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FINITE ELEMENT SHAKEDOWN ANALYSIS 
OF PRE-LOADED PLATE STRUCTURES 

In the paper, the authors present the shakedown analysis of the plate structures 
pre-loaded beyond the elastoplastic range. Two cases of loading are considered, namely: 
the structure is subjected to the action of two independent sets ofloads with constant points 
of application or one parameter set of loads moves slowly according to an a priori 
described program. As a result, the safe loading boundary or the shakedown load 
parameter are calculated, respectively, by means of the finite element method (FEM). 
Three examples confirmed the effectiveness of the proposed algorithms of analysis. 

1. Introduction 

In the paper, shakedown analysis of an elastoplastic plate structures 
loaded according to a specified loading program we consider. In general, the 
load program covers the kind of load, its distribution on the structure and the 
way in which the structure is loaded. The proposed procedure constitutes an 
extension of the method presented in [6], where the shakedown of the 
elastoplastic frames under moving load was analysed. In that paper, the static 
method of analysis based on Neal's theorem [12] and the idea of the current 
elastic domain introduced by Konig [11] were used. Some other theoretical 
and experimental results of the shakedown analysis of bar structures were 
reported in [7], [8] and [9]. 
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The well-known possibilities of the modern computational methods, like
the finite element method, cause that the theoretical results of these papers can
now be effectively applied to the analysis of much more complicated
structures.

Contrary to the classical shakedown analysis, which can be regarded as
a generalization of limit analysis exploiting the Melan's (static) and Koiter's
(kinematic) theorems [ 10], [ 16], in this paper the real field ofresidual stresses
in a structure is calculated, and the possibilities of shakedown with an
emphasis on the protection of the structure against incremental failure are
analysed.

It is assumed that the structure can be subjected to the action of a system of
forces, whose magnitudes can change within a given range or, if they remain
constant, whose points of load applications can slowly change. In particular,
two cases of loading are specified.

In the first case, the assumption that the structure is pre-loaded beyond
the elastoplastic range is made, and it is next subjected to the action of two
independent sets of forces. In this case, the safe loading domain is calculated,
where the structure behaves fully elastically for any combination of the load
parameter. In the analysis, the geometrical nonlinearities are also taken
into account, what means that the safe loading boundary can contain critical
points (bifurcation or limit type) appearing during execution of the loading
program.

In the second case, one considers the one parameter set of loads moving
slowly along the structure, according to the specified load program.
Afterwards, when the load program is completed, the structure can still be in
the elastic state otherwise some residual stresses can appear. In both
situations, the question arises how the load can be increased, or decreased, so
that the shakedown could take place for the structure loaded according to the
former loading program in a given number of cycles. The loading parameter
fulfilling this condition will be called the shakedown load parameter.

The method of analysis is fully numerical, and the basic equations of the
problem are formulated using the displacement finite element method in the
total Lagrangian description. The nonlinear set of incremental equations is
solved by the Newton-Raphson method with the linear constraint equation of
the Riks-Wempner type [15].

Plate structures are discretized using the RSE-V/GN element, which is an
extension of the elastoplastic RSE-V element [4] on the geometrically
nonlinear case with six degrees of freedom per node. Some parts of the paper
were presented at the 15th International Conference on Computer Methods in
Mechanics [14].
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The outline of the paper is as follows. In Section 2, the algorithm of safe 
loading boundary calculations is described, and in Section 3 the moving load 
program is defined. The numerical method of computation of the shakedown 
parameter is presented in Section 4. In Section 5, some modifications of the 
RSE-V plate element are briefly discussed. In Section 6, three examples are 
presented in which the validity of the modified plate element RSE-V /GN and 
effectiveness of the proposed algorithm of the analysis are examined. The 
paper is closed with some conclusions and references. 

2. Method of computation of safe loading boundary 

Safe loading boundary can be described for any equilibrium state of the 
elastoplastic plate structure loaded according to the load program, defined on the load 
plane R 2• It is assumed that the safe loading boundary is a closed curve, which can be 
composed of the shakedown boundary and the stability boundary lines. It is well 
known that, according to the Papkowich's theorem, the stability boundary is convex 
only for linear problems [13], [15]. In the geometrically nonlinear analysis, a concave 
boundary can occur. It was an argument for extending the elastoplastic RSE-V 
element over the geometrically nonlinear case. 

The points of the safe loading boundary of the structure with the 
elastoplastic and geometric nonlinearities taken into account are calculated in 
two stages. In the stage I, the structure is loaded as long as any plastic 
deformations have appeared. Afterwards, the safe loading boundary is 
computed for such deformed structure. It is executed in the stage II by the 
unloading process in the early defined direction on the plane of load 
parameters (A1, A2), as long as at one of the numerical integration points the 
plastic stress has been attained (an active process after a passive one). The 
computations are then continued in the opposite direction, and the next point 
on the safe loading boundary is calculated. Such a "reflection process" of 
calculations is repeated until the sufficient number of points on the safe 
loading boundary have been described. 

The computations in the constant load direction are continued as long as 
two conditions are fulfilled, namely: 1) at any Gaussian point of structure the 
value of yield function is greater than the current yield stress and 2) the 
distance between two last points calculated on the constant load direction line 
is smaller than the assumed error. Choosing the first point as the point of the 
safe loading boundary means that the safe loading domain is estimated from 
the safe side. It is a different approach from the one assumed in computations 
of the shakedown boundaries of pre-loaded frames, where the last point was 
chosen as the point of the safe loading boundary. 
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Fig. I. Equilibrium path for the given load program (a) in relation to the safe loading boundary (b)

The method of calculations is illustrated in Fig. 1. Assuming that for the
given load program (in the simplest case defined in terms of angles a0, a1, ... 

on the plane (A1, A 2)) the equilibrium path of the structure has the form shown
in Fig. la, the safe loading boundary is constructed as it is shown in Fig. lb. It
should be noted that the part 0-1 of the equilibrium path shown in Fig. la is
nonlinear because of the couple effect of the physical and geometrical
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nonlinearities. In execution of the loading program, the active processes take 
place in the parts l "-1' and also 1 '-1 of the equilibrium path. It means that 
during the unloading of the external forces at some points of the structure the 
active processes are still possible. The nonlinearities of the remaining parts of 
the equilibrium path are only the effect of the geometric nonlinearities (except 
for the sector 4'-4 ). The points 1, 2 and 4 of the safe loading boundary shown 
in Fig. 1 b have been calculated in result of appearing of the plastic stresses in 
the structure. Points 3 and 5, however, are the effect of elastic instabilities of 
the structure (a snap-through or bifurcation type). These are points of the 
stability boundary which in such a way form a part of the safe loading 
boundary. 

3. Moving load program 

The problem under consideration is the static one, and the term "time" 
can be identified with any parameter monotonically increasing during the 
loading of the structure. In the simplest case of one parameter load, the motion 
of the external forces in the given time can be simulated by changing only 
values of the load parameter at the nodes of the finite element mesh, where the 
reference load vector components are non-zero. We introduce the definition 
of the stages, s = 1, ... , S, as a process of moving the load from the given 
location on the structure to the neighbouring one. The stage is realized in the 
number of time steps N. The above definitions are illustrated in Fig. 2, where 
the way of changing the load from the location i through) to the location kin 
the time is shown. As it can be seen, the diminution of the load at the location 
i generates, at the same time, the increase of the load at the location j. 

A(t) Stage 1 Stage 2 

'j(t)'-· / ', ' k . .­ 
A T A (t~/ 

/ I ' ••• 

✓: ~ •• ( 
/ I t ' •••••: 

I ' • ...-• 

I X 
: .. ····1:' 
I ... ' ( , .. 
/ \ .. ·,; i:, 

I ••
•• •• ,'.,i ,, ' 

k y "- (t1)=01--..__--e~--"------"---___._,.-_,___-"---____. _ _._~ 
tN tN+l tN+2 •• " 1zN t 

Fig. 2. Discrete moving of the one parameter load from the location i, through j to the location k 
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The described above motion of the one parameter set of forces is defined
by means of the matrix M with the number of rows equal to (S + 1), and the
number of columns equal to a number of non-zero elements of the reference
load vector. This matrix stores all information about the history of loading in
the compact form. The consecutive rows of the matrix M contain degrees of
freedom numbers defining a current location of the forces on the structure.

The load vector component F, for the locations i, j and k at any time t is
given by the formula

F~(t) = A/ (t) F,, l = i, j, k (1) 

where:
F, - reference load vector component r. 

In the discrete form, the change of the component F, during a time step !:it 
at locations i and j can be written in the form

F: new= F~ old - 11AF, 
' ' 

(2) 
ri.: = ri: + 11AF', 

where:
11A = Al N - load parameter increment
and F :.new= AF, and F /new= O at the time t = to, with changing of indices
i ~ j and j ~ k for the change of the load location from j to k. 

4. Method of computation of the shakedown parameter 

In view of the Melan's shakedown theorem, it can be said that the
structure will shake down if, for the given self-equilibrated time-independent
stress field Q,, there is an elastic stress field a e that would arise in the
structure responding purely elastically according to an priori defined load
program, in which the condition

f(Q,(x) + Q,~, t)) ~ O, (3)

where fis the yield function, is satisfied at all times t and all parts of the
structure x. 
Assuming that

a,~, t) = AQe(~, t) (4) 
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where: 
A - constant A > 1 
Q e (:!, t) - elastic reference stress field 
Eqn (3) can be rewritten in the form 

(5) 

It must be stressed that assumption (4) can be only valid for the case of the 
so-called weak geometric nonlinearities. In the context of the finite element 
procedure it means that, if geometric nonlinearities are also taken into account 
in the analysis, the tangent stiffness matrix of finite elements can be 
calculated with omission of the stiffness matrix of initial displacements [5]. 

The shakedown load parameter A sH is defined as 

AsH = min (A;) 
i 

(6) 

where i= I, 2, ... , I and I is the number of integration points of the discretized 
structure. Calculations are made in two steps. 

In the first step, the residual stress field Qr is calculated for the given load 
program. In general, these calculations can be made for any elastoplastic 
constitutive model of materials. It means that in the case of the material 
hardening, the current yield stresses a; must be remembered at all integra­ 
tion points. 

In the second step, the elastic structure is loaded according to an a priori 
defined reference load program (not necessarily the same for which Qr was 
computed), and the elastic reference stress field Q, is calculated. 

In the paper, the Huber-Mises-Hencky yield function is assumed, and 
condition (5) takes the simple form of the quadratic equation 

(,.. . .) T ( . .) 2 ( ·) 2 \__Q"~+A;Q~ ·f._· _q~+A;Q~ -3 a; =0, i = I, 2, ... , I (7) 

where the matrix convention is used and f._ is the so-called projection matrix. 

5. Plate finite element RSE-V/GN 

For purposes of the paper, the rectangular plate finite element RSE-V /GN 
(Resultant Surface Element - Volume approach /Geometrically Nonlinear) 
has been elaborated. The elastoplastic physical properties of RSE-V element 
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are broadly discussed in [4]. In the following, the RS-V /GN element is
presented with paying attention to its nonlinear geometrical properties.

5.1. Geometry of RSE- V /GN element 

The Reissner-Mindlin plate theory is applied to a finite element
formulation with transverse shear included. The element has 8 nodes
localized on the middle surface, and 6 degrees of freedom per node. The sixth
degree of freedom (the so-called drilling degree of freedom) has been
additionally introduced, in the same way as it is proposed in the ADINA
system [l], taking into account the possibilities of analysis of space structures
discretized with plate elements. The element stiffness matrix is constructed
by superimposing the artificial stiffness corresponding to the drilling degrees
of freedom. In the program, this stiffness is set equal to

Ką,3 = Ką,, ~ Ką,z x 2.5£ - 4

in order to remove the zero stiffness, but yet not to affect the analysis results
significantly, where Ką,,, Ką,2, Ką,3 are components of the stiffness matrix
which correspond with angular degrees of freedom (0u, 02,k and 03.k).

5 

1

~ 
k=l, ... ,8 Uk 01,k 

~ = x I a T/ = y I b ( = 2z / t
Ę, T/,?; E [-1, 1] - local coordinates

(_q_~ l =[uk vk wk 81,k B2,k l

(t l = [ _q_~ ... _q_; ] - vector

of nodal displacement

Fig. 3. RSE-V plate finite element

In such a way, the stiffness matrix of the RSE-V/GN element is the simple
extension of the stiffness matrix of the RSE-V element shown in Fig. 3.

5.2. Physical equations 

Material nonlinearities are taken into account assuming the plastic flow
theory associated with the Huber-Mises-Hencky yield criterion. The linear
relation between stress and strain rates is
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(8) 

where:
§.ep - consistent stiffness matrix

• T • • • • • 
Q = [ax a, Txy Txz Tyz] - vector of stress rates

• T • • • • • . 
§_ = [Ex e, Yxy Y,z Yyz] - vector of stram rates
and CY denotes matrix transposition.

The integration of the elastoplastic constitutive relations is performed
in the local formulation. This means that the constitutive equations are sol­
ved at all discretisation points along the thickness, and then stresses are
integrated to result in the generalized stresses on the middle surface of the
plate.

In the paper, the integration of Eqn (8) along the loading path has been
made using the return-mapping algorithm. The problem has come at last to the
one nonlinear equation with the plastic flow parameter ~A as the unknown
and solved with the help of the Newton-Raphson method.

5.3. Geometrical equations 

The relation between the generalized strain vector f. on the middle surface
and the strain vector E has the form

§(Ę, 17, () = H( Ś- ~) · §(Ę, 17, O)

where His so-called 'hypothesis' matrix

1 o o z o o o o

H(z= r½) o 1 o o z o o o
= o o 1 o o z o o

o o o o o o 1 o
o o o o o o o 1

with

(9)

(10) 

(11) 
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and

1 ,ex= U,x + 2w,_~ 

Y.ry = U, y + V, x + W, x · W, y 

1 ,
ey = v,_,- + 2w,_~ 

K, = 82,x 
( 12) 

Ky= - 81,y 

Yxy = 82 + W,z 

where (.).x = rJ(.)/ dx. 
Assembling the terms that are linear in the displacement increments in

f..~L vector and the terms that are nonlinear in the displacement increments in
/',,,~ NL vector, one can write the following formula

(13)

where:

(/',,,~L)T= 

[f..u,x+w,x· f..w,x f..v,y+w,y· f..w,y 

f..82,x - f..81,_v f..82,y - f..81.x 

f..u,y+ f.. V,x+ W,x f..w,y+ W,y · f.. W,x 

f..82 + f..w,x -f..81 + f..w,y] 
(14)

f..w,x· f..w,y o o o o 

5.4. Approximations 

The finite element approximations of the unknown increments of the
generalized displacement functions f..d_' can be expressed in the matrix form

(15)

where:
(f..d')T = [f..u' f..v' f..w' f..8f f..8fl - vector of generalized disp­
lacement function increments
Ne - shape function matrix
f..qe - vector of nodal displacement increments, Fig. 3.
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The matrix of the shape function is composed of the serendipity shape
functions [2]

NZ= (1 + ĘĘk)(l + l]l]k)(ĘĘk + 1J1Jk - 1)/4 for k = 1,3,5,7

(16) 

N,~,= (Ę,;, (1 + ĘĘm)O - 1]2) + 7J,;,(1 + 1J1Jm)O - Ę2))!2 for m = 2,4,6,8

S.S. Incremental equilibrium equations of the element 

Incremental equilibrium equations of the element can be derived from the
linearized equation of the incremental principle of virtual work. The final
form of these equations can be written in the matrix form

(Kf + K fn) f'iqe = 1:,1 - lfnt·- - -

In the above equation, 1:,1 is the external load vector and the following
matrices and vectors are-defined:
incremental stiffness matrix

KL = I (l!_ D TD :p l!_ L dQo
Q, 

(17)

(18)

where:

D :P = JHT (z)Ę;_ :P (z) H(z)dz - constitutive resultant matrix
I

generalized stress vector

S_e = fHT (z) Q(z)dz (19)

initial stress matrix

«t; = f (S~l!_ŃL,x + s;l!_ŃL,y + s:y@NL,xy + l!_ŃL.yx))dQo (20) 
Qo
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where:
S1, S~, S ;y - the generalized stress vector S_e components
ĘJ_'L, !!_!n - linear and nonlinear matrices of derivatives of the shape functions
connected with /).§_Land /).{}_NL, respectively

internal force vector

.{;~1 = f (ĘJ_f)TS_'dQo,
Q, 

(21)

The matrices and vectors have been calculated numerically using
Gaussian quadrature: 3 points -for integration in z direction and 4 points- for
integration on the middle surface.

After standard assembling procedure, the following incremental equilib­
rium equation of the structure is formulated

KT I). Q = I). F ext + R - - - (22)

where:
KT = KL + KNL - global tangent stiffness matrix
!).Q - vector of nodal displacement increments.
In the case of two parameter loads, the following vectors must be also defined:
!).f_ext = /),_Alf_ !ext + !).it, 2 E2ext - vector of nodal load increments
B_ = A I f_ I ext + A 2 f_ 2ext - Ent - vector of residual forces
il;, !).}. ; - total and incremental load parameters, respectively, i = 1, 2
f_ l ext, f_ 2ext - vectors of reference loads

The computations have been made using the extended set of equations,
where the incremental FE equations (22) were completed by the linear Riks­
Wempner equation [3]. It enables us to specify different control methods of
a deformation process of the structure (load control, displacement control,
arc-length control).

6. Examples 

6.1. Verification example of the RSE-V/GN element 

The quadratic plate, clamped on boundaries, under uniform lateral load
has been calculated in order to verify the RSE-V/GN plate element.
Geometry, loading and discretisation of the plate are shown in Fig. 4. Taking
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into account the symmetry, only the quarter of the structure has been 
considered and discretized. 

0.50 m 

E=69 GPa - Young modulus 
v=0.3 - Poisson's ratio 
ap=248 MPa - yield stress 
h=0.00254 m - thickness of the plate 

P =A kPa 

JJJIJJl 
Fig. 4. Geometry, loading and discretisation of the plate 

Figure 5 shows the equilibrium paths obtained by means of different 
approaches. In the case when only the physical nonlinearities are assumed, the 
results of computations using RSE-V and RSE-V /GN elements are, of course, 
the same, Fig. 5a. In this example, however, using RSE-V/GN elements, the 
great influences of geometrical nonlinearities on deformation of the plate 
have been detected, Fig. 5b. The influence of the elastoplastic nonlinearities 
are clearly seen only for wA > 0.016m. The validity of the results of 
computations was confirmed by additional calculations using the ADINA 
system (8 node shell element). This example confirms the rightness of 
proposed RSE-V /GN element and demonstrates substantial difference 
between geometrically linear and nonlinear analysis. 

In Fig. 6, the plastic zone of the geometrically and physically nonlinear 
plate discretized with RSE- V /GN element and loaded up to P = 557.4 kPa (see 
Fig. 5b) is shown (approximate drafts). The similar plastic regions were 
obtained using ADINA system. 



110 CZESŁAW CICHOŃ, PAWEŁ STĄPÓR

a)

40

30 o·.o·
o

◊
◊

◊

ł ◊o
◊

20
◊

~
◊

:c
o
◊

◊ l
10 j

OE+O 1E-2 2E-2
Strain 

O -Ą-1 -~-~-~~-~-~-~-~I -~~

0.00 0.05 0.10 0.15 0.20
Dsplacetrent w Jm]

0.25

-&- Ftrysk:81/y noo-/inecr sdlXKXI 

···◊ ADINA 

b)
16CXJ~---~-~~-~-~---~~-~ 

12CX)-t---+--+---+--t--+----l--+-+----c/----,

I 
I

800 -+-+--t---+--+--+--t--+--,i'l-~e',.5>"'--1/4/
,.;~·

400 -t---+--+--t---+--+--±l<0--+--1---+--,v~ 
.....~.~ .

o -tel~~~~4=1=+=+-+-t----1
o.ooo 0.005 O.Q10 O.Q15 0.020

Dsplacetrent Wp_[m]
0.025

-B-- Geometrical ly andphysicaly nm-linear sdution 
--O- Geometrical ly nm-linear sdution 

+ ADINA 
Ftrysk:8/ly non-linear sdlXKXI 

Fig. 5. Equilibrium paths for the plate a) RSE-V elements discretisation in comparison with ADINA
b) RSE-V/GN elements discretisation in comparison with ADINA



FINITE ELEMENT SHAKEDOWN ANALYSIS OF PRE-LOADED PLATE STRUCTURES 111

k I 
<L ">< 01 

/) X 0 
,<> v~ ,,,,,? 

l-::;,, 
h X 7 

y~ ~ ~ '? ;,X A 
YI ;,X 

~ ,4 
'(, 

~ x~ 
x' 

- plastic zone 

Fig. 6. Approximate plastic domains for the plate with RSE-Y/GN elements discretisation 

6.2. Safe loading boundary for the plate under two parameter loading

In the second example, the plate, clumped on two shorter edges, shown in
Fig. 7, has been analysed. The plate has been discretized using only 
8 RSE-V /GN elements without the material hardening. The elastic domain 
and the safe loading domain of the plate initially loaded in the direction 
a0 = 45° up to the point A (A.1 = A.2 = 183.86) are shown in Fig. 8. 

I 
E' 
N' 

I 

E=2100 GPa - Young modulus 
v=0.3 - Poisson's ratio 
crr=248 MPa - yield stress 
h=0.02 m - thickness of the plate 

P1 = A.1kPa 0·,ł·......................., ......., , ~'~' -----1". 0 
~ - plas lic zone for load parameler A,

1
= A,

2
=B0kN 

Fig. 7. Geometry and load of the plate 

The process of loading and unloading from this point was repeated 
assuming increment of the angle equal± 5°. The safe loading boundary shown 
in Fig. 8 is only composed of shakedown curves, however, locally limit points 
were also observed, close to the points on the shakedown boundary (not 
shown in Fig. 8). 
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400 -,---,----,----,----r-------,-----,c----r-----, 

----e- elastic brurdary 
-400 -+----+-----+----+----+------,--.---r----1 

-400 -200 200 400 

Fig. 8. Safe loading domain for the plate

6.3. Shakedown load parameter for the elastoplastic cylindrical 
panel under one parameter moving load 

In this example, the elastoplastic cylindrical panel loaded by one moving
force is analysed. The geometry of the structure and material parameters are
shown in Fig. 9. The structure has been discretized using 16 RSE-V elements
with the isotropic material hardening and the scalar-valued hardening
parameter based on the strain-hardening hypothesis. The load program is
defined as some numbers of cycles: A➔ B ➔ A, Fig. 9. The distribution of !le 
has been calculated for the same load program as used for calculation of Qr• 

The results of the calculations are shown in Fig. 10 and in Table 1. In Fig.
10, the shakedown load parameter A SH is computed for different values of
A and different numbers of cycles (1, 2 or 3). It is observed that after crossing
the value A= 3.45, the value of ~A sH decreases and after then A SH reaches the
maximum at AsH"'" 3.46. For the larger values of A, the values ofAsH decrease.
However, in comparison to each other, the values of AsH increase after
a greater number of load cycles. The details of calculations are put together in
Tab. 1. This example shows the possibilities of calculation of A SH for the real
structure loaded beyond the elastoplastic range and then repeatedly loaded
according to a priori defined load program and the given number of cycles.
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i 800 cm I 

E=212.2 GPa-Young modulus 
v=0.3 - Poisson's ratio 
crr=200 MPa - initial yield stress 
H= 1.06 GP a - hardening modulus 

Fig. 9. Elastoplastic cylindrical panel under moving load 

3.60 --,-----,---,------,------,---,--- 

Values d the shakedolM1 pa, a I ll!tet after 

-+- one cycle of loading 
-+- tv.o cycles of loading 
~ ttvee cycles of loading 
-A- one cycle of loading, 

material without hardenning 
tv.o cycles of loading, 
material without hardenning 

3.00 ---------,---,----;-------,---,--------,------,----; 

3.00 3.20 3.40 

A 
3.60 3.80 

Fig. IO. Shakedown parameter vs. load parameter for the cylindrical panel 
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Table I.
Results of calculation for the cylindrical panel

),sH - I ASH - 2 AsH - 3
AsH - I ),SH - 2

A cycle, (material cycles, (material
cycle cycles cycles

without hardening) without hardening)

2.5292 2.5292

2.53 2.5302

2.8 2.8007 2.8034

3 3.0002 3.0002 3.0007 3.0007

3.2 3.1976 3.1999 3.1994 3.2009

3.3 3.2938 3.2991

3.35 3.3453 3.3493

3.4 3.3974 3.3996

345 3.4474 3.4497 3.4497 3.4485 3.4502

3.5 3.4635 3.4676 3.471 I 3.42 3.43 I 5

3.55 3.3684 3.3871

3.6 3.2758 3.3056

3.65 3.1811 3.222 3.2539 3.1217 3.16

7. Conclusions 

In the paper, we have analysed the possibilities of the shakedown of plate
structures into the real field of the residual stresses. Two cases of load have
been considered, namely the cyclic loading and the moving load. In the first
case the safe loading boundaries and in the second case the shakedown load
parameters have been computed, respectively. Because the method of the
analysis is purely numerical, the proposed approach can not be generalised,
but examples have shown that it is effective and can be easily extended into
the analysis of more complicated plate structures and different sets of loads,
In particular, using the method of contour lines, the three parameters load can
be considered (e.g. assuming A 3 = canst), The extension of the RSE-V plate
element into the case of geometrical nonlinearities facilitates the analysis of
influence of these nonlinearities on the shape of the safe loading boundary.
However, it must be stressed that, because the processes considered are
non-conservative, the results of the analysis are valid only for a priori defined
load program. The assumption of the Huber-Mises-Henckey yield criterion
also simplified the method of solution very much.

Manuscript received by Editorial Board, June 23, 2004;
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Skończenie eiementowa analiza przystosowania
wstępnie przeciążonych konstrukcji płytowych

Streszczenie

Praca dotyczy analizy przystosowania wstępnie przeciążonych sprężysto-plastyczny konstrukcji
płytowych. Rozpatrywane są dwa przypadki: pierwszy przypadek dotyczy obciążenia dwuparamet­
rowego o ustalonym miejscem przyłożenia. W drugim przypadku konstrukcja poddawana jest
dzialaniujednoparametrowego obciążenia ruchomego. Następnie przy użyciu algorytmów opartych
na metodzie elementów skończonych, wyznaczana jest granica bezpiecznego obciążenia (przypa­
dek pierwszy) lub wartość parametru przystosowania (przypadek drugi). Na koniec przedstawione
są przykłady analizy numerycznej potwierdzające efektywność proponowanych algorytmów.


