration
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Fig. 8. The magnitudes of Z11, Z12, Z13, and Z14 for the 2-dimensional test case 1
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Fig. 9. The magnitudes of Z11, Z12, Z13, and Z14 for the 2-dimensional test case 2

TABLE III
PERFORMANCES OF THE SHALLOW NEURAL NETWORKS IN VARIOUS ITERATIONS

OF THE MODIFIED ADAPTIVE SAMPLING ALGORITHM AND THE DNN COMPOSITE MODEL
FOR THE 3-DIMENSIONAL EXAMPLE

Model Validation performance Testing performance
1st iteration shallow neural network -2.5094 —
5th iteration shallow neural network 0.9162 —
10th iteration shallow neural network 0.9270 —
20th iteration shallow neural network 0.9341 0.9269
Composite DNN model 0.9939 0.9911

Test Case 2
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Fig. 10. Distributions of training and validation samples in the 1st iteration, 5th iteration, 10th iteration, and 20th iteration
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Fig. 11. The magnitudes of Z11, Z12, Z13, and Z14 for the 3-dimensional test case 1
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Fig. 12. The magnitudes of Z11, Z12, Z13, and Z14 for the 3-dimensional test case 2

the DNN composite model is superior to the shallow neural
networks in terms of the prediction accuracy. Nevertheless, de-
spite having lower performances, the shallow neural networks
can still be used as the surrogate model during the adaptive
sampling process, due to it being much cheaper to train and
update.
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