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Design a robust quantitative feedback theory controller
for cyber-physical systems: ship course control problem
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One of the most critical problems in all practical systems is the presence of uncertainties,
internal and external disturbances, as well as disturbing noise, which makes the control of
the system a challenging task. Another challenge with the physical systems is the possibility
of cyber-attacks that the system’s cyber security against them is a critical issue. The systems
related to oil and gas industries may also be subjected to cyber-attacks. The subsets of these
industries can be mentioned to the oil and gas transmission industry, where ships have a critical
role. This paper uses the Quantitative Feedback Theory (QFT) method to design a robust
controller for the ship course system, aiming towards desired trajectory tracking. The proposed
controller is robust against all uncertainties, internal and external disturbances, noise, and
various possible Deception, Stealth, and Denial-of-Service (DOS) attacks. The robust controller
for the ship system is designed using the QFT method and the QFTCT toolbox in MATLAB
software. Numerical simulations are performed in MATLAB/Simulink for two case studies with
disturbances and attacks involving intermittent sinusoidal and random behavior to demonstrate
the proposed controller.

Key words: quantitative feedback theory, Denial-of-Service, robust control, cyber-physical
systems

Copyright © 2022. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

A.S.S. Abadi (corresponding author, e-mail: ali.soltani_sharif_abadi.dokt@pw.edu.pl, ali.abadi@
pw.edu.pl) and A. Ordys (e-mail: andrzej.ordys@pw.edu.pl) are with Institute of Automatic Control and
Robotics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland.
P.A. Hosseinabadi (e-mail: p.alinaghi_hosseinabadi@adfa.edu.au) is with School of Engineering and

Information Technology, The University of New South Wales, Canberra, ACT, Australia.
M. Grimble (e-mail: m.j.grimble@strath.ac.uk) is with Department of Electronic and Electrical Engi-

neering, University of Strathclyde Glasgow, United Kingdom.
Andrew Ordys acknowledges support from National Agency of Academic Exchange (NAWA), “Polish

Returns”, grant No: PPN/PPO/2018/1/00063/U/00001.
Ali Soltani Sharif Abadi acknowledges support from Warsaw University of Technology (WUT), grant No:
504440200003.
Received 25.04.2022. Revised 15.08.2022.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ali.soltani_sharif_abadi.dokt@pw.edu.pl
mailto:ali.abadi@pw.edu.pl
mailto:ali.abadi@pw.edu.pl
mailto:andrzej.ordys@pw.edu.pl
mailto:p.alinaghi_hosseinabadi@adfa.edu.au
mailto:m.j.grimble@strath.ac.uk


590 A.S.S. ABADI, P.A. HOSSEINABADI, A. ORDYS, M. GRIMBLE

1. Introduction

One area often threatened by cyber-attacks is the oil and gas industry. The
economies in many countries are highly dependent on the oil and gas field pro-
duction. The research, therefore, needs to address the security threats to overcome
this problem. Ships play an essential role in the oil and gas industry, and their
security protection is critical [1]. Several attacks (such as DOS attacks, Decep-
tion attacks, Stealth attacks, etc.) can occur on the physical systems, which can
cause interference with the system control process [2–5]. The DOS attack causes
interference in sensors’ reception and data transmission [6]. A Deception attack
occurs on the plant and can involve stealing data and generating an error in the
system data [7]. A Stealth Attack on sensors causes interference with the mea-
surement process of the system [7]. Figure 1 shows the impact and location of
attacks on a system.

PlantControl station Sensors

Deception attack Stealth attack

DOS attack

Figure 1: Various attacks in the physical systems

Cyber-Physical Systems (CPS) have become a critical issue with many groups
having a malevolent intent [8–10]. This issue has been introduced as a branch of
science by incorporating three science of control, communications, and comput-
ing [7]. Power systems, transportation systems, industrial networks, and commu-
nication systems involve such systems [11–15]. In [16], energy systems have been
controlled using a hybrid adaptive law. In [17], the control of the Traffic Light
has been investigated as a CPS application. In [18], the CPS control has been
addressed with an application in smart grid and in [19], Multi-Agent Systems
have been evaluated.
Uncertainties, internal and external disturbances, and measurement noise in

most physical systems are unavoidable. Robust control methods are available to
eliminate the effects of this type of phenomenon, such as Sliding Mode Control
(SMC) [20–23], adaptive control [24–27] as well as 𝐻2 and 𝐻∞ methods [28,29].
The SMC is one of the robust controlmethodswhich is used for control of different
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applications [30–33]. One of the studies in the field of robust control is published
by Vesely and Osysky, in this study, two robust control methods are introduced
which are useful for Single-Input-Single-Output and Multi-Input-Multi-Output
systems [34]. In [35] an optimal control technique is presented. This method is
tested for the robust control of an aircraft subject [35].
Quantitative FeedbackTheory (QFT)method is a robust controlmethodwhich

has been used for the control of various systems. This method was introduced
by Professor Isaac Horwitz in 1963 and has been developed extensively in recent
years. In [36], the QFT has been used for controlling an under-actuated hovercraft
system. In [37], the fourth-order boost DC-DC converter has been controlled by
this method. In [38], the non-diagonal controller has been designed for multi-
input and multi-output systems. In the third section of the article, this control
method is described.
In this paper, a control system is designed using QFT to control the ship for

reference trajectory tracking in the presence of various uncertainties, internal and
external disturbances, noise, and cyber-attacks. Then, two illustrative examples
are provided to illustrate the evaluation of the proposed controller.
The remainder of this note is organized as follows. The second section de-

scribes the ship system’s model and problem. In the third section, the QFT
method is briefly introduced. In the fourth section, the controller for the ship
system is designed. The fifth section tests the proposed controller in two modes
of intermittent sinusoidal and random attacks, disturbances, and noises using
MATLAB/Simulink. Finally, conclusions are drawn in the last section.

2. Ship cyber-physical system

2.1. Ship model

In [39–41], the Nomoto model ship system has been presented as follows

𝑇 ¥𝜓 + ¤𝜓 = 𝐾𝛿 , (1)

where 𝑇 is the set of time constants, and 𝐾 is the system gain. 𝛿 is the control
input, and 𝜓 is the pitch angle of the ship. The transfer function of the system can
be written as follows

𝜓(𝑠)
𝛿(𝑠) =

𝐾

𝑠(1 + 𝑇𝑠) . (2)

The uncertainties of the system parameters are as 𝑇 ∈ [−107.59 − 199.81],
𝐾 ∈ [−0.0133−0.0247], and their nominal values are𝑇0 = −153.7,𝐾0 = −0.019.
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2.2. Attacks, internal and external disturbances

In addition to the uncertainties described in the previous section, it is assumed
that the proposed system is subjected to internal and external disturbances, noises,
Deception, Stealth, and DOS attacks. This study aims to design a robust controller
against all these attacks, disturbances, and noises using the QFT approach (see
Fig. 2).

Figure 2: Ship system in the presence of a variety of disturbances and attacks

As shown in Fig. 2, various attacks and disturbances are considered. The
controller and pre-filter are designed using the QFT control method to track
the reference path and be robust against uncertainties, disturbances, noise, and
various types of attacks.
The model considered for the external disturbances, noises, and possible

attacks is described in (3).
Input disturbances + Deception attack = 1

0.107𝑠2 + 13.91𝑠 + 107
,

Output disturbances + Stealth attack = 𝑠

𝑠 + 2 ,

Noise + DOS attack = 1
138.3𝑠 + 1 .

(3)

Assuming the conditions stated, the controller and pre-filter for the ship system
are designed by the QFT method in the next section.

3. Quantitative Feedback Theory (QFT) method

The QFT control method is a robust method for controlling physical systems.
This method was presented by Horwitz in 1963 and has been developed in
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subsequent years [42]. The Nichols charts are fundamental concepts for designing
the QFT controllers. It makes it possible to design controllers that are robust
against all kinds of noises, disturbances, and uncertainties [43]. The design by
using the QFT method is step-by-step and has a regular design procedure.
The QFT method is based on system’s phase and frequency. Initially, this

control method was developed for Single-Input and Single-Output (SISO) sys-
tems. Horwitz and colleagues then generalized it to various non-linear systems,
Multi-Input and Multi-Output (MIMO) systems, delayed systems, etc. [44].
To design the controller using the QFT method, the following steps usually

are followed [45]:

a) Determine the models of the desired tracking.

b) Determine the models of the desired behavior of disturbances.

c) Determine the set of system models that model system behavior for uncer-
tain parameters.

d) Specify the appropriate frequency range and plot uncertainty templates in
the Nichols chart.

e) Choose the nominal transfer function of the system

f) Determine the boundary of system stability on the Nichols chart.

g) Determine the tracking bound on the Nichols chart.

h) Determine the disturbance bounds on the Nichols chart.

i) Insert the desired bounds on the Nichols chart.

j) Design of the nominal loop transfer function.

k) Design the pre-filter.

l) Analysis of the resulting design.

The steps above have becomemore accessible by using the recently developed
toolboxes. Professor Mario Garcia-Sanz introduced the toolboxes such as QFT
and QFTCT. This paper uses the QFTCT toolbox to perform the above steps.

4. Design QFT controller for ship CPS

In this section, the twelve design steps for the QFT method are followed for
the ship system, and the QFTCT toolbox is used to simulate the steps.
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Step 1: Determine the models of the desired tracking
The considered tracking models for the ship system in this paper are as Eq. (4)

𝑇𝑅𝑈 =
0.6584𝑠 + 19.753
𝑠2 + 4𝑠 + 19.753

,

𝑇𝑅𝐿
=

120
0.02𝑠4 + 1.34𝑠3 + 18.64𝑠2 + 84.4𝑠 + 120

.

(4)

Step 2: Determine the models of the behavior of disturbances.
The desired models are defined in Eq. (3).

Step 3: Determine the set of system models which model all system behaviors
for uncertain parameters.
This set is described in Eq. (2) and the subsequent description.

Step 4: Specify the appropriate frequency range and plot uncertainty templates
in the Nichols chart.
The considered frequency range for the design is as

𝜔 ∈ [0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 1000]. The uncertainty tem-
plates are plotted as the Fig. 3.

Figure 3: Ship system templates at desired frequency points

Step 5: Choose the nominal system transfer function.
The nominal ship transfer function is as 𝑃0(𝑠) =

−0.019
𝑠(−153.7𝑠 + 1) .



DESIGN A ROBUST QUANTITATIVE FEEDBACK THEORY CONTROLLER
FOR CYBER-PHYSICAL SYSTEMS: SHIP COURSE CONTROL PROBLEM 595

Steps 6 to 9: Determine the desired bounds on the Nichols chart. By assuming
robust stability bound equal to 1.36, in consequence, the gain margin and the
phase margin are as Gain-Margin = 2.5 dB, Phase-Margin = 43 degree. Optimal
bounds are shown in Fig. 4.

Figure 4: Desired bounds

Step 10: Design of the nominal loop transfer function. The nominal ring transfer
function is designed as follows:

Figure 5: The nominal ring transfer function
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As a result of this design, the QFT controller is obtained as Eq. (5).

𝐶 (𝑠) =
(
9.717𝑠3 + (1.058 × 105)𝑠2 + 2.144𝑠 + (5.734 × 10−6)

)
(8.61 × 10−5)𝑠3 + 𝑠2 + 2𝑠

. (5)

Step 11: Design the pre-filter
The pre-filter is designed as shown in Fig. 6.

Figure 6: The designed pre-filter

As a result of this design, the pre-filter equation is obtained as follows:

𝐹 (𝑠) = 1
2.4306

× 1
(6.414×10−10)𝑠3 + (9.745×10−6)𝑠2 + 0.03707𝑠 + 0.411

. (6)

Step 12: Analysis
For analysis of the designs, the Nichols Chart, the system stability response,

and step response of the selected reference trajectory tracking are shown in Figs. 7
and 8, respectively.
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Figure 7: The Nichols Chart the system stability response

Figure 8: Step response of the reference trajectory tracking
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5. Two case studies

This section aims to conduct the numerical simulation in MATLAB/Simulink
with the numerical solver ode14x for the ship system and consider the above
designs (previous section). The disturbances, noises, and attacks are considered
in two modes intermittent and random. Also, the simulation is performed for one
of the modes of the uncertainties. For simulation, the system transfer function is

assumed as:
𝜓(𝑠)
𝛿(𝑠) =

−0.0133
−107.59𝑠2 + 𝑠

and the reference input is as 𝜓𝑑 = sin(0.1𝑡) +
cos(0.2𝑡).

5.1. First case study

For the first case study, the simulation is performed by considering intermit-
tent mode for the noises, disturbances, and attacks. The model of noises and
disturbances and attacks are chosen in the form of Eq. (7)

Deception Attack = 0.01 sin(0.01𝑡),
Input Disturbances = 0.02 sin(0.3𝑡),

Output Dis + Stealth Attack = 0.01 sin(0.2𝑡),
Noise + DOS Attack = 0.01 sin(0.5𝑡).

(7)

Figure 9 represents the reference trajectory tracking along with the ship tra-
jectory. Figure 10 shows the disturbances, noise, and attacks.
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Figure 9: The ship trajectory with the intermittent sinusoidal model of the disturbances
and noises and attacks
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Figure 10: The noises and disturbances, and attacks of the first case study

5.2. Second case study

For the second case study, the numerical simulation is performed for the
ship system with the random mode of the noises and disturbances and attacks.
Figure 11 shows the reference trajectory tracking along with ship trajectory.
Figure 12 represents the noise, disturbances and attacks.
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Figure 11: The ship trajectory with the random mode of the disturbances and noises and
attacks
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Figure 12: The noises and disturbances, and attacks of the second case study

6. Conclusions

In this paper, a robust controller is designed using the QFT design method
for a ship system in the presence of noise, disturbances, and cyber-attacks. The
proposed ship system has parametric uncertainties. The proposed controller is
tested in two modes, intermittent and random, of the noise, disturbances, and
attacks. After designing the controller and pre-filter by the QFT method, as
expected from the tracking response stage, the system can track the reference
trajectory tracking precisely, which was the objective. The system was subjected
to three types of DOS, Stealth andDeception attacks, various types of internal and
external disturbances, and noise. The robust controller proposed for the system
dealt well with all these uncertainties. Two illustrative examples were presented
using MATLAB/Simulink.
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