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1 Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, Bialystok, Poland
2 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, Poland

3 Warsaw University of Technology, Faculty of Electrical Engineering, Koszykowa 75, Warsaw, Poland

Abstract. In this paper the controllability properties of the convex linear combination of fractional, linear, discrete-time systems are charac-
terized and investigated. The notions of linear convex combination and controllability in the context of fractional-order systems are recalled.
Then, the controllability property of such a linear combination of discrete-time, linear fractional systems is proven. Further, the reduction of
an infinite problem of transition matrix derivation is reduced to a finite one, which greatly simplifies the numerical burden of the controllability
issue. Examples of controllable and uncontrollable, single-input, linear systems are presented. The possibility of extension of the considerations
to multi-input systems is shown.
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1. INTRODUCTION

The concept of the convex linear combination of dynamical
control systems plays an important role in different areas of
technology and physics. For example, this concept is widely
used in quantum physics systems [1,2] in the description of the
convex linear combination of quantum Pauli channels. On the
other hand, controllability is a fundamental concept in mathe-
matical control theory (see e.g. [3–5] and references therein).
This concept has been widely discussed in the literature [5, 6]
and its direct connection with the minimum energy control [7]
clearly indicates numerous possible applications. Recently, this
idea has been also used in the context of fractional-order lin-
ear systems (see e.g. [8, 9]. However, there are still many open
or unsolved problems in this area. Taking into account convex
linear combinations and, on the other hand, the controllability
concept, in the paper we shall consider the controllability of lin-
ear combination of finite dimensional, discrete-time, fractional
control systems with constant coefficients. In the proof of the
main result a well-known, purely algebraic controllability con-
dition is used. The paper is organized as follows. In Section 2
linear convex combination for finite dimensional, linear control
systems is defined [10]. Further, Section 2 contains the main re-
sult of the paper concerning controllability properties of convex
linear combination for fractional control systems given in The-
orem 2. It should be pointed out that Theorem 2 is only a suffi-
cient but not a necessary condition for controllability of convex
combination. Next, in Section 3 a new method for the determi-
nation of a transition matrix for fractional order discrete-time
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systems is introduced. This method reduces the infinite problem
to a finite one. Further, in Sections 4 and 5, taking into account
the results of Section 2, several examples of linear convex com-
binations of controllable or uncontrollable control systems are
presented and their controllability is discussed. Finally, in Sec-
tion 6 possible extensions for more general convex combination
are proposed and discussed.

2. CONTROLLABILITY OF LINEAR CONVEX
COMBINATION OF FRACTIONAL LINEAR SYSTEMS

Let us consider the fractional discrete-time linear system with
constant coefficients:

xi+1 = Axi +
i+1

∑
k=1

(−1)k+1
(

α

k

)
xi−k+1 +bui (1)

= Aα xi +
i+1

∑
k=2

ckxi−k+1 +bui,

0 < α ≤ 2, i = 0,1,2, . . . ,
xi ∈ Rn,ui ∈ Rm,

where

Aα = A+ Inα, ck = (−1)k+1
(

α

k

)
,

(
α

k

)
=

1, k = 0
α(α−1) · · ·(α− k+1)

k!
, k = 1,2, . . . ,

The solution of (1) has the form:

xi = Φix0 +
i−1

∑
k=0

Φi−k−1buk , (2)
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where Φi is determined by:

Φi+1 = ΦiAa +
i+1

∑
k=2

ckφi−k+1, Φ0 = In . (3)

Definition 1. The fractional system (1) is controllable in p
steps if there exists an input sequence u0,u1, . . . ,up−1 which
steers the state xi of the system from the initial state x0 to the
final state x f , i.e. xp = x f .

For completeness of considerations let us recall a well-
known neccessary and sufficient condition for controllability:

Theorem 1. The fractional system (1) is controllable in p steps
if and only if
1.

rank[b,Aα b, . . . ,Ap−1
α b] = n (4)

or equivalently
2.

rank[Inz−Aα ,b] = n, ∀z ∈ C . (5)

Proof is given in [11, p. 11]. 2

Consider two fractional, discrete-time, controllable, linear
systems with constant coefficients which by the same linear
transformation matrix P ∈Rn×n can be transformed to the sim-
ilar canonical form:

PA1P−1 =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 1
−a10 −a11 −a12 . . . −a1,n−1


,

Pb1 =



0
0
0
...
0
1


,

PA2P−1 =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 1
−a20 −a21 −a22 . . . −a2,n−1


,

Pb2 =



0
0
0
...
0
1


. (6)

Theorem 2. The linear convex combination [10] of the con-
trollable systems:

A = qA1 +(1−q)A2, b = qb1 +(1−q)b2, (7)

is also controllable for all values of q ∈ [0,1].

Proof. Using (6), and (7) we obtain:

A = qA1 +(1−q)A2 (8)

=



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1


,

b = qb1 +(1−q)b2 =



0
0
0
...
0
1


,

where ak = a1kq+a2k(1−q), k = 0,1, . . . ,n−1. The pair (8)
is controllable for all values of q ∈ [0,1].

Theorem 2 is only a sufficient but not necessary condition for
the controllability of linear convex combination.

3. FRACTIONAL DISCRETE-TIME SYSTEMS TRANSITION
MATRIX DETERMINATION

The solution (2) of linear fractional order equation (1) con-
tains transition matrices Φi, which play important role in linear
control systems. Determination of the transition matrices for
discrete-time fractional systems is also essential from the point
of view of controllability and observability analysis. However,
in the case of these systems problem is much more difficult than
for integer-order ones. This is caused by the fact that the tran-
sition matrix for fractional order systems is defined by an infi-
nite series (on infinite interval). In this section an approach for
the reduction of the problem on infinite interval to equivalent
one defined on finite interval will be presented. This method
is based on the results taken directly from linear matrix alge-
bra. Theoretical considerations will be illustrated by a simple
numerical example.

To simplify the notation it is assumed that the matrices A ∈
Rn×n have only distinct eigenvalues λ1,λ2, . . . ,λn. The matrices

Φ0(t) =
∞

∑
k=0

Aktkα

Γ(kα +1)
, 0 < α < 1 , (9)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ((k+1)α)
, 0 < α < 1 (10)
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will be expressed by

Φ0(t) = c0In + c1A+ c2A2 + . . .+ cn−1An−1,

ck = ck(λ1, . . . ,λn, t), k = 0,1, . . . ,n−1
(11)

and

Φ(t) = c̄0In + c̄1A+ c̄2A2 + . . .+ c̄n−1An−1,

c̄k = c̄k(λ1, . . . ,λn, t), k = 0,1, . . . ,n−1.
(12)

It is well-known [11] that (11) and (12) are satisfied for the
eigenvalues λ1,λ2, . . . ,λn of the matrix A

Φ0(λk, t) = c0 + c1λk + c2λk
2 + . . .+ cn−1λk

n−1,

k = 1, . . . ,n
(13)

and

Φ(λk, t) = c̄0 + c̄1λk + c̄2λk
2 + . . .+ c̄n−1λk

n−1,

k = 1, . . . ,n
(14)

or  1 λ1 . . . λ
n−1
1

. . . . . . . . . . . .

1 λn . . . λ n−1
n




c0
...

cn−1

=


Φ0(λ1, t)

...
Φ0(λn, t)

 (15)

and  1 λ1 . . . λ
n−1
1

. . . . . . . . . . . .

1 λn . . . λ n−1
n




c̄0
...

c̄n−1

=


Φ(λ1, t)

...
Φ(λn, t)

 . (16)

Note that if λi 6= λ j for i 6= j, i, j = 1, . . . ,n then the matrix

Λ =

 1 λ1 . . . λ
n−1
1

. . . . . . . . . . . .

1 λn . . . λ n−1
n

 (17)

is nonsingular (detΛ 6= 0) and from (15) and (16) we may find
the coefficients c0, . . . ,cn−1 and c̄0 . . . , c̄n−1.

The coefficients c0, . . . ,cn−1 and c̄0 . . . , c̄n−1 can also be
found using the Lagrange-Sylvester formula [12] which for
λi 6= λ j, , i, j = 1, . . . ,n takes the form [12]

f (A) =
n

∑
k=1

Zk f (λk), (18)

where

Zk =
n

∏
i=1,i6=k

A−λiIn

λk−λi
(19)

=
(A−λ1In) · · ·(A−λk−1In)(A−λk+1In) · · ·(A−λnIn)

(λk−λ1) · · ·(λk−λk−1)(λk−λk+1) · · ·(λk−λn)
.

The considerations can be extended to general case. The above
procedure is illustrated by Example 1.

Example 1. Find the coefficients ck and c̄k for k = 1,2 for the
matrix

A =

[
−2 1

2 −3

]

with the eigenvalues λ1 = −1, λ2 = −4 (det[Is− A] = λ 2 +
5λ +4)

[
c0

c1

]
=

[
1 −1

1 −4

]−1[
Φ0(−1, t)

Φ0(−4, t)

]

=−1
3

[
−4 1

−1 1

][
Φ0(−1, t)

Φ0(−4, t)

]

=

−
4
3

Φ0(−1, t)− 1
3

Φ0(−4, t)

1
3

Φ0(−1, t)− 1
3

Φ0(−4, t)

 (20)

and [
c̄0

c̄1

]
=

[
1 −1

1 −4

]−1[
Φ(−1, t)

Φ(−4, t)

]

=−1
3

[
−4 1

−1 1

][
Φ(−1, t)

Φ(−4, t)

]

=

−
4
3

Φ(−1, t)− 1
3

Φ(−4, t)

1
3

Φ(−1, t)− 1
3

Φ(−4, t)

 . (21)

Therefore we have

Φ0(t) = c0I2 + c1A

and

Φ(t) = c̄0I2 + c̄1A =

[
c̄0−2c̄1 c̄1

2c̄1 c̄0−3c̄1

]
.

Remark 1. Note, that by applying the above approach it is
possible to reduce the investigation of the controllability and
observability problems from infinite interval to a finite one.

4. LINEAR CONVEX COMBINATION OF
UNCONTROLLABLE LINEAR SYSTEMS

In the previous sections it has been presented that a linear con-
vex combination of controllable linear systems is also control-
lable. However, it is also possible to prove that such a linear
convex combination of two uncontrollable linear systems is
controllable. To show this let us consider the pair of uncon-
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trollable linear systems:

A1 =



0 1 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

−a1
0 −a1

1 −a1
2 −a1

3 . . . −a1
n−1


,

b1 =


0
...

0

1

 ,

A2 =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

−a2
0 −a2

1 −a2
2 −a2

3 . . . −a2
n−1


,

b2 = b1 =


0
...

0

1

 . (22)

It should be pointed out that the above systems are uncontrol-
lable, since in matrix A1 the second row, and in matrix A2 the
third row are composed of zeros. Following [10] we define the
linear convex combination of systems given by (22):

A = qA1 +(1−q)A2

=



0 1 0 0 . . . 0

0 0 1−q 0 . . . 0

0 0 0 1+q . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

a0 a1 a2 a3 . . . an−1


,

ak = a1
kq+a2

k(1−q),

b = qb1 +(1−q)b2 =


0
...

0

1

 .

(23)

Theorem 3. The linear convex combination (23) is controllable
for any q 6= 1, if the systems (22) are uncontrollable.

Proof. Using the Hautus test we obtain:

rank[Iz−A,b] =

rank



z −1 0 0 . . . 0 0
0 z −1+q 0 . . . 0 0
0 0 z −1−q . . . 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −1 0
a0 a1 a2 a3 . . . z+an−1 1


= n,

for all q 6= 1. (24)

Therefore, the linear convex combination (23) of uncontrollable
systems is controllable for all q ∈ [0,1).

From this example it follows that Theorem 3 is the only suffi-
cient condition for controllability of convex linear combination.

5. CONTROLLABILITY OF THE INVERSE SYSTEM
Using the Frobenius cannonical form it can be shown that the
result of Theorem 2 may be extended for the linear convex com-
bination of inverse control systems. Let us consider the follow-
ing matrices in Frobenius forms:

A1 =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1


,

A2 = AT
1 =



0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 −an−2

0 0 0 . . . 1 −an−1


,

A3 =



−an−1 −an−2 −an−3 . . . −a1 −a0

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0


,

A4 = AT
3 =



−an−1 1 0 . . . 0 0
−an−2 0 1 . . . 0 0
−an−3 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

−a1 0 0 . . . 0 1
−a0 0 0 . . . 0 0


,

(25)
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It is well known that the inverse matrices of the Frobenius ma-
trices (25) are also matrices in the canonical Frobenius forms
[13]. For example, the inverse matrix of A1 (detA1 6= 0) has the
form [13]

A−1
1 =



−a1

a0
−a2

a0
−a3

a0
. . . −an−1

a0
− 1

a0

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0


. (26)

It is also well known [13] that every controllable pair Ā1 ∈Rnxn,
b̄1 ∈Rnx1 can be reduced by the similarity transformation to the
canonical form (detP 6= 0):

A1 = P−1Ā1P

=



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

−a0 −a1 −a2 −a3 . . . −an−1


,

b1 = P−1b̄1 =


0
...

0
1

 . (27)

Let us assume that detA1 = det Ā1 = a0 6= 0. In this case for the
matrix A1 there exists its inverse matrix (26).

Theorem 4. If the pair (27) (equivalently (Ā1, b̄1)) is control-
lable then the pair (A−1,b1) is also controllable.

Proof. It is easy to check that the pair (27) is controllable for
all values of the coefficients ak, k = 0,1, . . . ,n−1. Note that

rank[b1,A−1
1 b1, . . . ,(A−1

1 )
n−1

b1] =

rank



0 − 1
a0

a1

a2
0

. . . x

0 0 1 . . . x

. . . . . . . . . . . . . . .

0 0 0 . . . 1

1 0 0 . . . 0


= n,

if and only if a0 6= 0. (28)

Similar results can be obtained from Hautus theorem since

rank[Iz−A,b] =

rank



z −1 0 0 . . . 0 0
0 z −1 0 . . . 0 0
0 0 z −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 0
a0 a1 a2 a3 . . . z+an−1 1


= n, (29)

∀z ∈ C.

Remark 2. The considerations can be extended to multiple in-
put systems. Let B ∈ Rnxm, m > 1 and b = Bk, k ∈ Rm. The
vector k is chosen so that the pair (A,b) is controllable. Then

det[b,Ab, . . . ,An−1b] = det[Bk,ABk, . . . ,An−1Bk] 6= 0. (30)

Note that such vector k exists if the pair (A,B) is controllable
since

rank[Bk,ABk, . . . ,An−1Bk] =

rank[B,AB, . . . ,An−1B]rank


k 0 . . . 0
0 k . . . 0
. . . . . . . . . . . .

0 0 . . . k

 . (31)

6. CONCLUSIONS
The linear, convex combination (7) of two fractional, discrete-
time, systems has been analyzed (Theorem 2). The fractional
discrete-time, linear systems with distinct eigenvalues have
been investigated. It has been shown that the linear, convex
combination of uncontrollable, linear systems is controllable
for q 6= 1 (Theorem 3). Also, it has been presented that if the
pair (A1,b1) is controllable then the pair (A−1

1 ,b1) is also con-
trollable (Theorem 4). The considerations can be extended to
linear, fractional systems with different orders.
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