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Admissibility tests for multidimensional singular
fractional continuous-time models

Kamel BENYETTOU and Djillali BOUAGADA

In this paper we present and discuss a new class of singular fractional systems in a multi-
dimensional state space described by the Roesser continuous-time models. The necessary and
sufficient conditions for the asymptotic stability and admissibility by the use of linear matrix
inequalities are established. All the obtained results are simulated by some numerical examples
to show the applicability and accuracy of our approach.
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1. Introduction

Analysis and design of multidimensional systems (d𝐷) where (𝑑 ­ 2) has
been the subject of much research in the recent decades. Multidimensional sys-
tems propagate the state in several independent spatial directions and have ap-
plications in systems theory, but also in engineering areas such as circuit theory,
digital filtering and image processing [2, 4, 8, 11, 12, 21]. Note that the transition
of 1𝐷 case to the multidimensional case is done naturally by studying the two
dimensional models.
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Recently, the stability of multidimensional systems has been considered in
many research for several decades. It has attracted the interest of many researchers
and practitioners in control theory [3, 5, 8, 13, 16, 18].
To study stability problems, one and two dimensional systems must be im-

plemented; the 1𝐷 models in dynamic systems are introduced and analyzed
in [16, 17] by the use of fundamental notions on the eigenvalues of the dynamic
matrix, and in [18], Marir et al. was expressed and developed necessary and suf-
ficient conditions of admissibility for singular fractional order continuous time
with 1 ¬ 𝛼 < 2 proposed as a strict LMI term. Kaczorek in [14] studied the
problem of the stability of multidimensional systems with it various applications,
and in [2, 3, 12, 15, 20, 21], the authors investigated the stability conditions us-
ing new LMI developed with different approaches for continuous and discrete
time system. Moreover, in [19] Tofighi et al. developed results for the stability
analysis three-dimensional (3𝐷) systems using an advanced wave model. A ro-
bust stabilization conditions of multidimensional hybrid systems described by
the Roesser models was developed by Ghamgui et al. in [4], and recently Aissa
et al. focuses on the problem of LMI based on stability conditions for the class
of singular continuous and discrete time multidimensional systems described by
the Fornasini-Marchesini models.
In this paper, we look at the extension of the work in [18] to characterize

the admissibility conditions of multidimensional systems expressed in a set of
strict linear matrix inequalities. Numerical examples are given to illustrate the
proposed methods.

2. Admissibility of 𝑑𝐷 singular fractional Roesser models

Based on [17, 18], we recall some needed definitions and properties as the
fractional Caputo derivative, Singular Value decomposition and the Kronecker
product.

Definition 1 [18] Let the matrices 𝐴 =
[
𝑎𝑖 𝑗

]
∈ R𝑚×𝑛 and 𝐵 ∈ R𝑞×𝑝, so the

Kronecker product 𝐴 ⊗ 𝐵 of matrices A and B is the block matrix

𝐴 ⊗ 𝐵 =
[
𝑎𝑖 𝑗𝐵

]
∈ R𝑚𝑞×𝑛𝑝 (1)

for all 𝑖 = 1, ..., 𝑚 and 𝑗 = 1, .., 𝑛.
The matrix 𝐴 ⊗ 𝐵 is (𝑚𝑞 × 𝑛𝑝) matrix with (𝑚𝑛) blocs [𝑎𝑖 𝑗𝐵] of order (𝑝𝑞).
Definition 2 [17] The function given by the formula

Γ(𝑥) =
∞∫
0

𝑡𝑥−1𝑒−𝑡 d𝑡, <(𝑥) > 0

is called the Euler gamma function.
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Theorem 1 [18] Let 𝐴 ∈ R𝑚×𝑛 be a real matrix with rank 𝑟, then there exist an
orthonormal matrices 𝑈 ∈ R𝑚×𝑛, 𝑉 ∈ R𝑚×𝑛 and 𝑎 rectangular diagonal matrix
Σ ∈ R𝑚×𝑛 with coefficients

Σ𝑖 𝑗 =

{
𝜎𝑖 if 𝑖 = 𝑗 ,

0 if 𝑖 ≠ 𝑗

such that
𝐴 = 𝑈Σ𝑉𝑇 .

This factorization of 𝐴 is called the singular value decomposition of 𝐴.

For simplicity of notation, we will denote the expression 𝐴 + 𝐴𝑇 by sym (𝐴).
In the following, we introduce a general formulation of multidimensional 𝑑𝐷

fractional continuous-time systems described by the Roesser model

𝐸𝑑


𝐷
𝛼1
𝑡1
𝑥1 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

𝐷
𝛼2
𝑡2
𝑥2 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

...

𝐷
𝛼𝑑
𝑡𝑑
𝑥𝑑 (𝑡1, 𝑡2, · · · , 𝑡𝑑)


= 𝐴𝑑


𝑥1 (𝑡1, 𝑡2, · · · , 𝑡𝑑)
𝑥2 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

...

𝑥𝑑 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

 +

𝐵1
...

𝐵𝑑

 𝑢 (𝑡1, 𝑡2, · · · , 𝑡𝑑) ,
(2)

where

𝐸𝑑 =


𝐸11 𝐸12 · · · 𝐸1𝑑
𝐸21 𝐸22 · · · 𝐸2𝑑
...

...
. . .

...

𝐸𝑑1 𝐸𝑑2 · · · 𝐸𝑑𝑑

 ∈ R𝑛×𝑛. (3)

𝐸𝑑 can be assumed invertible.

𝐴𝑑 =


𝐴11 𝐴12 · · · 𝐴1𝑑
𝐴21 𝐴22 · · · 𝐴2𝑑
...

...
. . .

...

𝐴𝑑1 𝐴𝑑2 · · · 𝐴𝑑𝑑

] ∈ R
𝑛×𝑛 is the dynamic matrix, (4)

𝐵 =


𝐵1
...

𝐵𝑑

 ∈ R𝑛×𝑚 is the control matrix, (5)


𝑥1 (𝑡1, 𝑡2, · · · , 𝑡𝑑)
𝑥2 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

...

𝑥𝑑 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

 ∈ R𝑛 represent the state of subvectors, (6)
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𝑢 (𝑡1, 𝑡2, · · · , 𝑡𝑑) ∈ R𝑚 the input vector (7)

0 < 𝛼𝑖 ¬ 1 for all 𝑖 = 1.𝑑 (8)

The unforced system associated to (2) is as follow

𝐸𝑑


𝐷
𝛼1
𝑡1
𝑥1 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

𝐷
𝛼2
𝑡2
𝑥2 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

...

𝐷
𝛼𝑑
𝑡𝑑
𝑥𝑑 (𝑡1, 𝑡2, · · · , 𝑡𝑑)


= 𝐴𝑑


𝑥1 (𝑡1, 𝑡2, · · · , 𝑡𝑑)
𝑥2 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

...

𝑥𝑑 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

 . (9)

First we begin by defining the 𝑑𝐷 Laplace transform. The multiple Laplace
transform relates functions 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑑) of the 𝑑 independent real variables
𝑡1, 𝑡2, . . . , 𝑡𝑑 to a function 𝐹 (𝑠1, 𝑠2, . . . , 𝑠𝑑) of 𝑑 independent complex variables
(𝑠1, 𝑠2, . . . , 𝑠𝑑) through the equation

𝐿 [ 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑑)] :=𝐹 (𝑠1, 𝑠2, . . . , 𝑠𝑑)

=

+∞∫
0

+∞∫
0

· · ·
+∞∫
0

[
𝑒−𝑠𝑑 𝑡𝑑−𝑠𝑑−1𝑡𝑑−1−···−𝑠1𝑡1×

𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑑)
]
d𝑡1d𝑡2 · · · d𝑡𝑑 . (10)

The function defined by (10) is called the multiple Laplace transform of
𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑑) where 𝐹 (𝑠1, 𝑠2, . . . , 𝑠𝑑) stands for the 𝑠 domain representation
of the signal 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑑).
By the use of the equation (10) to the singular fractional system (9) we deduce

the general definition of spectral abscissa which is

𝛾𝑑 (𝐸𝑑 , 𝐴𝑑) = max
∀(𝑠𝛼11 ,𝑠

𝛼2
2 ,··· ,𝑠𝛼𝑑

𝑑 )∈Γ𝑑

[
Re(𝑠1)𝛼1 Re(𝑠2)𝛼2 · · · Re(𝑠𝑑)𝛼𝑑

]
, (11)

where:
The equation (11) means that the spectral abscissa contain 𝑑 values, ie:

𝛾𝑑 (𝐸𝑑 , 𝐴𝑑) represent a vector of 𝑑 dimensions that it’s entries are Re(𝑠𝑖)𝛼𝑖 with
𝑖 = 1, 𝑑 and

Γ𝑑 =

{(
𝑠
𝛼1
1 ; 𝑠

𝛼2
2 , · · · , 𝑠

𝛼𝑑
𝑑

) �� det (𝐾𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

𝐸𝑑 − 𝐴𝑑
)
= 0

}
, (12)

𝐾
𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

=


𝑠
𝛼1
1 𝐼𝑛1 0 · · · 0
0 𝑠

𝛼2
2 𝐼𝑛2 · · · 0

...
...

. . . 0
...

...
... 𝑠

𝛼𝑑
𝑑
𝐼𝑛𝑑


(13)
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with,
𝑑∑︁
𝑖=1

𝑛𝑖 = 𝑛. (14)

The characteristic polynomial associated at the the equation (9) is given by

𝐷 (𝑡1, 𝑡2, · · · , 𝑡𝑑) = 𝐸𝑑𝐾𝛼1,𝛼2,··· ,𝛼𝑑𝑑
− 𝐴𝑑 . (15)

We propose in the following a new definition of partial derivatives in the case
of fractional multidimensional systems.

𝐷
𝛼𝑖
𝑡𝑖
𝑥 (𝑡1, 𝑡2, · · · , 𝑡𝑑) =

𝜕𝛼𝑖

𝜕𝑡
𝛼𝑖
𝑖

𝑥 (𝑡1, 𝑡2, · · · , 𝑡𝑑)

=
1

Γ (𝑁𝑖 − 𝛼𝑖)

𝑡𝑖∫
0

𝑥
(𝑁𝑖)
𝑡𝑖

(𝜏)
(𝑡𝑖 − 𝜏)𝛼𝑖+1−𝑁𝑖

d𝜏, (16)

where 𝑁𝑖 − 1 ¬ 𝛼𝑖 < 𝑁𝑖, 𝑁𝑖 ∈ N, for all 0 < 𝛼𝑖 ¬ 1, 𝑖 = 1.𝑑. are the order
of fractional partial derivative, Γ(𝑥) is the Euler gamma function defined by
Definition 2 and

𝑥
(𝑁𝑖)
𝑡𝑖

(𝜏) =



𝜕𝑁1𝑥 (𝜏, 𝑡2, · · · , 𝑡𝑑)
𝜕𝜏𝑁1

for 𝑖 = 1,

𝜕𝑁2𝑥 (𝑡1, 𝜏, · · · , 𝑡𝑑)
𝜕𝜏𝑁2

for 𝑖 = 2,
...

𝜕𝑁𝑑𝑥 (𝑡1, 𝑡2, · · · , 𝑡𝑑−1, 𝜏)
𝜕𝜏𝑁𝑑

for 𝑖 = 𝑑.

We introduce and discuss the stability analysis of multidimensional in con-
tinuous time systems by the use of similar essential definitions and results in the
case of integer non derivatives and the fractional derivatives based on the work
in [8, 11, 13, 18].

Definition 3 The system defined by the equation (9) is regular if and only if:

det
(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
)
≠ 0 (17)

form some 𝑠𝑖 ∈ C, and 0 < 𝛼𝑖 ¬ 1, 𝑖 = 1.𝑑.
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Definition 4 The system defined by the equation (9) is said to be impulse-free if
and only if it’s regular and:

deg
(
det

(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
))

= rank 𝐸𝑑 (18)

for 0 < 𝛼𝑖 ¬ 1, 𝑖 = 1.𝑑.

To study the stability and admissibility conditions of the multidimensional
fractional continuous-time system (9) we must introduce some definitions and
notions. The first definition is the basic definition of asymptotic stability of
multidimensional systems.

Definition 5 The multidimensional fractional continuous-time system (9), is
asymptotically stable if and only if the state 𝑥𝑖 (𝑡1, 𝑡2, ..., 𝑡𝑑) converges to zero
for zero input and every bounded initial conditions, i.e.

lim
𝑡1,𝑡2,··· ,𝑡𝑑→+∞



( 𝑥𝑖 (𝑡1, 𝑡2, · · · , 𝑡𝑑) )

 = 0 (19)

where 𝑖 = 1, 𝑑 and for

𝑢 (𝑡1, 𝑡2, . . . , 𝑡𝑑) = 0 for 𝑡𝑖 ∈ R+ ,
sup
𝑡1∈R+

‖𝑥1 (𝑡1, 0, . . . , 0)‖ < ∞,

sup
𝑡2∈R+

‖𝑥2 (0, 𝑡2, . . . , 0)‖ < ∞,

...

sup
𝑡𝑑∈R+

‖𝑥𝑑 (0, 0, . . . , 𝑡𝑑)‖ < ∞.

(20)

Based on the obtained results [6, 8] and [13] in multidimensional systems
and the fact that the considered models are stable if the stability for all 𝑡𝑖 where
𝑖 = 1, 𝑑 is guaranteed since all the variables are supposed independents, For this
reason we can give and establish the following results.

Lemma 1 Let us suppose: arg (spec(𝐸𝑑 , 𝐴𝑑)) = (𝜆1 𝜆2 · · · 𝜆𝑑)𝑇 . Then the
model described by the equation (9) with 𝑢 (𝑡1, 𝑡2, . . . , 𝑡𝑑) = 0 is called stable if

(𝜆1 𝜆2 · · · 𝜆𝑑)𝑇 >
[
𝛼1
𝜋

2
𝛼2
𝜋

2
· · · 𝛼𝑑

𝜋

2

]𝑇
. (21)

Which is imply:
𝜆𝑖 > 𝛼𝑖

𝜋

2
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for all 0 < 𝛼𝑖 ¬ 1, 𝑖 = 1, 𝑑, where

spec(𝐸𝑑 , 𝐴𝑑) =
{(
𝑠
𝛼1
1 ; 𝑠

𝛼2
2 , · · · , 𝑠

𝛼𝑑
𝑑

) / (
𝑠
𝛼1
1 ; 𝑠

𝛼2
2 , · · · , 𝑠

𝛼𝑑
𝑑

)
∈ C𝑑 ,

det
(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
)
= 0

}
(22)

denotes the set of finite modes for the pair (𝐸𝑑 , 𝐴𝑑).

Corollary 1 The multidimensional system (9) with 0 < 𝛼𝑖 ¬ 1 for all 𝑖 = 1, 𝑑
is asymptotically stable if and only if one of the following equivalents properties
are satisfied:

1. There exist a matrix 𝑃𝑑 = 𝑃𝑇𝑑 such that

sym {𝚯𝑑 ⊗ (𝐴𝑑𝑃𝑑)} ≺ 0. (23)

2. There exist a matrix 𝑄𝑑 = 𝑄
𝑇
𝑑

such that

sym
{
𝚯𝑑 ⊗

(
𝐴𝑇𝑑𝑄𝑑

)}
≺ 0 (24)

with

𝚯𝑑 =



Θ11 0 · · · · · · 0
0 Θ22 0 · · · 0
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

... Θ𝑑𝑑


, (25)

where

Θ𝑖𝑖 =

[
sin 𝜃𝑖 cos 𝜃𝑖
− cos 𝜃𝑖 sin 𝜃𝑖

]
, 𝜃𝑖 = 𝜋 − 𝛼𝑖

𝜋

2
for all 𝑖 = 1, 𝑑 . (26)

Definition 6 The multidimensional fractional system (9) is called admissible if
and only if it is: regular, impulse free and stable.

According to [18], we extend some results to fractional multidimensional
model (9).

Lemma 2 If the pair (𝐸𝑑 , 𝐴𝑑) is regular, then the following statements are sat-
isfied,
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1. There exist two non singular matrices 𝑀 and 𝑁 satisfying

𝑀𝐸𝑑𝑁 =

[
𝐼𝑟 0
0 𝐹

]
, 𝑀𝐴𝑑𝑁 =

[
𝐴𝐼 0
0 𝐼𝑛−𝑟

]
, (27)

where 𝐴1 ∈ R𝑟×𝑟 and 𝐹 ∈ R(𝑛−𝑟)×(𝑛−𝑟) is nilpotent.

2. The pair (𝐸𝑑 , 𝐴𝑑) is impulse free if and only if F = 0.

A new results based on LMI𝑠 conditions for the admissibility of 𝑑D frac-
tional continuous-time systems are now derived.

Lemma 3 The pair (𝐸𝑑 , 𝐴𝑑) is admissible if and only if the pair
(
𝐸𝑇
𝑑
, 𝐴𝑇

𝑑

)
is

admissible.

Proof. To confirm that the pair (𝐸𝑑 , 𝐴𝑑) is admissible if and only if(
𝐸𝑇
𝑑
, 𝐴𝑇

𝑑

)
is admissible we present the proof as follow

det
(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
)
= det

(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
)𝑇

= det
(
𝐸𝑇𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑇𝑑
)

(28)

and

deg
(
det

(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
))

= deg
(
det

(
𝐸𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑑
)𝑇 )

= deg
(
det

(
𝐸𝑇𝑑𝐾

𝛼1,𝛼2,··· ,𝛼𝑑
𝑑

− 𝐴𝑇𝑑
))

(29)

which mean that the pair (𝐸𝑑 , 𝐴𝑑) is regular and impulse free if and only if(
𝐸 𝑡
𝑑
, 𝐴𝑇

𝑑

)
is regular and impulse free. By the use of Lemma 2 and Corollary 1 we

obtain that the stability of the pair (𝐸𝑑 , 𝐴𝑑) depend on �̃�1 or �̃�1
𝑇
.

Consequently, we have proved the equivalence of the stability between this
two pairs, which complete proof of lemma. 2

Theorem 2 The multidimensional fractional system (9) is said to be admissible
if and only if there exist a matrix

𝑋𝑑 =


𝑋11 𝑋12 · · · 𝑋1𝑑
𝑋21 𝑋22 · · · 𝑋2𝑑
...

...
. . .

...

𝑋𝑑1 𝑋𝑑2 · · · 𝑋𝑑𝑑

 � 0 and 𝑌 =


𝑌11
𝑌21
...

𝑌𝑑1

 verifying (30)
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1.
sym

{
𝚯𝒅 ⊗ 𝐴𝑇𝑑

(
𝑋𝑑𝐸 + 𝐸0𝑑𝑌𝑇𝑑

)}
≺ 0 . (31)

2.
sym

{
𝚯𝒅 ⊗ 𝐴𝑑

(
𝑋𝑑𝐸

𝑇
𝑑 + 𝐸0𝑑𝑌

𝑇
𝑑

)}
≺ 0 . (32)

3. There exist a matrix 𝑃𝑑 =


𝑃11 𝑃12 · · · 𝑃1𝑑
𝑃21 𝑃22 · · · 𝑃2𝑑
...

...
. . .

...

𝑃𝑑1 𝑃𝑑2 · · · 𝑃𝑑𝑑

 satisfying

𝐸𝑇𝑑 𝑃𝑑 = 𝑃𝑑𝐸
𝑇
𝑑 � 0, (33)

and
sym

{
𝚯𝒅 ⊗ 𝐴𝑇𝑑𝑃𝑑

}
≺ 0 , (34)

where 𝐸0𝑑 is an arbitrary matrix of full column rank, and which satisfies the
condition 𝐸𝑇

𝑑
𝐸0𝑑 = 0, with

𝚯𝑑 =



Θ11 0 · · · · · · 0
0 Θ22 0 · · · 0
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

... Θ𝑑𝑑


, (35)

where

Θ𝑖𝑖 =

[
sin 𝜃𝑖 cos 𝜃𝑖
− cos 𝜃𝑖 sin 𝜃𝑖

]
, 𝜃𝑖 = 𝜋 − 𝛼𝑖

𝜋

2
for all 𝑖 = 1, 𝑑 . (36)

Proof. We have to prove that the admissibility and the condition (31) in the
previous theorem are equivalent.

1. Sufficient condition: First let us partitioned the matrices 𝑋𝑑 , 𝑌𝑑 and 𝐴𝑑 in
block matrix as follows. Let us suppose that the inequality (31) is satisfied for
some matrices

𝑋𝑑 =


𝑋 𝑋12 · · · 𝑋1𝑑
𝑋21 𝑋22 · · · 𝑋2𝑑
...

...
. . .

...

𝑋𝑑1 𝑋𝑑2 · · · 𝑋𝑑𝑑

 =
[
𝑋𝐼 𝑋𝐼 𝐼

𝑋𝐼 𝐼 𝐼 𝑋𝐼𝑉

]
� 0
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and

𝑌𝑑 =


𝑌11
𝑌21
...

𝑌𝑑1

 =
[
𝑌𝐼

𝑌𝐼 𝐼

]
,

𝐴 = 𝐴𝑑 =


𝐴11 𝐴12 · · · 𝐴1𝑑
𝐴21 𝐴22 · · · 𝐴2𝑑
...

...
. . .

...

𝐴𝑑1 𝐴𝑑2 · · · 𝐴𝑑𝑑

 =
[
𝐴𝐼 𝐴𝐼 𝐼

𝐴𝐼 𝐼 𝐼 𝐴𝐼𝑉

]
.

By the use of singular value decomposition of the matrix 𝐸𝑑 , We assure the
existence of two non-singular matrices 𝑀 and 𝑁 such that

𝑀𝐸𝑑𝑁 =

[
𝐼𝑟 0
0 0

]
, 𝑀𝐴𝑑𝑁 =

[
𝐴𝐼 𝐴𝐼 𝐼

𝐴𝐼 𝐼 𝐼 𝐴𝐼𝑉

]
and 𝐸0 = 𝑀

𝑇

[
0
𝐼𝑛−𝑟

]
(37)

with 𝑟 = rank 𝐸𝑑 .
From the non-singularity of the matrix 𝑀 , 𝐸0𝑑 is a full rank matrix which
satisfied the equation 𝐸𝑇𝐸0 = 0. Let us put the following equations

𝑋 = 𝑀𝑇

[
𝑋𝐼 𝑋𝐼 𝐼

𝑋𝐼 𝐼 𝐼 𝑋𝐼𝑉

]
𝑀, 𝑌 = 𝑁−𝑇

[
𝑌𝐼

𝑌𝐼 𝐼

]
. (38)

The equations (37) and (38) yields

𝐴𝑇𝑑

(
𝑋𝑑𝐸𝑑 + 𝐸0𝑑𝑌𝑇

)
= 𝑁−𝑇 𝐴𝑑𝑁

−1 (39)

with

𝐴𝑑 =

[
𝐴𝑇
𝐼
𝑋𝐼 + 𝐴𝑇𝐼𝐼𝑌𝑇𝐼 𝐴𝑇

𝐼𝐼 𝐼
𝑌𝐼 𝐼

𝐴𝑇
𝐼𝐼
𝑋𝐼 + 𝐴𝑇𝐼𝑉𝑋𝑇𝐼𝐼 + 𝐴𝑇𝐼𝑉𝑌𝑇𝐼 𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼𝐼

]
(40)

and by the use of some properties of the Kronecker product, we then obtain

𝚯𝑑 ⊗
(
𝐴𝑇𝑑

(
𝑋𝑑𝐸𝑑 + 𝐸0𝑑𝑌𝑇𝑑

))
= (𝐼2𝑑 ·𝚯𝑑) ⊗

(
𝑁−𝑇 ·

(
𝐴𝑑𝑁

−1
))

=


𝑁−𝑇 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−𝑇


(𝚯𝑑 ⊗ 𝐴)


𝑁−1 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−1


(41)



ADMISSIBILITY TESTS FOR MULTIDIMENSIONAL SINGULAR FRACTIONAL
CONTINUOUS-TIME MODELS 617

with

𝚯𝑑 ⊗ 𝐴𝑑 =



𝐴11 𝐴12 0 0 0 0 0 0
−𝐴12 𝐴11 0 0 0 0 0 0
0 0 𝐴21 𝐴22 0 0 0 0
0 0 −𝐴22 𝐴21 0 0 0 0

0 0 0 0 . . .
. . . 0 0

0 0 0 0 0 0 𝐴𝑑1 𝐴𝑑2

0 0 0 0 0 0 −𝐴𝑑2 𝐴𝑑1


and for all 𝑖 = 1, 𝑑

𝐴𝑖1 =

[
(𝐴𝑇

𝐼
𝑋𝐼 + 𝐴𝑇𝐼𝐼 𝐼𝑌𝑇𝐼 ) sin(𝜃𝑖) 𝐴𝑇

𝐼𝐼 𝐼
𝑌𝐼 𝐼 sin(𝜃𝑖)

(𝐴𝑇
𝐼𝐼
𝑋𝐼 + 𝐴𝑇𝐼𝑉𝑋𝑇𝐼 + 𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼
) sin(𝜃𝑖) 𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼𝐼
sin(𝜃𝑖)

]
, (42)

𝐴𝑖2 =

[
(𝐴𝑇

𝐼
𝑋𝐼 + 𝐴𝑇𝐼𝐼 𝐼𝑌𝑇𝐼 ) cos(𝜃𝑖) 𝐴𝑇

𝐼𝐼 𝐼
𝑌𝐼 𝐼 cos(𝜃𝑖)

(𝐴𝑇
𝐼𝐼
𝑋1𝑑 + 𝐴𝑇𝐼𝑉𝑋𝑇𝐼 + 𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼
) cos(𝜃𝑖) 𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼𝐼
cos(𝜃𝑖)

]
. (43)

Then

sym
{
𝚯𝑑 ⊗ 𝐴𝑇𝑑

(
𝑋𝑑𝐸𝑑 + 𝐸0𝑑𝑌𝑇𝑑

)}
=


𝑁−𝑇 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−𝑇



H1 0 0 0
0 H2 0 0

0 0 . . . 0
0 0 0 H𝑑



𝑁−1 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−1


, (44)

where

H𝑖 =

[
𝐴𝑖1 + 𝐴𝑇𝑖1 𝐴𝑖2 − 𝐴𝑇12
𝐴𝑇
𝑖2 − 𝐴𝑖2 𝐴𝑖1 + 𝐴𝑇𝑖1

]
.

We finally deduce that

sym
{
𝚯𝑑 ⊗ 𝐴𝑇𝑑

(
𝑋𝑑𝐸𝑑 + 𝐸0𝑑𝑌𝑇𝑑

)}
≺ 0 (45)

which implies that 𝐴𝑖1 + 𝐴𝑇𝑖1 ≺ 0 for all 𝑖 = 1, 𝑑.
Where

𝐴𝑖1 + 𝐴𝑇𝑖1 =
[· · · · · ·
· · · (𝐴𝑇

𝐼𝑉
𝑌𝑇
𝐼𝐼
+ 𝑌𝐼 𝐼𝐴𝐼𝑉 ) sin(𝜃𝑖)

]
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we conclude that for every 𝑖 = 1.𝑑, we have

(𝐴𝑇𝐼𝑉𝑌𝑇𝐼𝐼 + 𝑌𝐼 𝐼𝐴𝐼𝑉 ) sin(𝜃𝑖) ≺ 0
since sin(𝜃𝑖) ≺ 0.
Therefore 𝐴𝐼𝑉 is a non-singular matrix which means that the system (9) is
regular and impulse free.
Since the system (9) is regular and impulse free, there exist invertible matri-
ces 𝐿, 𝑅

𝐿𝐸𝑑𝑅 =

[
𝐼𝑟 0
0 0

]
, 𝐿𝐴𝑑𝑅 =

[
𝐴𝐼 0
0 𝐼𝑛−𝑟

]
. (46)

Note that

𝑋𝑑 = 𝐿
𝑇

[
𝑋𝐼 𝑋𝐼 𝐼

𝑋𝐼 𝐼 𝐼 𝑋𝐼𝑉

]
𝐿, 𝑌 = 𝑅−𝑇

[
𝑌𝐼

𝑌𝐼 𝐼

]
, 𝐸0𝑑 = 𝐿

𝑇

[
0
𝐼𝑛−𝑟

]
(47)

from the equations (46), (47) and the inequality (32) the following result is
deduced

𝑁−𝑇 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−𝑇



Ψ1 0 0 0
0 Ψ2 0 0

0 0 . . . 0
0 0 0 Ψ𝑑



𝑁−1 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑁−1


≺ 0 (48)

with
Ψ𝑖 =

[
Φ𝑖1 Φ𝑖2
Φ𝑇
𝑖2 Φ𝑖1

]
,

Φ𝑖1 =


(
𝐴𝑇
𝐼
𝑋𝐼 + 𝑋𝑇𝐼 𝐴𝐼

)
sin(𝜃𝑖)

(
𝑋𝐼 𝐼 + 𝑌𝐼

)
sin(𝜃𝑖)(

𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
sin(𝜃𝑖)

(
𝑌𝑇
𝐼𝐼
+ 𝑌𝐼 𝐼

)
sin(𝜃𝑖)

 ,
Φ𝑖2 =


(
𝐴𝑇
𝐼
𝑋𝐼 − 𝑋𝑇𝐼 𝐴𝐼

)
cos(𝜃𝑖) −

(
𝑋𝐼 𝐼 + 𝑌𝐼

)
cos(𝜃𝑖)(

𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
cos(𝜃𝑖)

(
𝑌𝑇
𝐼𝐼
− 𝑌𝐼 𝐼

)
cos(𝜃𝑖)

 .
(49)

For all 𝑖 = 1, 𝑑.

The inequality (48) implies that we have


Ψ1 0 0 0
0 Ψ2 0 0

0 0 . . . 0
0 0 0 Ψ𝑑

 ≺ 0.

In other ways Ψ𝑖 ≺ 0, ∀𝑖 = 1, 𝑑.
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This, is equivalents to 

W1 0 0 · · · 0
0 W2 0 · · · 0
... 0 . . . · · · 0
...

... 0 . . . 0
0 0 0 · · · W𝑑


≺ 0 (50)

with

W𝑖 =



(
𝐴𝑇
𝐼
𝑋𝐼 + 𝑋𝑇𝐼 𝐴𝐼

)
sin 𝜃𝑖

(
𝐴𝑇
𝐼
𝑋𝐼 − 𝑋𝑇𝐼 𝐴𝐼

)
sin 𝜃𝑖(

𝑋𝑇
𝐼
𝐴𝐼 − 𝐴𝑇𝐼 𝑋𝐼

)
cos 𝜃𝑖

(
𝐴𝑇
𝐼
𝑋𝐼 + 𝑋𝑇𝐼 𝐴𝐼

)
sin 𝜃𝑖(

𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
sin 𝜃𝑖

(
𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
cos 𝜃𝑖

−
(
𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
cos 𝜃𝑖

(
𝑋𝑇
𝐼𝐼
+ 𝑌𝑇

𝐼

)
sin 𝜃𝑖(

𝑋𝐼 𝐼 + 𝑌𝐼
)
sin 𝜃𝑖 −

(
𝑋𝐼 𝐼 + 𝑌𝐼

)
cos 𝜃𝑖(

𝑋𝐼 𝐼 + 𝑌𝐼
)
cos 𝜃𝑖

(
𝑋𝐼 𝐼 + 𝑌𝐼

)
sin 𝜃𝑖(

𝑌𝑇
𝐼𝐼
+ 𝑌𝐼 𝐼

)
sin 𝜃𝑖

(
𝑌𝑇
𝐼𝐼
− 𝑌𝐼 𝐼

)
cos 𝜃𝑖(

𝑌𝐼 𝐼 − 𝑌𝑇𝐼𝐼
)
cos 𝜃𝑖

(
𝑌𝑇
𝐼𝐼
+ 𝑌𝐼 𝐼

)
sin 𝜃𝑖


≺ 0. (51)

Using the inequality (51) we deduce that for all 𝑖 = 1, 𝑑,
(
𝐴𝑇
𝐼
𝑋𝐼 + 𝑋𝑇𝐼 𝐴𝐼

)
sin 𝜃𝑖

(
𝐴𝑇
𝐼
𝑋𝐼 − 𝑋𝑇𝐼 𝐴𝐼

)
cos 𝜃𝑖(

𝑋𝑇
𝐼
𝐴𝐼 − 𝐴𝑇𝐼 𝑋𝐼

)
cos 𝜃𝑖

(
𝐴𝑇
𝐼
𝑋𝐼 + 𝑋𝑇𝐼 𝐴𝐼

)
sin 𝜃𝑖

 ≺ 0. (52)

Finally, relations (50), (51) and (52) confirms the asymptotic stability of the
system (9) since 𝑋𝐼 � 0. As a results, the system (9) is admissible (regular,
impulse free and stable).

2. Necessary condition: Let us assume that the system (9) is admissible, then
applying the equation (46) and Lemma 1, which gives us 𝑠𝑝𝑒𝑐(𝐸𝑑 , 𝐴𝑑) =

𝑠𝑝𝑒𝑐(𝐴1𝑑) and

arg
(
spec(𝐴1𝑑)

)
>

[
𝛼1
𝜋

2
𝛼2
𝜋

2
· · · 𝛼𝑑

𝜋

2

]
. (53)
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According to the Corollary 1, there exist a matrix 𝑋𝐼 � 0 such that

sym
{
𝚯𝑑 ⊗

(
�̃�1

𝑇
�̃�1

)}
≺ 0 (54)

and

𝐸0𝑑 = 𝐿
𝑇

[
0
𝐼𝑛−𝑟

]
, 𝑌𝑑 = 𝑅

−𝑇
[
𝑌𝐼

𝑌𝐼 𝐼

]
, 𝑋𝑑 = 𝐿

𝑇

[
𝑋1𝑑 0
0 𝐼𝑛−𝑟

]
𝐿. (55)

From the equations (46) and (55) we obtain

sym
{
𝚯𝒅 ⊗

(
𝐴𝑇𝑑

(
𝑋𝑑𝐸𝑑 + 𝐸0𝑑𝑌𝑇𝑑

))}
=


𝑅−𝑇 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑅−𝑇


×
[
diag

(
A𝑖 + A𝑇

𝑖

)]

×


𝑅−1 0 0 0

0 . . . 0 0

0 0 . . . 0
0 0 0 𝑅−1


, (56)

where the matrices A1 and A2 are defined as follows

A𝑖 =


𝐴1𝑑

𝑇
𝑋1𝑑 sin 𝜃𝑖 0 𝐴1𝑑

𝑇
𝑋1𝑑 cos 𝜃𝑖 0

0 −𝐼𝑛−𝑟 sin 𝜃𝑖 0 −𝐼𝑛−𝑟 cos 𝜃1
−𝐴1𝑑

𝑇
𝑋1𝑑 cos 𝜃𝑖 0 𝐴1𝑑

𝑇
𝑋1𝑑 sin 𝜃𝑖 0

0 𝐼𝑛−𝑟 cos 𝜃𝑖 0 −𝐼𝑛−𝑟 sin 𝜃𝑖


. (57)

Let us note that
A𝑖 + A𝑇

𝑖 =

[
Λ𝑖 Λ𝑖1
Λ𝑇
𝑖1 Λ𝑖

]
(58)

with

Λ𝑖 =

[(
𝐴𝑇1 𝑋1𝑑 + 𝑋1𝑑𝐴1𝑑

)
sin 𝜃𝑖 0

0 −2𝐼𝑛−𝑟 sin 𝜃𝑖

]
, (59)

Λ𝑖1 =

[(
𝐴𝑇1𝑑𝑋1𝑑 − 𝑋1𝑑𝐴1𝑑

)
cos 𝜃𝑖 0

0 0

]
. (60)
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To prove the inequality (32) of Theorem 2, necessitate to prove the two fol-
lowing conditions

Λ𝑖 ≺ 0
and

Λ𝑖 − Λ𝑖1Λ
−1
𝑖 Λ𝑇𝑖1 ≺ 0.

We will prove one of the previous conditions for all 𝑖 = 1, 𝑑 because of the
similarity. From the inequality (54) we have directly Λ𝑖 ≺ 0 ∀𝑖 = 1, 𝑑 and also

Λ𝑖 − Λ𝑖1Λ
−1
𝑖 Λ𝑇𝑖1 =[(

𝐴𝑇1𝑑𝑋1𝑑 + 𝑋1𝑑𝐴1𝑑
)
sin 𝜃𝑖 0

0 −2𝐼𝑛−𝑟 sin 𝜃𝑖

]
−
[(
𝐴𝑇1𝑑𝑋1𝑑 − 𝑋1𝑑𝐴1𝑑

)
cos 𝜃𝑖 0

0 0

]

×

(
𝐴𝑇1𝑑𝑋1𝑑 + 𝑋1𝑑𝐴1𝑑

)−1 1
sin 𝜃𝑖

0

0
−1
2 sin 𝜃𝑖

𝐼𝑛−𝑟


[(
𝐴𝑇1𝑑𝑋1𝑑 − 𝑋1𝑑𝐴1𝑑

)
cos 𝜃𝑖 0

0 0

]
=

[
Ω𝑖 0
0 −2𝐼𝑛−𝑟 sin 𝜃𝑖

]
, (61)

where

Ω𝑖 =

(
𝐴𝑇1𝑑𝑋1𝑑 + 𝑋1𝑑𝐴1𝑑

)
sin 𝜃𝑖 −

(
𝐴𝑇1𝑑𝑋1𝑑 − 𝑋1𝑑𝐴1𝑑

) (
𝐴𝑇1𝑑𝑋1𝑑 + 𝑋1𝑑𝐴1𝑑

)−1
×
(
𝑋1𝑑𝐴1𝑑 − 𝐴𝑇1𝑑𝑋1𝑑

) cos2 𝜃𝑖
sin 𝜃𝑖

. (62)

From (54) we have Ω𝑖 ≺ 0 ∀𝑖 = 1, 𝑑, which implying that Λ𝑖 −Λ𝑖1Λ
−1
𝑖
Λ𝑇
𝑖1 ≺ 0

and guaranties the relation (31).
Finally we have proved the equivalent between admissibility and the condi-
tion (31).

3. To ensure the relation between admissibility condition (31) and (32), Lemma 3
is used to get this conditions.

Remark 1 The equivalence between first and third proposition in this theorem
yields directly from the equality of two sets:

Υ𝑑1 =
{
𝑋𝑑 ∈ R𝑛×𝑛 : 𝐸𝑇𝑑 𝑋𝑑 = 𝑋

𝑇
𝑑 𝐸𝑑 , 𝐸

𝑇𝑋𝑑 ­ 0, rank 𝐸𝑇𝑑 𝑋𝑑 = 𝑟
}
, (63)

Υ𝑑2 =
{
𝑋𝑑 = 𝑃𝑑𝐸𝑑 + 𝐸0𝑑𝑄𝑑 , 𝑃𝑑 � 0, 𝑃𝑑 ∈ R𝑛×𝑛, 𝑄 ∈ R(𝑛−𝑟)×𝑛

}
(64)

This equivalence completes the proof of our main theorem.
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We revisit the admissibility conditions in theorem 2 for the case where 𝑑 = 2
and we present a numerical experiments example to illustrate the 2𝐷 case by
simulating an electrical circuit problem.

Example 1 Let us consider the multidimensional system with 𝑑 = 2, as in [17]
the example of an electrical circuit which represents the long transmission line
with the distributed element described by the following figure

Figure 1: The 𝑅𝐿𝐶 circuit

For the describing circuit in Figure 1, the development of equations that
describe the current and voltage in this line as a function of time 𝑡 and space
variable 𝑥,

−𝐷𝛼
𝑥 𝑢(𝑥, 𝑡) = 𝑅𝑖(𝑥, 𝑡) + 𝐿𝐷

𝛽
𝑡 𝑖(𝑥, 𝑡),

−𝐷𝛼
𝑥 𝑖(𝑥, 𝑡) = 𝐺𝑖(𝑥, 𝑡) + 𝐶𝐷

𝛽
𝑡 𝑢(𝑥, 𝑡),

(65)

where 𝑢(𝑥, 𝑡) is the voltage, and 𝑖(𝑥, 𝑡) is the current at the point 𝑥 from the
beginning of the line for time 𝑡; 𝑅 is distributed resistance, 𝐿 is distributed
inductance, 𝐺 is distributed conductance, and 𝐶 is distributed capacitance of the
transmission line; 0 < 𝛼 ¬ 1 and 0 < 𝛽 ¬ 1 are fractional (real) orders with
respect to the spatial variable 𝑥 and time 𝑡.
An equivalent matrix system which describes the previous figure is given by,

1 0 0 𝐿

0 1 𝐶 0
0 0 0 0
0 0 0 0


[
𝐷𝛼
𝑡1
𝑥ℎ (𝑡1, 𝑡2)

𝐷
𝛽
𝑡2
𝑥𝑣 (𝑡1, 𝑡2)

]
=


0 −𝑅 0 0
−𝐺 0 0 0
1 0 −1 0
0 1 0 −1


[
𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]

+
[
𝐵ℎ

𝐵𝑣

]
𝑢 (𝑡1, 𝑡2) (66)

with:
𝑥ℎ (𝑡1, 𝑡2) = 𝑥𝑣 (𝑡1, 𝑡2) =

[
𝑢(𝑡1, 𝑡2)
𝑖(𝑡1, 𝑡2)

]
,
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where 𝑢(𝑡1, 𝑡2) is the voltage and 𝑖(𝑡1, 𝑡2) is the current at the point 𝑡1 from the
beginning of the line, for time 𝑡2.
For 𝐶 = 0.00007𝐹/𝑚, 𝑅 = 0.009Ω/𝑚,𝐺 = 0.08Ω−1/𝑚, 𝐿 = 0.02𝐻/𝑚 and

𝛼 = 0.5, 𝛽 = 0.6, The considered system (2) with

𝑢(𝑡1, 𝑡2) =
[
44.2614 −24.6661 16.8733 0.0189

] [𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]
in this case the system (66) will be as follow

𝐸

[
𝐷𝛼
𝑡1
𝑥ℎ (𝑡1, 𝑡2)

𝐷
𝛽
𝑡2
𝑥𝑣 (𝑡1, 𝑡2)

]
= 𝐴

[
𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]
(67)

with

𝐸 =


1 0 0 0.02
0 1 0.00007 0
0 0 0 0
0 0 0 0

 , (68)

𝐴 =


0.1328 −0.0740 0.0506 −0.0899
−0.0800 0 0 0
4.5409 −1.9733 0.3499 0.0015
0 1.0000 0 −1.0000

 . (69)

The LMI𝑠 defined in (31) and (32) (Theorem 2) are used and the considered
system (67) is admissible, the proposed feasible solution is

𝑋 =


1.7034 −0.6852 0.0000 −0.0000
−0.6852 2.9106 −0.0000 −0.0000
0.0000 −0.0000 1.0000 0.0000
−0.0000 −0.0000 0.0000 1.0000

 (70)

and

𝑌 =


−0.2801 −0.2435
0.1250 −0.2141
−0.0180 −0.0146
0.0373 0.3689

 . (71)

3. Concluding remarks

In this work, the general fractional multidimensional system described by the
Roessermodel is presented and analyzed, and new extended results on the stability
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and admissibility conditions based on the Caputo derivative are introduced. New
approach by the use of linear matrix inequality LMI and Kronecker product are
then derived. The obtained results are illustrated by some numerical examples in
the case of a two dimensional state space to show the applicability of our method.
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