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DETERMINATION OF STRESS INTENSITY FACTORS FOR CRACKS 
IN COMPLEX STRESS FIELDS 

Fatigue cracks in machine components are subjected to stress fields induced by the 
external load and residual stresses resulting from the surface treatment. Stress fields in 
such cases are characterized by non-uniform distributions and handbook stress 
intensity factor solutions for such configurations are not available. The method 
presented below is based on the generalized weight function technique enabling the 
stress intensity factors to be calculated for any Mode I loading applied to arbitrary 
planar convex crack. The method is particularly suitable for modeling fatigue crack 
growth in presence of complex stress fields. 

1. Introduction 

Fatigue durability, damage tolerance and strength evaluation of notched 
and cracked structural members require calculation of stress intensity factors 
for cracks located in regions characterized by complex stress fields. This is 
particularly true for cracks emanating form notches or other stress concent 
ration regions that are frequently found in mechanical and structural 
components. In the case of engine components, complex stress distributions 
are often due to temperature, geometry and surface finish resulting in 
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superposition of applied mechanical, thermal and residual stresses. In the 
caseof welded or riveted structural components, it is often necessary to deal 
with cracked components repaired by overlapping patches. Such components 
require fatigue analysis of a crack or cracks propagating through a variety of 
interacting stress fields. Moreover, these are often planar two-dimensional 
surface or buried cracks with irregular shapes. The existing handbook stress 
intensity factor solutions are not sufficient in such cases due to the fact that 
most of them have been derived for simple geometry and load configurations. 
The variety of notch and crack configurations, and the complexity of stress 
fields occurring in engineering components require more versatile tools for 
calculating stress intensity factors than the currently available ready made 
solutions, obtained for a range of specific geometry and load combinations. 
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Fig. I. The concept of superposition: (a) applied reference stress system and the corresponding local stress 
distribution a(x) in the prospective crack plane; (b) the local stress system a(x) 

Therefore, a method for calculating stress intensity factors for one- and 
two-dimensional cracks subjected to arbitrary stress fields is discussed below. 
The method is based on the use of the weight function technique. The weight 
function method developed by Bueckner [l] and Rice [2], and a variety of 
weight functions have been derived and published [7], [8], [9], [10] already. 
The important feature of a weight function is that it depends only on the 
geometry of the cracked body. If the weight function is known for a cracked 
body, the stress intensity factor due to any Mode I load system applied to the 
body can be determined by using this weight function. The success of the 
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weight function technique for calculating stress intensity factors lies in the 
possibility of using superposition. It can be shown, [ 17], that the stress 
intensity factor for a cracked body (Fig. I) subjected to the external 
loading, S, is the same as the stress intensity factor in a geometrically 
identical body with the local stress field a(x) applied to the crack 
faces. The local stress field, a(x), induced in the prospective crack 
plane by the external load, S, is determined for uncracked body, which 
makes the stress analysis relatively simple. 

If the weight function is known there is no need to derive ready-made 
stress intensity factor expressions for each load system and associated internal 
stress distribution induced in the cracked body. The stress intensity factor for 
a one-dimensional crack (Fig. I) can be obtained by multiplying the weight 
function, m (x, a), and the internal stress distribution, a(x), in the prospective 
crack plane, and integrating the product over the crack length a. 

a 

K = Ja(x) · m(x, a)dx 
o 

(1) 

2. Weight functions for one-dimensional cracks 

A variety of one-dimensional (line load) weight functions can be found in 
Refs [3], [4], [5], [6]. However, their mathematical forms vary from case to 
case making their application inconvenient. Therefore Glinka and Shen [7] 
have proposed a general expression (2) for a variety of weight functions 
corresponding to one-dimensional Mode I cracks. 

[ 
I 3] 2 X2 X1 X2 

m (x, a)=--== I + M1 ( 1 - -) + M2 ( I - -) + M3 ( I - -) ✓2n (a - x) a a a 
(2) 

The system of coordinates and notation for an edge crack as an 
example are given in Fig. 2. In order to determine the weight function, 
m (x, a), for a particular cracked body, it is sufficient to determine 
the three parameters M1, M2 and M3. 

Because the mathematical form of the weight function (2) is the same for 
all cracks, the same method can be used for the determination of parameters 
M; and calculation of stress intensity factors based on Eq. (1). The method of 
finding M; parameters was discussed in reference [8]. The parameters can be 
determined from Eq. (1), providing that three reference stress intensity factor 
expressions K,1, K,2 and K,3, corresponding to three different stress dist 
ributions a1 (x), o-2 (x) and a3 (x) respectively are known. The stress 
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distribution expressions and the general weight function of Eq. (2) can be 
substituted for a(x) and m (x, a) in Eq. (1) resulting in three simultaneous 
equations, sufficient for the determination of the three unknown parameters 
M1, M2 and M3. 
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~t F=I X 

ł
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t 

Fig. 2. Weight function for one-dimensional edge crack in a finite width plate; nomenclature 

A possibility of reducing the number of reference SIFs by one comes from 
the property of weight functions. The third condition, necessary to determine 
parameters M,, M2 andM3 can be formulated from the knowledge of the crack 
surface curvature at the crack mouth (free comer). Fett [16] showed that at 
x = O (Fig. 2) the curvature of an edge crack in the x-y plane should reduce to 
zero. Taking into account the relation between the weight function m (x, a) 
and the crack opening displacement field derived by Bueckner [1] and Rice 
[2], it can be shown that the second derivative of the weight function at 
x = O must also be zero, i.e. 

<Pm(x, a) 
Jx2 =0 

x=O 
(3) 

It can be subsequently shown that Eq. (2) associated with expression (3) 
results in a constant value of the parameter M2 = 3 regardless of the crack 
geometry. Therefore only two reference stress intensity factors are necessary 
for the determination of the two remaining parameters M1 and M3. Weight 
functions for an edge and central trough cracks in plate are enclosed in the 



DETERMINATION OF STRESS INTENSITY FACTORS FOR CRACKS ... 45 

Appendix. 
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Fig. 3. Models for calculation of stress intensity factor for cracks emanating from notches 

The weight functions can be used for calculation of stress intensity factors 
for cracks emanating from notches. In such cases the crack is modeled 
according to Fig. 3, i.e. the notch depth, r, is added to the actual crack length. 

Results presented in Figures 4 and 5 in terms of the geometrical correction 

factor, Y, (Y = -~' where S is the remote stress) show a fairly good 
S\/1W 

agreement of SIFs calculated using the weight function with those calculated 
by FEM. 
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Semi-Elliptical Edge Notch: d=8, r=2, t=l60mm 
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Fig. 4. Comparison of the weight function based S[Fs with FEM data for crack emanating 
from an edge notch 

Central Circular Hole: r=8 mm and 1=80 mm· 
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Fig. 5. Comparison of the weight function based SIFs with FEM data for crack emanating 
from a central circular hole 
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3. Line load weight functions for planar cracks subjected 
to one-dimensional stress fields 

Fatigue and fracture analysis of cracked bodies often requires the 
calculation of SIF for embedded and surface semi-elliptical cracks. Stress 
intensity factors for surface semi-elliptical cracks are known only for a few 
simple load cases, i.e. Newman-Raju [18] solutions for pure tension and 
bending and Shiratori et al. [19] solutions for three exponential stress 
distributions. For more complex stress distributions the possibility of 
calculating SIF offers the weight function method. 

Shen and Glinka [9] have found that the weight function for the deepest 
point, A, of a semi-elliptical crack (Fig. 6) in a one-dimensional non-uniform 
stress field a(x) can be approximated by Eq. (4), which is similar to Eq. (2). 
An analogous Eq. (5) can be used to approximate the weight function for the 
point Bin the boundary layer near the surface of semi-elliptical crack in a flat 
plate. 

mA(x,a,alc,alt) = 2 [1 +M1A(1-~a)~+M2A(1-~a) 1 + ✓2n (a-x) 

(4) 

[ 
I 3] 2 X2 X1 X2 

ms(X, a, ale, alt)= -vio: 1 + M,s CJ + M2s (a) + M3s (a) (5) 

The derivation of these two weight functions can be reduced to 
determination of parameters M1A, M2A and M3A and M,s, M2s and M38 

respectively. The method of three reference SIFs discussed above for 
one-dimensional cracks can be used for that purpose. 

The method of two reference SIFs, discussed earlier, can also be 
used for determination of parameters M,A and M3A for the deepest 
point. The parameter M2A is calculated from the Eq. (2), thus it is 
the same as for one-dimensional cracks, i.e. M2A = 3. The third condition 
necessary for determination of parameters M, 8, M28 and M38 was derived 
by satisfying the requirement that the weight function (5) must vanish 
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for x = a, i.e. ms (a, x, al c, alt)= O. Thus, the third equation can be written in 
the following form: 

(6) 
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Fig. 6. Semi-elliptical surface crack under the unit line load; 
The geometrical configuration and the line load weight function notation 

In order to determine the SIF KA and Ks induced by one-dimensional 
stress field, cr(x), at points A and B, respectively, the product of the 
stress field, cr(x), and the weight function, m ; (x, a, ale, alt) and 
ms (x, a, al c, alt), needs to be integrated over the entire crack depth 
a, according to expression (1). 

a) b) 

Fig. 7. Stress distribution in the plane of a surface crack emanating from the weld toe 
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The one-dimensional line load weight functions are very efficient and 
useful if the stress distribution changes along the x coordinate only (Fig. 7a). 
However, they cannot be used if the stress field is two-dimensional in nature, 
i.e., when the stress field, a(x, y), in the crack plane depends on both x and 
y coordinates (Fig. 7b). Therefore, in order to calculate stress intensity factors 
for planar cracks subjected to two-dimensional stress fields a weight function 
for a point load is needed. 

4. Point load weight functions for planar cracks subjected 
to two-dimensional stress fields 

The two-dimensional point-load weight function, m ; (x, y), represents the 
stress intensity factor at point A on the crack front, induced by a pair of unit 
forces, F, applied to the crack surface at point P (x, y) (Fig. 8). If such a weight 
function is known, it is possible to calculate the stress intensity factor at any 
point on the crack front induced by any Mode I stress fields applied to the 
crack surface. In order to determine the SIF induced by a two-dimensional 
stress field, o'(x, y), at the point A on the crack front, the product of the stress 
field, a(x, y), and the weight function, m ; (x, y), needs to be integrated over 
the entire crack surface area, Q. 

KA= Jf rr(x, y) m ; (x, y; F) dxdy 
Q 

(7) 

Rice has shown [11] that the 2-D point load weight function for an 
arbitrary planar crack in an infinite body can be generally written as: 

(8) 

Oore and Bums [12] proposed an approximate 2-D point-load weight 
function (9), from which the function w (x, y; F) can be derived for a number 
of crack configurations. 

n p' 
(9) 

The notation for the weight functions (8) and (9) is given in Figure 8, 
where pis the distance from the point load F to point A on the crack front, and 
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s is the shortest distance from the point load F to the crack front. Oore and 
Burns [12] have shown that after deriving closed form expressions for the line 
integral in expression (9), several exact weight functions could be derived for 
straight and circular cracks in infinite bodies. 

Fig. 8. Point load (2-D) weight function notation 

It can also be proved that the line integral represents the arc length, 
I'c, of the crack contour inverted (Fig. 8) with respect to the point, 
P (x, y). As a consequence the weight function, Equation (9), can be 
written in a shorter form. 

(10) 

The inverted contour, I'c, can be also looked at (Fig. 8) as the locus of 
inverted radii 1/ p;. It can also be proved that inverted contours form circles in 
the case of straight and circular crack contours. In other words, the inverted 
contour is a circle in the case of cracks with a constant curvature. 
Subsequently, the weight function (10) makes it possible to derive closed 
form weight functions for a variety of straight and circular crack con 
figurations. 
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4.1. Point load weight functions for planar cracks in infinite bodies 

Based on eq.(10) Glinka and Reinhardt [13] have derived several point 
load weight functions for planar cracks in infinite bodies listed below. 

The point load weight function for an infinite edge crack in an infinite 
body (Fig.9a): 

(11) 

Point load weight function for an infinite tunnel crack of width 2a (Fig. 
9b) in an infinite body: 

Fys R KA = m; (x, y; F) = 312 2 2 - - 
n p a 

(12) 

a) b) 

Fig. 9. An infinite edge crack (a) and a tunnel crack (b) 

Line load weight function for an infinite tunnel crack of constant width 2a 
in an infinite body is: 

f Fys R F-fi_~a - s KA = m, (x; F) = 312 2 2 - - dy = _ r=_ 2 x=a-s n p a 'V its a 
(13) 

Weight function (13) is the well-known line load weight function for 
a through crack in an infinite plate derived by Sih [20]. Because the weight 
function (13) was derived from the general weight function (12), it indicates 
that expression (9) correctly accounts for all important effects of geometry 
and loading. 
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4.2. Embedded cracks in finite bodies the external boundary effect 

The point load weight functions derived above indicate that the 
general weight function (10) may supply accurate SIF results for cracks 
in infinite bodies. However, in the case of finite bodies both the crack 
contour and the free boundary contour have to be considered. By analyzing 
the structure of existing point load functions it was found that the 
point load weight function (14) accounts well for the free boundary effect. 

K _ ( ·F)_F-{2._ ✓I'c + rb 
A - mA X,y, - --2 I' np C 

(14) 

The weight function (14) was subsequently used to derive a few specific 
weight functions for crack configurations available in the literature such as: 

• An infinite straight edge crack approaching a straight free boundary 
(Fig. 10a): 

FY2s Ar, 
KA = m ; (x, y; F) = n312 p2 -~ 1 + d (15) 

The point load weight function (15) can be further integrated along the 
line x = O resulting in the 1-D line load weight function ( 16) for an edge crack 
approaching a free straight boundary (without bending or rotation). 

I FY2s R p-{2, R KA = m ; (s; F) = 312 2 1 + -d dy = _ 1- 1 + -d 
x=O 7[ p \,/7rS 

(16) 

a) 

Fig. I O. An infinite crack approaching free boundary (a) and two infinite symmetric edge cracks 
separated by finite thickness ligament d (b) 
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• Two infinite edge cracks under symmetric loading and separated by 
a ligament d (Fig. 10b): 

K = ( d·F)= (F{i, F{i.). ✓re+ I'b F-y2sf¥+ s (_!_ _!_J (l7) A m.; S, , 2 + ? r 312 d ? + 2 np1 np2 1. c n Pi P 

Integration of the point load weight function (17) along the two lines of 
x = 6(d/2 + s) for an uniformly distributed line load F resulted in the 
well-known [21] line weight function (18). 

F{i. d + 2s R KA= mA(x,y;F) = _,=- -;==== 1 + -d 
\/ns ✓d(d+s) (18) 

4.3. Point load weight function of edge crack in finite bodies 

The weight function ( 18) is valid for two infinite edge cracks separated by 
a finite ligament. When the crack depth is finite the crack mouth boundary 
effect has to be taken into account. Again, the general weight function (14) 
was also used to derive the point load weight function (19) for symmetrically 
loaded two finite edge cracks separated by a ligament of finite thickness 2d 
(Fig. lla). The weight function (19) consists of two terms. The first part 
represents the contribution from the pure tension induced by the force F while 
the second term accounts for the finite crack depth. The crack mouth can be 
considered to be a symmetry line for an imaginary symmetric load. 

a) 20 b) 
-wF(l9) 

-+-fE 
I.. 
;;j 

10 

50 
Distance along the crack front, y 

100 

Fig. 11. Double edge crack in a finite body: (a) notations and (b) comparison with Tada's 
solution (a/w= 0.5; a = l O, d = I O, s = 7.6563). 
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K _ ( . F) _ ( F {2 F ~ . ✓ r;. + rb F {2 ( 19) A - mA X, y, - 2 + ? I' + _ r--,::; 
np1 np; c np; -vI'c 

Integration of equation (19) along the line x = s resulted in the derivation 
of the line load weight function (20) for double edge crack (Fig. 1 la) which 
agrees well with Tada's [211] solution (see Fig. 1 lb) 

(20) 

4.4. Point load weight function for a single edge crack 

The weight function (21) for the crack configuration shown in Fig. 12a 
can be derived from general weight function (18). The difference between the 
single edge crack and symmetrically loaded double edge crack is that the 
single edge cracked body will bend under the point load F. Therefore the 
bending moment contribution has been added to the weight function (19). 

K _ ( ·F) _ (F{l F{l). ✓r, + rb F{l 
A - m.; X, Y, - --2 + --2 I' + _ r--,::; + 

np2 np2 C np~ -.JI'c 
(21) 

+ 3. 
F ~(s + ~)' - (~)' 

975 d312 

a) 3 
b) 

-WF(20) 
~TADA 

o,+--------,------~ 
o 5 

Distance along the crack depth, s 
IO 

Fig. 12. An edge crack: (a) notation, and (b) the comparison of Eq. 20 with Tada's [211] solution 
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The weight function was also in good agreement with in house generated 
FEM results obtained for the same crack configuration (Fig. 12b). 

4.5. Planar cracks with variable crack front curvature - the local 
curvature effect 

It was also found that the accuracy of the weight function (14) and the 
subsequent accuracy of stress intensity factors for elliptical cracks, was 
decreasing as the ellipses became more slender, i.e., when they departed 
significantly from the circular constant curvature contour. It was concluded 
that the inverted crack contour, Tr in equation (10), is only an average 
measure of the crack geometry effect. The weight function and the stress 
intensity factor depend also on the immediate curvature surrounding the point 
where the stress intensity factor is to be calculated (Fig. 13). The correction 
for the local curvature effect proposed below is empirical in nature and was 
deducted from the stress intensity data for a wide variety of SIFs for 
semi-elliptical surface cracks and properties of weight functions. 

• Stress intensity factors for a pair of semi-elliptical surface cracks in 
a finite thickness plate 

y 2B 
C 

I , .. , 
Fig. 13. A finite thickness plate with a pair of symmetric semi-elliptical surface cracks 

X 
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Using the point load weight function (14), one can determine the stress 
intensity factor K for a pair of symmetric semi-elliptical cracks in a finite 
thickness plate (Fig. 13). 

The stress intensity factors at the deepest point C (Fig. 13) were 
determined for a uniform tensile stress field, a(x, y) = a0 = 1 using numerical 
integration of the weight function (22). The comparison of calculated SIFs in 

terms of the geometric correction factor, Y = K {na' with Isida et. al [14] 
CJ"o • na 

data is presented (Fig. 14) for cracks with relative depth of alt= 0.5. For the 
relative crack depths within the range of 0.2 < alt < 0.8, the maximum 
difference between those two sets of data was 7.9%. 
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Aspect ratio (ale) 

Fig. 14. Comparison of the weight function based S!Fs with Isida, et. al data for various 
aspect ratios ale and the relative depth alt= 0.5 

• Stress intensity factors for a semi-elliptical surface crack in a finite 
thickness plate 

The notation for a semi-elliptical surface crack in a finite thickness plate is 
shown in Figure 15. The weight function (22) was used for the determination 
of the SIF for this crack configuration. 

Two virtual symmetric loads were used to account for the free boundary 
and the crack mouth effect. The weight function (22) gave good SIF 
estimations for semi-circular surface crack (ale= 1) with relative depth of 
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O< alt S 0.8. The error was less than a few percent for two non-uniform stress 
fields used for comparisons, i.e. a-(x,y) = O"o*Xlc and a-(x,y) = O"o*xy/ac. 
The stress field a-(x,y) = CJo*xy/a is shown graphically in Fig. 16. 

Fig. 15. Semi-elliptical surface crack in a finite thickness plate 

2 
b 

Fig. 16. Two-Dimensional stress field, a(x. y) = a0 +xyl ac applied to the crack surface 
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Fig. 17. (a) Comparison of the weight function based geometric correction factor Y with 
Nilsson's [15) FE data, [a(x,y) = a0ulc, ale= I, alt= 0.8] 
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Fig. 17. (b) Comparison of the weight function based S!Fs with Nilsson's [15] FE data, 
[a(x,y) = a0uylac, ale= I, alt= 0.8] 
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Fig. 17. (c) Comparison of the weight function based S!Fs with Nilsson's [15] FE data, 
[O'(x,y) = O'o*yla, ale= 0.5, alt= 0.4] 

When the crack front approaches the free surface, the weight function 
based SIF deviates from the FE data of Ref. [15]. One of the reasons is that 
numerical integration technique was used to deal with singularities for which 
the integration was not sufficiently accurate. However the accuracy of 
integration was sufficient for the region defined by the parametric angle of 
50 s; es; 175°. The comparisons of the geometric correction factor Y obtained 
from the weight function (22) with the FE data of Ref. [15] are shown in 
Figure 17(a), (b) and (c). 

For a single surface crack in a finite thickness plate, the weight 
function (14) yields good results for cracks with the relative depth 
of alt< 0.8 and aspect ratio ale> 0.5. Unfortunately, the weight function 
(22) requires an additional term accounting for the effect of bending 
occurring in long and deep cracks with the aspect ratio ale < 0.3. 
Therefore further studies are being carried out in order to include the 
bending effect in edge cracks (ale ~ O) and semi-elliptical surface 
cracks with the aspect ratio of ale < 0.3. The weight function (22) 
yields good results for embedded elliptical and other planar cracks. 

5. Conclusion 

The point load weight functions for edge cracks in finite bodies agree well 
with the finite element data obtained for the same configurations. The line 
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load weight functions obtained by the integration of point load weight 
functions also agree well with exiting literature data. There is a possibility to 
extend the application of the weight functions discussed above to semi 
elliptical surface and corner cracks. 

Manuscript received by Editorial Board, January 30, 2003; 
final version, June 7, 2003. 
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Wyznaczanie współczynnika intensywności naprężeń dla szczelin w złożonych
polach naprężeń

Streszczenie

Pęknięcia w elementach maszyn podlegają naprężeniom wywołanym obciążeniami zewnętrz
nymi oraz naprężeniom własnym wywołanym procesem technologicznym wytwarzania tych
elementów. Pola naprężeń obciążających szczelinę charakteryzują się w takich przypadkach
nierównomiernymi rozkładami, dla których nie istnieją wzory na wspólczynniki intensywności
naprężeń. Przedstawiona metoda opiera się na ogólnej metodzie funkcji wagowych i umożliwia
obliczanie współczynnika intensywności naprężeń dla dowolnych wypukłych szczelin płaskich przy
I sposobie pękania. Metoda nadaje się w szczególności do modelowania wzrostu pęknięć
zmęczeniowych przy dowolnym rozkładzie naprężeń obciążających szczelinę.

* * * 

Nomenclature

a 

C 

A 

Depth of an edge crack or the shorter semi-axis of an elliptical
crack
The long semi-axis of an elliptical crack
Point on the crack contour where the stress intensity factor is to
be calculated
Crack contour
External boundary contour
Crack area
Mode I stress intensity factor (general)
Mode I stress intensity factor at the point A on the crack front
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M; 
M(x,a) 
MA (x,y, F) 
F 
P(x, y) 
SIF 

R 
a(x) 
a(x,y) 

Coefficients of the 1-D line load weight functions (i = 1,2,3) 
Weight function (general) 
Weight function for point A on the crack contour 
Point load (force) applied to the crack surface at point P (x, y) 
Point on the crack surface where the load F is applied 
Stress intensity factor 
Shortest distance between the point load and the crack contour 
Thickness 
Inverted crack contour 
Inverted free boundary contour 
Distance between the point load and the point on the crack front 
where the SIF is to be calculated 
The radius of the inside circle tangent to the ellipse at the point 
A where the SIF is to be calculated 
The radius of the biggest inside circle tangent to the ellipse 
One-dimensional stress distribution 
Two-dimensional stress distribution 

Appendix: Examples of 1-D weight functions for cracks in plates 

Central trough crack (valid for O < alt< 0.9) 

m1 = 0.06987 + 0.40117 (~)- 5.5407 (~r + 50.0886 (~r 
M1 = m1 - 200.699 ( ~ r + 395.552 ( ~ r - 377.939 ( ~ r + 140.218 ( ~ r (Al) 

1172 = -0.09049 _ 2.14886 ( ~ J + 22.5325 ( ~ r _ 89.6553 ( ~ J 3 
M2 = 1112 + 210.599 (~r- 239.445 (~r + 111.128 (~r 
/113 = 0.427216 + 2.56001 ( ~ J _ 29.6349 ( ~ r + 138.4 ( ~ r 

(A2) 

M3 = 1113 _ 347.255 (~r + 457.128 (~r _ 295.882 (~r + 68.1575 (~r (A3) 
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Edge crack (valid for O< alt< 0.9) 

-0.029207 +~ (0.213074 +~ (-3.029553 +~ (5.901933-~ 2.657820))) 
t t t t 

Mi=---------------------- (A4) 
a a a a a 

l.Ot-(-1.259723 t-(-0.048475 t-(0.481250+-(-0.526796+-0.345012)))) 
t t t t t 

0.451116 +~ (3.462425 +~ (- 1.078459 +~(3.558573-~ 7.553533))) 
t t t t M2 =---------------------- 

a a a a a 1.0 t-(-1.496612 t-(0.764586 t-(-0.659316 t-(0.258506 t-0.114568)))) 
t t t t t 

0.427195 +~ (-3.730114 +~ (16.276333 t~(-18.799956 +~ 14.112118))) 
t t t t M3 =---------------------- 

1.0t~ (-1.129189 +~ (0.033758 +~ (0.192114 +~ (-0.658242 t~0.554666)))) 
t t t t t 

Surface semi-elliptical crack (valid for O < alt< 0.8) 
• the deepest point A 

n 24 
MiA = "'✓2Q(4Yo - 6Yi) -5 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

where for O< ale< 1: 

(aj t.65 Q = 1.0 + 1.464 c (AlO) 

(aj2 (aj4 (aj6 Yo= Bo + Bi t + B2 t + B3 t (Al 1) 

B0 = 1.0929 + 0.2581 (~) - 0.7703 (~r + 0.4394 (~r 
(aj (aj2 1.0 B1 = 0.456 - 3.045 - + 2.007 - + ( )0_688 

C C 0.147 + ~ 
C 

(A12) 

(A13) 
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1.0 ( a)9.953 B2 = 0.995 - --- + 22.0 1 - - 
0.027 + ~ C 

C 

1.0 ( a)B.011 B3 = - 1.459 + --- - 24.211 1 - - 
0.014 + ~ C 

C 

and 

A0 = 0.4537 + 0.1231 (~) - 0.7412 (~r + 0.4600 (~)3 
(a) (a)2 1.0 A1 = - 1.652 + 1.665 - - 0.534 - + ( )0.846 

C C 0.198 + ~ 
C 

(a) 1 O ( a)9.286 
A2 = 3.418 - 3.126 - - . ( ) + 17.259 1 - - 

C 0.041 + ~ C 
C 

( a) I.O ( a) 9.203 A3 = - 4.228 + 3.643 - + --- - 21.924 1 - - 
C 0.020 + ~ C 

C 

and for 1 < al c < 2 

(c)1.6s (a)2 Q = 1.0 + 1.464 a c 

Bo= 1.12 - 0.09923 ( ~) + 0.02954 ( ~r 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 
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B1 = 1.138 - 1.134 (~) + 0.3073 (~r 
B2 = - 0.9502 + 0.8832 ( ~) - 0.2259 ( ~r 
Ao= 0.4735 - 0.2053 (~) + 0.03662 (~r 
A1 = 0.7723 - 0.7265 (~) + 0.1837 (~r 
A2 = _ 0.2006 _ 0.9829 (~) + 1.237 (~r _ 0.3554 (~r 
• the surface point B 

n 
M1s = _ ~ (30F1 - 18Fo) - 8 

'v4Q 

n M2B = _ ~ (60F0 - 90F1) + 15 
'v4Q 

where for O< ale< 1: 

C0 = 1.2972 - 0.1548 (~) - 0.0185 (~r 
C1 = 1.5083 - 1.3219 (~) + 0.5128 (~r 

(A24) 

(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 
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0.879 C2 = - 1.101 + ---- 
0.157 + ~ 

C 

(A36) 

and 

(A37) 

D0 = 1.2687 - 1.0642 ( ~) + 1.4646 ( ~r - 0.7250 ( ~r 
D1 = 1.1207 - 1.2289 (~) + 0.5876 (~r 
D2 = 0.190 - 0.608 (~) + O.l99 

C 0.035 + ~ 
C 

and for 1 < al c < 2 

F,-[c,+c,(7)' +c,(ff]~ 
C0 = 1.34 - 0.2872 (~) + 0.0661 (~r 
C1 = 1.882 - 1.7569 (~) + 0.4423 (~r 
C2 = - 0.1493 + 0.01208 (~) + 0.02215 (~r 
and 

F, - [v, + D, (7)' + D, rn•]~ 

(A38) 

(A39) 

(A40) 

(A41) 

(A42) 

(A43) 

(A44) 

(A45) 
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D0 = 1.12 - 0.2442 (~) + 0.06708 (~r 
D1 = 1.251 - 1.173 (~) + 0.2973 (~r 
D2 = 0.04706 - 0.1214 (~) + 0.04406 (~r 

(A46) 

(A47) 

(A48) 


