
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 4, PP. 741–747
Manuscript received September 2, 2022; revised November, 2022. DOI: 10.24425/ijet.2022.143880

The High-Level Practical Overview of Open-Source
Privacy-Preserving Machine Learning Solutions

Konrad Kuźniewski, Krystian Matusiewicz, Piotr Sapiecha

Abstract—This paper aims to provide a high-level overview of
practical approaches to machine-learning respecting the privacy
and confidentiality of customer information, which is called
Privacy-Preserving Machine Learning. First, the security ap-
proaches in offline-learning privacy methods are assessed. Those
focused on modern cryptographic methods, such as Homomor-
phic Encryption and Secure Multi-Party Computation, as well
as on dedicated combined hardware and software platforms
like Trusted Execution Environment - Intel® Software Guard
Extensions (Intel® SGX). Combining the security approaches with
different machine learning architectures leads to our Proof of
Concept in which the accuracy and speed of the security solutions
will be examined. The next step was exploring and comparing
the Open-Source Python-based solutions for PPML. Four solutions
were selected from almost 40 separate, state-of-the-art systems:
SyMPC, TF-Encrypted, TenSEAL, and Gramine. Three different
Neural Network architectures were designed to show different
libraries’ capabilities. The POC solves the image classification
problem based on the MNIST dataset. As the computational
results show, the accuracy of all considered secure approaches is
similar. The maximum difference between non-secure and secure
flow does not exceed 1.2%. In terms of secure computations,
the most effective Privacy-Preserving Machine Learning library
is based on Trusted Execution Environment, followed by Secure
Multi-Party Computation and Homomorphic Encryption. However,
most of those are at least 1000 times slower than the non-
secure evaluation. Unfortunately, it is not acceptable for a real-
world scenario. Future work could combine different security
approaches, explore other new and existing state-of-the-art li-
braries or implement support for hardware-accelerated secure
computation.

Keywords—Privacy-Preserving Machine Learning, Homomor-
phic Encryption, Secure Multi Party Computation, Trusted
Execution Environment

I. INTRODUCTION

RECENT advances in Machine Learning (ML) or Deep
Learning (DL) techniques have demonstrated outstand-

ing performance on various tasks, including organ recognition
from medical images, classification of interstitial lung dis-
eases, detection of lung nodules, medical image reconstruction,
and segmentation of brain tumors. The advantage of DL mod-
els over humans has resulted in the development of computer-
aided diagnosis systems - for example, the United States Food
and Drug Administration recently announced the approval of
an intelligent diagnosis system for medical images that do not
require human intervention [1], [2].

Konrad Kuźniewski, Krystian Matusiewicz, Piotr Sapiecha
are with Intel, the IPAS division (e-mail: {konrad.kuzniewski,
krystian.matusiewicz}@intel.com, piotr.sapiecha@intel.com).

Nowadays, deep model training and evaluation are fre-
quently outsourced to clouds, referred to in the literature as
Machine Learning as a Service (MLaaS). Cloud providers
like Google, Microsoft Azure, or Amazon Web Services offer
these services. Despite the impressive performance of DL
algorithms, numerous recent studies have raised concerns
about the security and robustness of machine learning models
[3]–[5]. Moreover, the security of such algorithms’ execution
environments is being questioned [6]–[8]. The realization
that DL models are neither safe nor resilient considerably
complicates their practical implementation in security-critical
applications such as predictive healthcare, which is basically
life-critical. As a result, maintaining the integrity and security
of deep learning models and health data is critical to the
industry’s wider adoption of ML and DL. However, significant
research has been conducted recently to resolve this chal-
lenge using different cryptography techniques. CryptoNets [9],
which showed Privacy-Preserving Machine Learning (PPML)
prediction using Homomorphic Encryption (HE) cryptography
in 2016 was one of the first publicly publicized benefits. As
shown in the 2021 publications [10], [11], the use of multi-
party computing techniques demonstrates breakthroughs in
the privacy-preserving analysis of large amounts of medical
data. While MLaaS is utilized in an insecure cloud envi-
ronment, hardware-accelerated alternatives such as Trusted
Execution Environment (TEE) or Field Programmable Gate
Arrays (FPGA) accelerated computations are also used.

II. SECURITY OVERVIEW FOR MACHINE LEARNING

An Artificial Intelligence (AI) system’s ML components in-
clude data, models, and methods for training, testing, and val-
idation. In general, ML data-driven approach poses additional
security risks throughout the training and inference phases of
ML operations. These security concerns include the possibility
of malicious manipulation of training data and adversarial
exploitation of model sensitivities to degrade ML classification
and regression performance. Adversarial Machine Learning
(AML) is focused on the development of secure ML algorithms,
the analysis of attacker capabilities, and the comprehension of
attack repercussions. Malicious adversaries launch attacks and
ML security refers to protections designed to avoid or mitigate
the results of such attacks. The NIST NISTIR 8269 [12] draft
is one of the publications that summarize the vocabulary and
security-related concepts associated with AML. It discusses the
various kinds of attacks, their defenses, and their associated

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

piotr.sapiecha@intel.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


742 K. KUŹNIEWSKI, K. MATUSIEWICZ, P. SAPIECHA

implications in terms of AML. The privacy of ML solutions
is violated if an adversary obtains personal information about
one or more individual and legitimate model inputs, either
included in the training data or not. An example would be
when an adversary acquires or extracts an individual’s medical
records in violation of privacy policies. One of the defenses
against testing (inference) attacks can be based on applying the
following security models: Homomorphic Encryption, Secure
Multi-Party Computation, use of Trusted Execution Environ-
ment.

HE is a type of encryption that enables the computation over
encrypted data. Homomorphism is a mathematical notion that
refers to preserving structure and correctness across a com-
putation. The most important scheme supports both additions
and multiplications of the ciphertext data which are called
Fully Homomorphic Encryption - FHE. Their security relies
on the hard mathematical problems based on number lattices
like Shortest Vector Problem. One widely adopted schemes are
BGV, BFV and CKKS.

Secure Multi-Party Computation (SMPC) computing may be
extended to several parties with SMPC, in which processing
is carried out on encrypted data shares that are shared among
the parties so that no single party can recover the complete
data on their own. The outcome of the calculation can be
published without any party ever seeing the data, which would
be retrieved only by agreement. A conceptual illustration of
SMPC is a ballot, in which the outcome is required, but
the individual voters’ choices are not. The basic protocol for
secure two-party computation is Yao’s garbled circuit protocol
and its underlying security is based on 1-out-of-2 Oblivious
Transfer protocol. Other than that, we can find more modern
and complex approaches including three or more parties, other
possibilities to share the data (arithmetic or Boolean sharing),
and problem-specific optimizations.

TEE is a tamper-resistant processing environment that runs
on a dedicated, hardened subsystem. It guarantees the authen-
ticity of the executed code, the integrity of the runtime states
(e.g., central processing unit registers, memory, and sensitive
I/O), and the confidentiality of its code, data and runtime states
stored on persistent memory. In addition, it should be able to
provide a remote attestation that proves its trustworthiness for
third parties. One of the examples of TEE technology is Intel®

Software Guard Extensions (Intel® SGX).

III. PROBLEM STATEMENT

This paper aims to provide a high-level overview of practical
approaches to machine-learning respecting the privacy and
confidentiality of customer information, in short - Privacy-
Preserving Machine Learning. In order to achieve it, we
need to check and verify different security approaches as
well as their implementation to meet privacy preserving ML
prediction’s goal. As one of the ML tasks, we consider
image recognition problem using Modified National Institute
of Standards and Technology (MNIST) [13] dataset. Having
this ML problem set, we will use different libraries with their
security approaches to solve it and compare its accuracy and
efficiency.

In other words, we need to ensure Data Confidentiality in
MLaaS Cloud Computational Environment:

• Input: Datasets for digits image MNIST and recognition
issue using different Neural Network (NN) architectures;

• Constrains: Data Confidentiality in the Cloud Computa-
tional Environment;

• Output: PPML predictions for a dataset;
• Security approaches: HE, SMPC, TEE.
As a part of problem definition, we define three research

questions as follows:
• How secure environment affect the accuracy of compu-

tation?
• What overhead is associated with ensuring security in

terms of neural network prediction time?
• What are efficient ways to transform neural networks

from the non-secure computation to a secure one?

Tool selection criteria

In our solution, we mainly focused on two important criteria
for tool selection:

• Several solutions will be compared. As a result, the
solution should be Open-Source, with the source code
accessible to the public.

• The majority of ML solutions and libraries are written in
Python. To facilitate library efficient adoption, it is noted
whether a particular solution is available as a Python
package that includes support for either Tensorflow or
PyTorch - the two most popular ML libraries available in
Python.

Tool selection procedure

We compared tools that meet our security approaches re-
quirement, those should be based on HE, SMPC or TEE.

Homomorphic Encryption Based Tools

Regarding HE libraries - see Table I, the most promising
ones are nGraph-HE2 [14] (an extension of nGraph-HE [15])
and TenSEAL [16].

TABLE I
THE COMPARISON OF PRIVACY-PRESERVING HE LIBRARIES

Library Tensorflow Open Source
or PyTorch support

nGraph-HE2 [14] ✓ ✓

nGraph-HE [15] ✓ ✓

TenSEAL [16] ✓ ✓

CryptoNets [9] ✗ ✓

Cingulata [17] ✗ ✓

TFHE [18] ✗ ✓

MLwithHE [19] ✗ ✓

CHET [20] ✗ ✗

CryptoDL [21] ✗ ✗

Chimera [22] ✗ ✗

Glyph [23] ✗ ✗



THE HIGH-LEVEL PRACTICAL OVERVIEW OF OPEN-SOURCE PRIVACY-PRESERVING MACHINE LEARNING SOLUTIONS 743

The nGraph-HE2 has the interface to support Tensorflow,
TenSEAL is supported via PyTorch. However, using TenSEAL
is less complex to use. The other promising solutions, such
as CryptoNets [9], Cingulata [17], TFHE [18], MLwithHE
[19] were indeed open-source but written in C or C++. Other
alternatives like CHET [20], CryptoDL [21], Chimera [22],
Glyph [23] that have been developed are not open source and
do not support Tensorflow or PyTorch.

TenSEAL [24] is the HE library that makes use of the CKKS
technique. It employs relinearization, rescaling, and modulus
flipping by default. The polynomial modulus degree is set at
8192 for the λ = 128 bit security level, with primes scaled to
26 bits. As it’s core implementation it utilizes the Microsoft
SEAL library.

Despite the continued study, however, the HE cryptosystems
do not provide direct division and maximum operations [25],
[26]. As a result, the use of contemporary NN topologies is
constrained. For instance, the activation function of the ReLU
[27] is approximated by f(x) = x2 [9]. The TenSEAL is
distributed under Apache Licence 2.0.

Secure Multi-Party Computation Based Tools

Dalskov [28] is the SMPC system that satisfies the require-
ments (see Table II).

TABLE II
THE COMPARISON OF PRIVACY-PRESERVING SMPC LIBRARIES

Library Tensorflow Open Source
or PyTorch support

Dalskov [28] ✓ ✓

SyMPC [29] ✓ ✓

CrypTFlow [30] ✓ ✓

CrypTFlow2 [31] ✓ ✓

SIRNN [32] ✓ ✓

Crypten [33] ✓ ✓

TF-Encrypted [34] ✓ ✓

TASTY [35] ✗ ✓

ABY3 [36] ✗ ✓

SecureNN [37] ✗ ✓

Cerebro [38] ✗ ✓

FALCON [39] ✗ ✓

XONN [40] ✗ ✗

Chameleon [41] ✗ ✗

Sadeghi [42] ✗ ✗

Barni [43] ✗ ✗

SecureML [44] ✗ ✗

Tetrad [45] ✗ ✗

BLAZE [46] ✗ ✗

SWIFT [47] ✗ ✗

However, the solution was designed in a way that does
not support installation via Python package. CrypTFlow [30],
CrypTFlow2 [31], and SIRNN [32] are all components of
the broader EzPC [48] library. While some components of
the system support Tensorflow, integration with the standard
machine learning Python flow is quite challenging due to its
complexity.

SyMPC [29], which is included in PySyft [49] can run
low-level protocols such as ABY3 [36] or FALCON [39] and
supports PyTorch. TF-Encrypted [34] could also be used with
the Tensorflow libraries, and it’s working with the SecureNN
[37] protocol.

Other libraries did not conform to the specified require-
ments. However, it is worth mentioning current findings in
SMPC subjects such as Tetrad [45], BLAZE [46], and SWIFT
[47].

SyMPC [29] is a solution that uses the AriaNN [50] protocol
for semi-honest two-party computing. Due to the library’s
ability to utilize the ReLU activation function, multi-layer
perceptron NN architectures are feasible. However, convolu-
tion NNs are limited in their use since they only support
the MaxPool building component [27]. Additionally, Dropout
does not work as a construction block [27]. The SyMPC is
distributed under MIT Licence.

TF-Encrypted [51] is a SMPC that is based on the SecureNN
[37] - three-party malicious-aware computation protocol. Con-
sequently, even if one of the parties is a malicious actor,
the computation may still succeed. The TF-Encrypted is
distributed under Apache Licence 2.0.

Trusted Execution Environment Based Tools
Three solutions (see Table III) that match the required

criteria are Gramine, [52], TF-Trusted [53] and SLALOM [54].

TABLE III
THE COMPARISON OF PRIVACY-PRESERVING TEE LIBRARIES

Library Tensorflow Open Source
or PyTorch support

Gramine [52] ✓ ✓

TF-Trusted [53] ✓ ✓

SLALOM [54] ✓ ✓

PPFL [55] ✗ ✓

DarkneTZ [56] ✗ ✓

BigDL PPML [57] ✗ ✓

Eleos [58] ✗ ✓

TensorSCONE [59] ✓ ✗

PERUN [60] ✓ ✗

Flatee [61] ✗ ✗

However, SLALOM [54], like Dalskov [28], the solution
was designed in a way that does not support installation
via Python package. On the other hand, TF-Trusted [53] is
based on an older Intel® Software Guard Extensions SDK for
Linux* OS (Intel® SGX SDK for Linux* OS) version which is
nearly impossible to run on more recent versions. The other
alternatives are either proprietary or do not support Tensorflow
or PyTorch.

Gramine [52] solution allows running unmodified Linux
binaries on Intel® SGX. The Gramine is distributed under GNU
GPLv3.

Comparison Conclusion
HE, SMPC and TEE were addressed throughout the solution

search. Only a few of the nearly 40 privacy-preserving tech-
nologies examined are open-source and could be effectively



744 K. KUŹNIEWSKI, K. MATUSIEWICZ, P. SAPIECHA

integrated into the Python ML code base. Those are: SyMPC
[29], TF-Encrypted [51], TenSEAL [24] and Gramine [52].

IV. SYSTEM ARCHITECTURE

The following modules were created as part of the imple-
mentation:

• Training Module - optimizes a given NN architecture in
terms of weights for a specific dataset classification or
regression issue - see Figure 1.

• Plaintext Module - this module computes the solution to
a given issue using a trained NN model and a provided
dataset - see Figure 2.

• Encrypted Module - with a given dataset and trained
NN, utilizes a PPML library and conducts the encrypted
computation - see Figure 3.

• Benchmark Module - this module provides the average
time required to compute the prediction for a given
computation in either the Plaintext or Encrypted Modules
- see Figure 4.

Fig. 1. Training Module in implemented solution. For given NN architecture
and dataset it outputs trained NN for a given issue.

Fig. 2. Plaintext Module in implemented solution. For a given trained NN
model and dataset it outputs the network evaluation.

Fig. 3. Encrypted Module in implemented solution. For the given PPML
solution it encrypts the trained NN model and dataset. It outputs the encrypted
network evaluation which is decrypted for plaintext output.

For a given dataset and NN architecture model, the appli-
cation flow goes as follows:

• Using the Training Module, the NN model is trained for a
given training dataset and issue type. The training param-
eters may be tailored to a particular issue. The module, in
particular, enables the user to choose the training criterion

Fig. 4. Benchmark Module in implemented solution. The trained NN model
and dataset outputs the average evaluation time for a sample record. It can be
used together with either Plaintext or Encrypted module.

and optimizer parameters such as learning rate, number
of epochs, and batch size.

• Then the Plaintext Module verifies the model training
metrics for a test dataset. Those are specific to the
issue type but could be parametrized within the same
problem type. For a classification problem, it computes
the Accuracy.

• The Encrypted Module uses one of the PPML libraries
to perform the encrypted computation with the same
parameters as the Plaintext Module. After the evaluation,
the same metric as for the Plaintext Module shows to
compare specific library quality.

• The Benchmark Module is used in conjunction with the
Plaintext or Encrypted Modules. It shows the elapsed time
for the one instance of the test dataset to perform its
computation. By default, an average of 20 runs is returned
in this module.

All application modules are specific to a given library imple-
mentation. As stated in previous chapters, the application will
use the following libraries: TenSEAL [24], SyMPC [29], TF-
Encrypted [51], Gramine [52]. From the implementation point
of view, the TenSEAL and SyMPC are PyTorch-based library
but TF-Encrypted and Gramine are Tensorflow based. How-
ever, from the security point of view, TenSEAL is HE based,
SyMPC and TF-Encrypted are SMPC based and Gramine is
Intel® SGX based.

TF-Encrypted and Gramine should support even com-
plex NN architectures including modern convolution building
blocks such as Conv2D layers, Average and Max Pooling [27].

V. NEURAL NETWORK ARCHITECTURE MODELS

After reviewing the features of each library, let us discuss
the NN architectural models that were constructed. All training
was carried out with the Adam optimizer, and the learning
phase consists of 30 epochs with a learning rate of 0.001 using
momentum 0.9 and 10−7 epsilon. The CrossEntropy criterion
was used to address the multi-class classification challenge.

Model A this model was built primarily to showcase the
TenSEAL library’s capabilities. It consists of two fully con-
nected layers with 128 neurons each. f(x) = x2 was used
to activate the function. All libraries support this network
architecture.

Model B is the multi-layer perceptron model too. It com-
prises two fully linked layers of 128 neurons that activate



THE HIGH-LEVEL PRACTICAL OVERVIEW OF OPEN-SOURCE PRIVACY-PRESERVING MACHINE LEARNING SOLUTIONS 745

TABLE IV
RESULTS FOR THE PERFORMANCE TEST SCENARIO. PT - REFERS TO THE TIME IN SECONDS THAT WAS PROVIDED FROM THE BENCHMARK MODULE

FROM THE PLAINTEXT MODULE. ET - REFERS TO THE TIME IN SECONDS THAT WAS PROVIDED FROM THE BENCHMARK MODULE FROM THE
ENCRYPTED MODULE

TenSEAL SyMPC TF-Encrypted Gramine
FHE SMPC SMPC TEE - SGX

Model Type PT ET PT ET PT ET PT ET
Model A 0.0019 1.5187 0.0011 1.3249 0.0005 0.1361 0.0002 0.0012
Model B ✗ ✗ 0.0025 10.006 0.0004 0.2611 0.0003 0.0012
Model C ✗ ✗ 0.0051 156.51 0.0011 2.8737 0.0018 0.0697

using the ReLU function. The final activation function varies
according to the kind of problem. The Softmax function was
utilized for multiclass classification, and the Sigmoid function
was employed for binary classification. The Identity function
was used to define the regression type. TenSEAL does not
support this type of architecture since it requires using ReLU,
Softmax, and Sigmoid functions.

Model C this model was used to validate the convolutional
NN’s performance on the image classification task. Its archi-
tecture is similar to LeNet [62]: Conv2D 5x5, Max Pooling
2x2, Conv2D 5x5, Max Pooling 2x2, Fully connected layer
120, Fully connected layer 84, Fully connected layer 10,
Softmax activation.

Max Pooling was employed to enable the inclusion of the
SyMPC library, as it does not support other pooling layers.
Additionally, the design may be executed in TF-Encrypted, or
Gramine.

VI. COMPUTATION ENVIRONMENT

The computation environment consists of:
• Intel® Xeon® Platinum 8358 2 CPU 2.60GHz processors

with 128 threads; 512GB RAM
• Linux OS - Ubuntu 20.04.03 (kernel 5.16.5)
• TenSEAL 0.3.6 with Microsoft SEAL support for Intel®

HEXL
• SyMPC commit hash 634396
• TF-Encrypted version 0.5.9
• Gramine version 1.1 with Intel® SGX SDK for Linux*

OS 2.11 version
For all libraries, Python 3.7 was used. Because of specific

implementation for serialization and deserialization in chosen
libraries, each has its instance of NN architecture model.

VII. EXECUTION & TEST PLAN

The test plan consists of two activities to answer questions
in our problem statement. For the correctness question, for
each library and its trained model, the accuracy will be
compared for secure and non-secure flow. Accuracy is a
measure of correct decisions normalized by the size of the
whole space of decisions. For the performance question, the
arithmetic mean of 20 runs for one prediction will be compared
for secure and non-secure flow (measured execution time will
be in seconds). the computation is based on MNIST dataset.
It is a collection of handwritten digits as 28x28 pixels black-
white image divided into ten classes. It contains 60000 training
examples and 10000 test instances. In terms of pre-processing
the dataset, all pixels were normalized.

VIII. SYSTEM EVALUATION

To conclude, the difference between non-secure and secure
accuracy for TenSEAL was 0.63%, but the biggest noted was
for the SyMPC. For Architecture A it gave: 1.14% difference
and for Architecture B: 1.01% and C: 1.1% respectively. TF-
Encrypted noted the maximum difference of 0.03%. Gramine
gave the same results. The performance results are summarized
in Table IV. As the results are shown for the first test,
the accuracy of the computation is preserved. The maximum
difference between non-secure and secure solutions is no more
than 1.2%. However, are many differences in execution time.
TenSEAL appeared to secure evaluation NN the slowest.

Due to its security model, we cannot design architectures
other than Architecture A. In FHE systems we can define
only functions based on the polynomials. That is why we
mathematically cannot express any other activation function
like ReLU or Softmax. It is the most significant limitation of
the FHE solutions.

Other libraries are based on SMPC. One of them, SyMPC,
still computes Architecture A faster than the FHE one. How-
ever, it fails to compute other architectures efficiently. This
may be connected to the fact that the library’s implementation
uses only two threads for computation (in contrast to other
solutions where all 128 threads are used, except for Intel® SGX
where 20 threads are used). Other SMPC solutions such as TF-
Encrypted were much more effective in their computations. It
takes under a second to compute simple architecture networks.
However, it is quite a challenge for convolutional network
evaluation - for TF-Encrypted it lasts less than 3 seconds.
TF-Encrypted is Tensorflow based, and its runtime configu-
ration heavily uses the Tensorflow server’s configuration. The
best results showed TEE solutions and Gramine. For simple
architectures, it is only 10 times slower compared to non-
secure computation, and for the convolutional network - it is
30 times slower. However, when we do not have access to
TEE the computation is at least 1000 times slower. On the
other hand, as is shown by the results, all libraries that evaluate
CNN architectures are significantly slower than MLP (network
complexity).

IX. SUMMARY

In overall conclusion, the computational results show that
the most effective PPML library is based on TEE. However,
when one does not access such platforms, SMPC solutions give
a similar accuracy ratio but with reduced performance. The
worst performance results were achieved for the HE solution.
To emphasize this fact, as demonstrated by the results, the



746 K. KUŹNIEWSKI, K. MATUSIEWICZ, P. SAPIECHA

security costs in terms of evaluation time are very high. Most
of the encrypted computations are 1000 times slower than
the plaintext evaluation. It is a costly operation, but if we
want to achieve an adequate security level, there is no other
option. Unfortunately, it is not yet acceptable for a real-world
scenario. Multiple future research directions are possible from
this point. First, one could try combining multiple security
models, for instance, combining operations using SMPC or
FHE and offloading more complex ones using TEE. The
second one is to have a broader library comparison and include
support for libraries written in C/C++. It would be more
complex to adapt to real-world scenarios, but it will be closer
to the original implementation of underlying protocols, thus
achieving better performance. The other future research could
be improving SMPC protocols implementation using hardware
accelerators. Similarly to what has been achieved with FHE
TenSEAL library and Intel HEXL hardware accelerator.

X. NOTICE & DISCLAMERS

We want to sincerely and deeply thank our colleagues
Marcin Kolasiński and Grzegorz Gerka for their help and
support during our computation execution.

Intel technologies may require enabled hardware, software
or service activation. No product or component can be ab-
solutely secure. Your costs and results may vary. ©Intel
Corporation. Intel, the Intel logo, and other Intel marks are
trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

REFERENCES

[1] F. Newsroom. (2018) Fda permits marketing of artificial intelligence-
based device to detect certain diabetes-related eye problems. [Online].
Available: https://www.fda.gov/news-events/press-announcements/fda-
permits-marketing-artificial-intelligence-based-device-detect-certain-
diabetes-related-eye

[2] FDA. Artificial intelligence and machine learning (ai/ml)-enabled
medical devices. [Online]. Available: https://www.fda.gov/medical-
devices/software-medical-device-samd/artificial-intelligence-and-
machine-learning-aiml-enabled-medical-devices

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http:
//arxiv.org/abs/1312.6199

[4] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer,
T. Dumitras, and T. Goldstein, “Poison frogs! targeted clean-
label poisoning attacks on neural networks,” in Advances
in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
6106–6116. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/hash/22722a343513ed45f14905eb07621686-Abstract.html

[5] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE Trans. Neural Networks Learn.
Syst., vol. 30, no. 9, pp. 2805–2824, 2019. [Online]. Available:
https://doi.org/10.1109/TNNLS.2018.2886017

[6] D. M. Bamasoud, A. S. Al-Dossary, N. M. Al-Harthy, R. A.
Al-Shomrany, G. S. Alghamdi, and R. O. Algahmdi, “Privacy and
security issues in cloud computing: A survey paper,” in International
Conference on Information Technology, ICIT 2021, Amman, Jordan, July
14-15, 2021. IEEE, 2021, pp. 387–392. [Online]. Available: https:
//doi.org/10.1109/ICIT52682.2021.9491632

[7] Y. Zhang and R. Sion, “Speculative execution attacks and cloud
security,” in Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, CCSW@CCS 2019, London, UK,
November 11, 2019, R. Sion and C. Papamanthou, Eds. ACM, 2019,
p. 201. [Online]. Available: https://doi.org/10.1145/3338466.3360287

[8] Y. Alghofaili, A. Albattah, N. Alrajeh, M. A. Rassam, and B. A. S.
Al-rimy, “Secure cloud infrastructure: A survey on issues, current
solutions, and open challenges,” Applied Sciences, vol. 11, no. 19, 2021.
[Online]. Available: https://www.mdpi.com/2076-3417/11/19/9005

[9] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” Tech. Rep. MSR-TR-2016-3,
2016. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/cryptonets-applying-neural-networks-to-encrypted-data-
with-high-throughput-and-accuracy/

[10] J. Alvarez-Valle, P. Bhatu, N. Chandran, D. Gupta, A. Nori, A. Rastogi,
M. Rathee, R. Sharma, and S. Ugare, “Secure medical image analysis
with cryptflow,” 2020.

[11] A. Soin, P. Bhatu, R. Takhar, N. Chandran, D. Gupta, J. Alvarez-Valle,
R. Sharma, V. Mahajan, and M. P. Lungren, “Multi-institution encrypted
medical imaging ai validation without data sharing,” 2021.

[12] M. H. M. Elham Tabassi (NIST), Kevin Burns (MITRE). A taxonomy
and terminology of adversarial machine learning. [Online]. Available:
https://csrc.nist.gov/publications/detail/nistir/8269/draft

[13] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[14] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-
he2: A high-throughput framework for neural network inference on
encrypted data,” 2019.

[15] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “ngraph-he: A
graph compiler for deep learning on homomorphically encrypted data,”
2019.

[16] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
2021.

[17] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A compilation
chain for privacy preserving applications,” in Proceedings of the 3rd
International Workshop on Security in Cloud Computing, ser. SCC ’15.
Association for Computing Machinery, 2015, p. 13–19. [Online].
Available: https://doi.org/10.1145/2732516.2732520

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” Cryp-
tology ePrint Archive, Report 2016/870, 2016, https://ia.cr/2016/870.

[19] S. S. Magara, C. Yildirim, F. Yaman, B. Dilekoglu, F. R. Tutas,
E. Öztürk, K. Kaya, Ö. Tastan, and E. Savas, “Ml with he: Privacy
preserving machine learning inferences for genome studies,” 2021.

[20] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: an optimizing compiler for
fully-homomorphic neural-network inferencing,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 142–156.

[21] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” Proc. Priv. Enhancing
Technol., vol. 2018, no. 3, pp. 123–142, 2018. [Online]. Available:
https://doi.org/10.1515/popets-2018-0024

[22] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Chimera: Combin-
ing ring-lwe-based fully homomorphic encryption schemes,” Cryptology
ePrint Archive, Report 2018/758, 2018, https://ia.cr/2018/758.

[23] Q. Lou, B. Feng, G. C. Fox, and L. Jiang, “Glyph: Fast and accurately
training deep neural networks on encrypted data,” 2020.

[24] OpenMined. (2021) Tenseal library. [Online]. Available: https:
//github.com/OpenMined/TenSEAL

[25] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
method for comparison on homomorphically encrypted numbers,” Cryp-
tology ePrint Archive, Report 2019/417, 2019, https://ia.cr/2019/417.

[26] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic comparison
methods with optimal complexity,” Cryptology ePrint Archive, Report
2019/1234, 2019, https://ia.cr/2019/1234.

[27] U. Michelucci, Advanced applied deep learning : convolutional neural
networks and object detection. Apress, 2019.

[28] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of quantized
neural networks,” Cryptology ePrint Archive, Report 2019/131, 2019,
https://ia.cr/2019/131.

[29] OpenMined. (2021) Sympc library. [Online]. Available: https://
github.com/OpenMined/SyMPC

[30] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” 2020.

https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1109/ICIT52682.2021.9491632
https://doi.org/10.1109/ICIT52682.2021.9491632
https://doi.org/10.1145/3338466.3360287
https://www.mdpi.com/2076-3417/11/19/9005
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://csrc.nist.gov/publications/detail/nistir/8269/draft
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/2732516.2732520
https://ia.cr/2016/870
https://doi.org/10.1515/popets-2018-0024
https://ia.cr/2018/758
https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/TenSEAL
https://ia.cr/2019/417
https://ia.cr/2019/1234
https://ia.cr/2019/131
https://github.com/OpenMined/SyMPC
https://github.com/OpenMined/SyMPC


THE HIGH-LEVEL PRACTICAL OVERVIEW OF OPEN-SOURCE PRIVACY-PRESERVING MACHINE LEARNING SOLUTIONS 747

[31] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,”
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020. [Online]. Available: http://dx.doi.org/
10.1145/3372297.3417274

[32] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “Sirnn: A math library for secure rnn inference,” Cryp-
tology ePrint Archive, Report 2021/459, 2021, https://ia.cr/2021/459.

[33] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “Crypten: Secure multi-party computation meets
machine learning,” in arXiv 2109.00984, 2021.

[34] M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, I. Livingstone,
J. Patriquin, and G. Uhma, “Private machine learning in tensorflow using
secure computation,” 2018.

[35] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“Tasty: Tool for automating secure two-party computations,” Cryptology
ePrint Archive, Report 2010/365, 2010, https://ia.cr/2010/365.

[36] P. Mohassel and P. Rindal, “Aby¡sup¿3¡/sup¿: A mixed protocol
framework for machine learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. Association for Computing Machinery, 2018, p. 35–52.
[Online]. Available: https://doi.org/10.1145/3243734.3243760

[37] S. Wagh, D. Gupta, and N. Chandran, “Securenn: Efficient and private
neural network training,” Cryptology ePrint Archive, Report 2018/442,
2018, https://ia.cr/2018/442.

[38] W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda, and I. Stoica,
“Cerebro: A platform for Multi-Party cryptographic collaborative
learning,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 2021, pp. 2723–2740. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng

[39] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” 2020.

[40] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “Xonn: Xnor-based oblivious deep neural network inference,” 2019.

[41] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” 2018.

[42] A.-R. Sadeghi and T. Schneider, “Generalized universal circuits for
secure evaluation of private functions with application to data clas-
sification,” Cryptology ePrint Archive, Report 2008/453, 2008, https:
//ia.cr/2008/453.

[43] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider,
“Privacy-preserving ecg classification with branching programs and
neural networks,” IEEE Transactions on Information Forensics and
Security, vol. 6, no. 2, pp. 452–468, 2011.

[44] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 19–38.

[45] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively secure
4pc for secure training and inference,” Cryptology ePrint Archive,

Report 2021/755, 2021, https://ia.cr/2021/755.
[46] A. Patra and A. Suresh, “Blaze: Blazing fast privacy-preserving machine

learning,” Proceedings 2020 Network and Distributed System Security
Symposium, 2020. [Online]. Available: http://dx.doi.org/10.14722/
ndss.2020.24202

[47] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “Swift: Super-fast and
robust privacy-preserving machine learning,” 2021.

[48] EzPC. (2021) Ezpc. [Online]. Available: https://github.com/mpc-msri/
EzPC

[49] PySyft. (2021) Pysyft. [Online]. Available: https://github.com/
OpenMined/PySyft

[50] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. Bach, “Ariann: Low-
interaction privacy-preserving deep learning via function secret sharing,”
2021.

[51] D. Labs. (2021) tf-encrypted library. [Online]. Available: https:
//github.com/tf-encrypted/tf-encrypted

[52] gramine. (2021) gramine, library. [Online]. Available: https:
//github.com/gramineproject/gramine

[53] D. Labs. (2021) tf-trusted, library. [Online]. Available: https://
github.com/capeprivacy/tf-trusted

[54] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” 2019.

[55] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtel-
lis, “Ppfl: Privacy-preserving federated learning with trusted execution
environments,” 2021.

[56] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “Darknetz,” Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services,
2020. [Online]. Available: http://dx.doi.org/10.1145/3386901.3388946

[57] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia,
L. C. Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang,
Y. Yang, B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A
distributed deep learning framework for big data,” in Proceedings of
the ACM Symposium on Cloud Computing, ser. SoCC’19. Association
for Computing Machinery, 2019, pp. 50–60. [Online]. Available:
https://arxiv.org/pdf/1804.05839.pdf

[58] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
os services for sgx enclaves,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys ’17. Association
for Computing Machinery, 2017, p. 238–253. [Online]. Available:
https://doi.org/10.1145/3064176.3064219

[59] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “Tensorscone: A secure tensorflow framework using intel sgx,”
2019.

[60] W. Ozga, D. L. Quoc, and C. Fetzer, “Perun: Secure multi-stakeholder
machine learning framework with gpu support,” 2021.

[61] A. Mondal, Y. More, R. H. Rooparaghunath, and D. Gupta, “Flatee:
Federated learning across trusted execution environments,” 2021.

[62] LeNET. (2021) Lenet. [Online]. Available: https://en.wikipedia.org/
wiki/LeNet

http://dx.doi.org/10.1145/3372297.3417274
http://dx.doi.org/10.1145/3372297.3417274
https://ia.cr/2021/459
https://ia.cr/2010/365
https://doi.org/10.1145/3243734.3243760
https://ia.cr/2018/442
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng
https://ia.cr/2008/453
https://ia.cr/2008/453
https://ia.cr/2021/755
http://dx.doi.org/10.14722/ndss.2020.24202
http://dx.doi.org/10.14722/ndss.2020.24202
https://github.com/mpc-msri/EzPC
https://github.com/mpc-msri/EzPC
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-encrypted
https://github.com/gramineproject/gramine
https://github.com/gramineproject/gramine
https://github.com/capeprivacy/tf-trusted
https://github.com/capeprivacy/tf-trusted
http://dx.doi.org/10.1145/3386901.3388946
https://arxiv.org/pdf/1804.05839.pdf
https://doi.org/10.1145/3064176.3064219
https://en.wikipedia.org/wiki/LeNet
https://en.wikipedia.org/wiki/LeNet

	Introduction
	Security overview for Machine Learning
	Problem Statement
	System architecture
	Neural Network Architecture Models
	Computation Environment
	Execution & Test Plan
	System Evaluation
	Summary
	Notice & Disclamers
	References

