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On-line process identification using the Modulating
Functions Method and non-asymptotic state estimation

Witold BYRSKI and Michał DRAPAŁA

The paper presents an iterative identification method dedicated for industrial processes. The
method consists of two steps. In the first step, a MISO system is identified with the Modulating
Functions Method to obtain sub-models with a common denominator. In the second step, the
obtained subsystems are re-identified. This procedure enables to obtain the set of models with
different denominators of the transfer functions. The algorithmwas used for on-line identification
of a glass conditioning process. Identification window is divided into intervals, in which the
models can be updated based on recent process data, with the use of the integral state observer.
Results of the performed simulations for the identified models are compared with the historical
process data.

Key words: system identification, modulating functions method, state observers, signal
processing, adaptive algorithms

1. Introduction

The problem of on-line system identification is of great practical importance
in the industry.Models based on the laws of physics are versatile, but their identifi-
cation is difficult. Moreover, covering all relevant aspects of an analysed process
is often impossible, hence the obtained models may not be enough accurate.
On the other hand, linear models identified on-line often can ensure sufficient
approximation of system dynamics around specified operating points.
On-line system identification is widely used in various industries. There are

many papers illustrating such applications, e.g. [16] presents a universal identi-
fication platform for chemical industry, [23] illustrates an algorithm for on-line
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modeling and control of a blast furnace ironmaking process and [18] gives a
description of an expert model predictive controller, based on dynamically up-
dated models, applied for a water deaslination process. An example of software
package for signal and system identification is given in [10]. However, industrial
applications of on-line identification algorithms are associated with many prob-
lems. Available historical data often do not conatin clear signal changes for long
time periods. A special selection method, to overcome this difficulty, was pro-
posed in [1]. Furthermore, data used for identification may not be very reliable.
Algorithms to deal with corrupted or missing input data and with random input
delays were given in [20] and [21] accordingly.
In the case of identifying systems with multiple inputs and outputs, the prob-

lem of interactions between them is very significant. If the correlation is strong
enough, the system cannot be decomposed into subsystems. In [22] an approch for
identification and decomposition of a discrete Multi Input Single Output (MISO)
system with unknown time delays is proposed. Individual subsystems are ob-
tained in an iterative optimization procedure. Algorithms for continuous-time
MISO systems were described in [6] and [14]. In both papers, the same problem
was mentioned. For the standard identification approaches, developed for Single
Input Single Output (SISO) systems and adapted to the MISO case, all obtained
models have a common denominator.
This problem was also the main motivation of developing the described two-

step identification method. In the first step, the initial set of models, with a
common denominator, is identified. In the next stage, the single SISO model is
re-identified using logged system inputs and the output calculated as a difference
between the whole system output and simulated outputs for other subsystems.
Similar idea was presented in [17]. The methodology was developed with the
aim of application for identifying a glass conditioning process. In the previous
paper [5] the initial results for this approach was presented. It is worth noting that
the solution utilizes continuous-time models. Unlike many other algorithms [9],
it can be applied for high order systems.
The paper is organised as follows: at the beginning the Modulating Functions

Method, which is the core identification procedure used in the algorithm, is intro-
duced. Next, the re-identification algorithm is explained in details. Furthermore,
an application of the method for glass conditioning is described. Finally, the
results of performed experiments are presented and shortly discussed.

2. Modulating functions method

Linear Time Invariant (LTI) MISO system with 𝐾 inputs can be described as
𝑛∑︁
𝑖=0

𝑎𝑖𝑦
(𝑖) (𝑡) =

𝐾∑︁
𝑘=1

𝑚𝑘∑︁
𝑗=0

𝑏𝑘 𝑗𝑢
( 𝑗)
𝑘
(𝑡) =

𝑚1∑︁
𝑗=0

𝑏1 𝑗𝑢
( 𝑗)
1 (𝑡) + . . . +

𝑚𝐾∑︁
𝑗=0

𝑏𝐾 𝑗𝑢
( 𝑗)
𝐾
(𝑡). (1)
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Functions 𝑦 (𝑖) , 𝑢( 𝑗)1 , . . . , 𝑢
( 𝑗)
𝐾
are the derivatives of the system inputs and the

output given on the interval [𝑡0, 𝑇𝐼𝐷]. There are 𝑛 output derivatives and 𝑚𝑘

derivatives for the 𝑘-th input, where 𝑚𝑘 ¬ 𝑛, ∀𝑘 = 1, . . . , 𝐾 . Parameters a and b
are not known and should be identified. Most often, the system inputs 𝑢 and the
output 𝑦 can be measured, but their derivatives are not known.
ModulatingFunctionsMethod (MFM)was introduced in [19]. In the following

years, different variants of the method were developed, e.g. the authors in [15]
proposed the use of spline functions in their approach. A generalization of the
method for fractional-order systems was presented in [8] and for distributed
parameters systems in [2].
The approach is based on the rule of integrating by parts. Left and right hand

sides of (1) are convoluted with the known modulating function 𝜙. Required
properties of the function 𝜙 were described in [4]. In the described method, the
Loeb and Cahen functions were used

𝜙(𝑡) = 𝑡𝑁 (ℎ − 𝑡)𝑀 , (2)

where ℎ is the width of the function support.
Utilizing the properties:

𝑦𝑖 (𝑡) =
ℎ∫
0

𝑦(𝑡 − 𝜏)𝜙(𝑖) (𝜏)d𝜏, (3)

𝑢𝑘 𝑗 (𝑡) =
ℎ∫
0

𝑢𝑘 (𝑡 − 𝜏)𝜙( 𝑗) (𝜏)d𝜏, (4)

the differential equation (1) can be transformed into an algebraic one (5)

𝑛∑︁
𝑖=0

𝑎𝑖𝑦𝑖 (𝑡) =
𝑚1∑︁
𝑗=0

𝑏1 𝑗𝑢1 𝑗 (𝑡) + . . . +
𝑚𝐾∑︁
𝑗=0

𝑏𝐾 𝑗𝑢𝐾 𝑗 (𝑡) + 𝜖 (𝑡). (5)

The term 𝜖 represents a difference resulting from signal noise and equation error.
The minimization problem is typically solved with the use of the Least Squares
Method (LSM), e.g. in the case of the Output Error Method (OEM), assuming
that 𝑎0 = 1, it can be stated as(

M𝑇M
)−1

M𝑇y0 = [𝑎1, . . . , 𝑎𝑛, b1, . . . , b𝐾]𝑇 , (6)

where:M = [−y1, . . . ,−y𝑛, . . . , u10, . . . , u1𝑚1 , . . . , u𝐾0, . . . , u𝐾𝑚𝐾 ] consists of𝑚
column vectors. The dimension of vectors y𝑖 and u𝑘 𝑗 depends on the identification
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time 𝑇𝐼𝐷 . Vectors b𝑘 have the dimensions of 𝑚𝑘 . Different parameter constraints
in the OEM or in the Equation Error Method (EEM) give solutions that differ in
the value of 𝜖 . The effect of parameter constraints on identification results was
discussed in [4].
In the same work, a different variant of the MFM was described. The squared

value of 𝜖 is treated as an identification performance index

𝜖 (𝑡) = c𝑇 (𝑡)𝜽 =
[
𝑦0(𝑡), . . . , 𝑦𝑛 (𝑡),−𝑢10(𝑡), . . . ,−𝑢1𝑚1 (𝑡),

. . . ,−𝑢𝐾0(𝑡), . . . ,−𝑢𝐾𝑚𝐾 (𝑡)
] [
𝑎0, . . . , 𝑎𝑚, b1, . . . , b𝐾

]𝑇
, (7)

where: 𝜽 ∈ 𝑅𝑛+𝑚1+...+𝑚𝐾+𝐾+1.
The minimization problem is stated in 𝐿2 [𝑡0 + ℎ, 𝑇𝐼𝐷] as

min
𝜃
𝐽2 = min ‖𝜖 (𝑡)‖2

𝐿2 [𝑡0+ℎ,𝑇] = min ‖𝑐(𝑡)
𝑇𝜽 ‖2

𝐿2
. (8)

Linear constraint vector 𝜼 is introduced to avoid the trivial solution and is
some kind of parameters normalization. It is assumed that 𝜼𝑇𝜽 = 1. The norm in
(8) can be written down as an inner product in the space 𝐿2

𝐽2 =
〈
c𝑇 (𝑡)𝜽 , c𝑇 (𝑡)𝜽

〉
𝐿2

= 𝜽𝑇
〈
c(𝑡), c𝑇 (𝑡)

〉
𝜽 = 𝜽𝑇G𝜽 . (9)

The square real Gram matrix G can be expressed as

G =


YY YU1 . . . YU𝐾

U1Y U1U1 . . . U1U𝐾

...
...

. . .
...

U𝐾Y U𝐾U1 . . . U𝐾U𝐾


, (10)

where:

YY(𝑖, 𝑗) = 〈𝑦𝑖, 𝑦 𝑗 〉 and 𝑖 = 0 . . . 𝑛, 𝑗 = 0 . . . 𝑛,
YU𝑘 (𝑖, 𝑗) = −〈𝑦𝑖, 𝑢𝑘 𝑗 〉 and 𝑘 = 1 . . . 𝐾, 𝑖 = 0 . . . 𝑛, 𝑗 = 0 . . . 𝑚𝑘 ,

U𝑘Y(𝑖, 𝑗) = −〈𝑢𝑘𝑖, 𝑦 𝑗 〉 and 𝑘 = 1 . . . 𝐾, 𝑖 = 0 . . . 𝑚𝑘 , 𝑗 = 0 . . . 𝑛,
U𝑘U𝑙 (𝑖, 𝑗) = 〈𝑢𝑘𝑖, 𝑢𝑙 𝑗 〉 and 𝑘 = 1 . . . 𝐾, 𝑙 = 1 . . . 𝐾, 𝑖 = 0 . . . 𝑚𝑘 , 𝑗 = 0 . . . 𝑚𝑙 .

Elements of these matrices are created by the inner products in 𝐿2 of c(𝑡)
elements, e.g.

〈𝑦𝑖, 𝑢𝑘 𝑗 〉 =
𝑇𝐼𝐷∫

𝑡0+ℎ

𝑦𝑖 (𝜏)𝑢𝑘 𝑗 (𝜏)d𝜏. (11)
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The vector of parameters 𝜽 can be found by solving the minimisation task
with the use of the Lagrange multiplier technique

𝐿 = 𝜽𝑇G−1𝜽 + 𝜆
(
𝜼𝑇𝜽 − 1

)
, (12)

in the form

𝜽0 =
G−1𝜼

𝜼𝑇G−1𝜼
. (13)

The values of the identified parameters vary depending on the selected con-
straint vector 𝜼. In the case of constraints in the form 𝜼 = [1 0 . . . 0]𝑇 , the method
is analogous to the OEM. In [4] it was also proven that the minimal value of the
index (9) is obtained for the constraint vector 𝜼 selected as the eigenvector of the
matrix G, which corresponds to its minimal eigenvalue.

3. Re-identification idea for MISO systems

The set of MISO transfer function parameters a and b identified with the
method described in Section 2 allows obtaining the model, in which all transfer
functions of the component SISO subsystems have a common denominator. This
feature of the analysed method is often a drawback, because the obtained model
can be not accurate enough, especially when the individual sub-models have
different time constants. What is more, the MISO model composed of these
sub-models is not observable, because the rank of its state matrix is equal to 𝑛
instead of 𝐾 · 𝑛. The developed method was created in response to the mentioned
problems. It is based on the below assumptions:

• The SISO models corresponding to the subsequent inputs of the MISO
system are successively updated in the following iterations of the method.

• Parameters of the only one SISO subsystem can be updated during a single
iteration of themethod. The logged 𝑘-th input of the system and its simulated
output, calculated as a difference between the logged real system output and
a sum of simulated outputs for the other SISO subsystems, is used in the
identification procedure.

• The method can be performed for the zero initial condition MISO system
response.

3.1. Method description

The method is presented in details in the form of Algorithm 1. At the start
of the method, a collection of the previously obtained SISO models: SISO1, . . .,
SISO𝐾 , (with a common denominator) is needed. These models are thenmodified
in subsequent iterations until the overall MISO model is improved.
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Algorithm 1MISO re-identification
Require: SISO1, . . . SISO𝐾 , 𝑢1 (𝑡), . . . 𝑢𝐾 (𝑡), 𝑦(𝑡)
Ensure: SISO𝑜𝑝𝑡1 , . . . SISO𝑜𝑝𝑡𝐾
Step 1
for 𝑘 ← 1 to 𝐾 do
− simulate the 𝑘-th system output 𝑦𝑆𝐼𝑆𝑂𝑘 (𝑡)
− set the optimal models: SISO𝑜𝑝𝑡𝑘 ← SISO𝑘

end for
− calculate the MISO output for the initial models
𝑦𝑀𝐼𝑆𝑂 (𝑡) ←

∑
𝑗=1,...𝐾 𝑦𝑆𝐼𝑆𝑂 𝑗 (𝑡)

− calculate the performance index 𝐸0 (𝑦𝑀𝐼𝑆𝑂 (𝑡), 𝑦(𝑡)) for the initial models
− set the current iteration number: 𝑖𝑡 ← 1

Step 2
for 𝑘 ← 1 to 𝐾 do
− obtain the 𝑘-th system output for the identification
𝑦
𝑘
(𝑡) ← 𝑦 −∑ 𝑗=1,...𝐾 : 𝑗≠𝑘 𝑦𝑆𝐼𝑆𝑂 𝑗 (𝑡)

− identify the model SISO𝐼𝐷𝑘 using the LSM or the GSM
− simulate the obtained SISO system output 𝑧𝑆𝐼𝑆𝑂𝑘 (𝑡)

end for
Step 3
for 𝑘 ← 1 to 𝐾 do
− calculate the MISO output for the obtained models
𝑦𝑀𝐼𝑆𝑂𝑘 (𝑡) ←

∑
𝑗=1,...𝐾 : 𝑗≠𝑘 𝑦𝑆𝐼𝑆𝑂 𝑗 (𝑡) + 𝑧𝑆𝐼𝑆𝑂𝑘 (𝑡)

− calculate the performance index 𝐸𝑀𝐼𝑆𝑂𝑘 (𝑦𝑀𝐼𝑆𝑂𝑘 (𝑡), 𝑦(𝑡))
end for

Step 4
− select the least performance index 𝐸min = min(EMISOk ) for 𝑘 ← 1, . . . , 𝐾
− save the current performance index 𝐸1 ← 𝐸min
− set the 𝑘 counter 𝑘 ← 𝑘min
− go to Step 8

Step 5
− update the 𝑘-th model SISO𝑘 ← SISO𝐼𝐷𝑘
− update the 𝑘-th optimal model SISO𝑜𝑝𝑡𝑘 ← SISO𝐼𝐷𝑘
− update the 𝑘-th simulated output 𝑦𝑆𝐼𝑆𝑂𝑘 (𝑡) ← 𝑧𝑆𝐼𝑆𝑂𝑘 (𝑡)
− increment the current iteration number 𝑖𝑡 ← 𝑖𝑡 + 1

if 𝑘 = 𝐾 then
− 𝑘 ← 1

else
− 𝑘 ← 𝑘 + 1

end if
Step 6
− obtain the 𝑘-th system output for the identification
𝑦
𝑘
(𝑡) ← 𝑦 −∑ 𝑗=1,...𝐾 : 𝑗≠𝑘 𝑦𝑆𝐼𝑆𝑂 𝑗 (𝑡)

− identify the model SISO𝐼𝐷𝑘 using the LSM or the GSM
− simulate the obtained SISO system output 𝑧𝑆𝐼𝑆𝑂𝑘
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Step 7
− calculate the MISO output for the obtained models
𝑦𝑀𝐼𝑆𝑂𝑘 ←

∑
𝑗=1,...𝐾 : 𝑗≠𝑘 𝑦𝑆𝐼𝑆𝑂 𝑗 (𝑡) + 𝑧𝑆𝐼𝑆𝑂𝑘 (𝑡)

− calculate the performance index 𝐸𝑖𝑡 ← 𝐸 (𝑦𝑀𝐼𝑆𝑂𝑘 (𝑡), 𝑦(𝑡))
Step 8
if 𝐸𝑖𝑡−1 > 𝐸𝑖𝑡 and 𝑖𝑡 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 then
− go to Step 5

elseif 𝐸𝑖𝑡−1 > 𝐸𝑖𝑡
− update the 𝑘-th optimal model SISO𝑜𝑝𝑡𝑘 ← SISO𝐼𝐷𝑘
− return SISO𝑜𝑝𝑡1 , . . . SISO𝑜𝑝𝑡𝐾

else
− return SISO𝑜𝑝𝑡1 , . . . SISO𝑜𝑝𝑡𝐾

end if

The newperformance index𝐸 , defined as a squared difference between the real
system output 𝑦(𝑡) and the simulated MISO system output 𝑦sim(𝑡), is introduced

𝐸 (𝑦sim(𝑡), 𝑦(𝑡)) =
𝑡∫

𝑡0

(𝑦(𝑡) − 𝑦sim(𝑡))2 d𝑡, (14)

to evaluate the obtained solutions.
The new individual SISO𝑘 model is identified using the MFM, for the logged

input 𝑢𝑘 (𝑡) and the output 𝑦𝑘 (𝑡) calculated as a difference between the real
system output and the simulated outputs for the other subsystems. The output
error problem can be formulated as

[
𝑎𝑘1, . . . , 𝑎𝑘𝑛, 𝑏𝑘0, . . . , 𝑏𝑘𝑚𝑘

]


−y𝑘1
...

−y𝑘𝑛
u𝑘0
...

u𝑘𝑚𝑘


= y𝑘0 , (15)

where: y𝑘 and u𝑘 are the modulated signals for the subsystem, a𝑘 and b𝑘 are the
identified parameters. It is assumed that each subsystem has the same rank 𝑛.
This problem can be solved using the LSM, according to the equation (6) from
the previous section.
Another approach involves the use of the Gauss-Seidel Method (GSM). This

procedure often allows obtaining better identification results in terms of the
identification index 𝐸 . It occurs that improving the model step by step can be
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beneficial, especially when the matrix M in the equation (6) is ill-conditioned.
An example of such a problem will be demonstrated in Subsection 3.3. The
Algorithm 2 presents the identification problem being solved with the use of
the GSM. The method was implemented according to [12]. The sufficient, but
not necessary, condition for the convergence of the GSM is the positive definite
matrixM.

Algorithm 2 Gauss-Seidel Method applied to the MFM
Require: modulated input and output signals: u𝑘0, . . . , u𝑘𝑚𝑘 , y𝑘0, . . . , y𝑘𝑛, 𝑘-th model parameters:
𝑎𝑘0, . . . , 𝑎𝑘𝑛, 𝑏𝑘0, . . . , 𝑏𝑘𝑚𝑘 , number of the GSM iterations: 𝑖𝑡𝑒𝑟𝐺𝑆

Ensure: updated 𝑘-th model parameters 𝑎𝑘1, . . . , 𝑎𝑘𝑛, 𝑏𝑘0, . . . , 𝑏𝑘𝑚𝑘
− Create the matrices:

M = [−y𝑘1 . . . − y𝑘𝑛 u𝑘0 . . . u𝑘𝑚𝑘 ],
Y = M𝑇 y𝑘0,
p0 = [𝑎𝑘1 . . . 𝑎𝑘𝑛 𝑏𝑘0, . . . 𝑏𝑘𝑚𝑘 ]𝑇 ,
L – the lower triangular matrix ofM𝑇M,
U = M𝑇M − L.

for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝐺𝑆 − 1 do
− p𝑖+1 = L−1 (Y − Up𝑖)

end for
− return the optimal vector of parameters p𝑖𝑡𝑒𝑟𝐺𝑆

3.2. Simulation example

The developed method is illustrated using the simple example. The given
MISO system is composed of two SISO subsystems: SISO1 and SISO2. Their
transfer functions are given below

𝐺1(𝑠) =
1

𝑠3 + 0.2𝑠2 + 10𝑠 + 1
,

𝐺2(𝑠) =
1

𝑠3 + 3𝑠2 + 2𝑠 + 1
.

(16)

It is assumed that only the MISO system’s output can be measured (a sum
of the subsystems’ outputs). The control signals 𝑢1(𝑡) and 𝑢2(𝑡) were supplied
accordingly to the 𝑆𝐼𝑆𝑂1 and the 𝑆𝐼𝑆𝑂2 systems. It is verified if the single sine
signal and the single unit step signal allow the identification of all parameters.
The signals are given as

𝑢1(𝑡) = sin
(
0.1𝑡 + 𝜋

2

)
,

𝑢2(𝑡) =
{
0, if 𝑡 < 10 s,
1, if 𝑡 ­ 10 s.

(17)
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The MISO model was initially identified according to the OEM. In the next
step, the re-identification procedure was performed using the GSM. The applied
parameters for both methods are presented in Table 1. Table 2 presents the iden-
tified parameters in comparison with the exact system parameters. Identification
results are compared in Fig. 1 and in Table 3 in terms of the Mean Squared
Error (MSE).

Table 1: Re-identification method parameters

Parameter Description Value
𝑁, 𝑀 Loeb-Cahen function parameters 7, 8
ℎ Filtering function support width 5 s

𝑖𝑡𝑒𝑟max Max. re-ident. method iterations 10
𝑖𝑡𝑒𝑟𝐺𝑆 Gauss-Seidel method iterations 5

Table 2: Identified parameters in comparison with their exact values – 3.2

Description Model 𝑎𝑘0 𝑎𝑘1 𝑎𝑘2 𝑎𝑘3 𝑏𝑘0

Real
system

SISO1 1 10 0.2 1 1
SISO2 1 2 3 1 1

MISO
ident.

SISO1 1 4.0173 3.8282 1.5849 0.6941
SISO2 1 4.0173 3.8282 1.5849 1.0571

Re-ident.
procedure

SISO1 1 9.7764 0.5227 1.1699 0.9827
SISO2 1 1.8616 2.7679 0.4538 1.0005

Figure 1: Comparison of the identified models’ outputs – 3.2
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Table 3: Mean squared error values for the obtained models

Method MSE value
MISO ident. 0.3805

Re-ident. procedure 0.1290 × 102

3.3. Numerical aspects

As it was pointed out in the previous paragraph, utilizing the GSM often
allows to improve the identified model. In the presented example, there are two
SISO subsystems (18) forming the MISO model.

𝐺1(𝑠) =
1

𝑠2 + 3𝑠 + 2
,

𝐺2(𝑠) =
1

𝑠2 + 10𝑠 + 15
.

(18)

Control signals for these models are given by:

𝑢1(𝑡) = sin(0.2𝑡),
𝑢2(𝑡) = sin(0.4𝑡).

(19)

Similarly to the previous case, only sum of both components can be measured.
The identification procedure was carried out, assuming the direct LSM for the

parameters’ re-identification. The coefficients of themethod, presented in Table 1,
are the same as in the previous case. The obtained results are depicted in Table 4.
It can be seen, that none of the models identified using this method is stable.
Simulation result for the re-identified models was worse than the initial value
of the performance index, so the procedure was aborted. Such a solution results

Table 4: Identified parameters in comparison with their exact values – 3.3

Description Model 𝑎𝑘0 𝑎𝑘1 𝑎𝑘2 𝑏𝑘0

Real system
SISO1 1 3 2 1
SISO2 1 10 15 1

MISO ident.
SISO1 1 1.8093 4.9997 0.6102
SISO2 1 1.8093 4.9997 0.1235

Re-ident. LSM
SISO1 1 1.8093 4.9997 0.6102
SISO2 1 1.1797 1.1525 −2.0804 × 109

Re-ident. GSM
SISO1 1 1.3098 2.8730 0.4513
SISO2 1 0.3065 4.7710 0.0173
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from the numerical reasons. The matrix M composed of the modulated signals
is ill-conditioned. Moreover, it is not positive definite, so the GSM convergence
cannot be provided. Despite that, the iterative method gives better result. The
vector of optimal parameters was obtained in the fourth iteration of the method.
Although, their values are significantly different that the exact ones, the simulated
system response, presented in Fig. 2, is similar to the original one. The value of
mean squared error is equal to 8.9240 × 10−3.

Figure 2: Comparison of the real system’s and the model’s output – 3.3

Another important problem, regarding the performance indices, is worth dis-
cussing here. The term 𝐽, mentioned in the previous section for the Equation
Error Method (EEM), refers to the difference between two sides of the equation
for the modulated signals. It is possible, especially when the identified system’s
dimension is not known, that despite minimizing the index 𝐽, the simulation re-
sults for the identified model are unsatisfactory. Therefore, another performance
index 𝐸 was adopted in the developed method. The simulation method demands
greater computational effort, but can be beneficial especially in the case where a
model of real plant is identified and, its structure is unknown.

4. Algorithm for industrial processes

The algorithm described in the paper was created with a view to on-line
application for industrial processes, in response to problems that have arisen
during identification of a glass conditioning process. As it was pointed out in
Section 1, the results obtained for the process, with the use of the initial version
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of the method, can be found in [5]. In comparison with the previous work, the
algorithm was significantly changed, e.g. the state observer is applied for the
whole MISO system’s matrix, not for the single SISO subsystems. Moreover,
the iterative GSM is applied for solving the output error problem in the current
method.

4.1. Algorithm description

The described algorithm is based on the following assumptions, that result
from features of the analysed problem.

• The identification procedure is intended to be performed on-line, although
the experiments presented in the next section were performed off-line based
on the historical process data. The identification time is divided into several
intervals of width 𝑇 .

• The initial model is obtained after 𝑛𝑠𝑡𝑎𝑟𝑡 intervals in two steps. Initially,
the MISO model identification is performed according to the description
in Section 2. Then, the model is re-identified with the use of the method
described in Section 3. The initial model can be obtained only around the
operating point 𝑡0, assuming zero initial condition.

• The model’s parameters can be changed on-line, if the squared difference
between the real system and the current model for the last 𝑛reident intervals is
greater than the threshold value 𝑡𝑟 . If the updated model gives better result
in terms of the MSE, its parameters are updated.

• The initial state conditions for the model, in the subsequent intervals, are
obtained with the use of the exact state observer and the current model of
the system. The observation interval 𝑇𝑂𝐵 can have different width than 𝑇 .

The aim of the algorithm is to provide the precise linear model of the process,
suitable for control purposes. It can be useful for predicting the system output
after 𝑛start intervals. Example results of such prediction are presented in Section 5.
The identified MISO system can be presented in the state-space form (20).

The state-space matrices are divided into blocks corresponding to the suitable
SISO sub-systems. It is assumed that there are 𝐾 SISO sub-models and each of
these models has the same rank 𝑛.

A =


A1 . . . 0
...
. . .

...

0 . . . A𝐾


(𝐾 ·𝑛×𝐾 ·𝑛)

, B =


B1 . . . 0
...
. . .

...

0 . . . B𝐾


(𝐾 ·𝑛×𝐾)

,

C =
[ [
0 . . . 1

]
. . .

[
0 . . . 1

] ]
(1×𝐾 ·𝑛)

, D =
[
0 . . . 0

]
(1×𝐾)

,

(20)
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where:

A𝑘 =



0 . . . 0 −𝑎𝑘0
𝑎𝑘𝑛

1 . . .
...

...

...
. . . 0 −𝑎𝑘𝑛−2

𝑎𝑘𝑛

0 . . . 1 −𝑎𝑘𝑛−1
𝑎𝑘𝑛


, B𝑘 =


𝑏𝑘0

𝑎𝑘𝑛
...

𝑏𝑘𝑛−1
𝑎𝑘𝑛


.

4.2. The exact state observer

The use of the exact state observer in the developed method arises from
the necessity of performing system simulation with a non-zero initial condition.
This simulation is performed to obtain the performance index value or to predict
the system output in the next interval. In contrast to the standard asymptotic
observers, the exact state observer, applied for the finite observation window,
guarantees obtaining the real value of the observed state at the time 𝑇𝑂𝐵. The
theory of the exact state observers was described in [3]. The general formula is
given as

𝑥(𝑇𝑂𝐵) =
𝑇𝑂𝐵∫
0

G1(𝑡)𝑦(𝑡)d𝑡 +
𝑇𝑂𝐵∫
0

G2(𝑡)𝑢(𝑡)d𝑡, (21)

where:

M0 =

𝑇𝑂𝐵∫
0

𝑒A𝑇 𝜏C𝑇C𝑒A𝜏d𝜏, G1(𝑡) = 𝑒A𝑇𝑂𝐵M−10 𝑒
A𝑇 𝑡C𝑇 ,

G2(𝑡) = 𝑒A𝑇𝑂𝐵M−10


𝑡∫
0

𝑒A𝑇 𝜏C𝑇C𝑒A𝜏d𝜏
 𝑒−A𝑡B.

As it was mentioned previously, in the implemented on-line procedure, the
expanding identification window is divided into intervals, in which the model’s
parameters can be updated. The equation for the system observed state value at
the end of each interval for the moving observation window version is given as

𝑥(𝑡𝑝) =
𝑡𝑝∫

𝑡𝑝−𝑇𝑂𝐵

G1
(
𝑇𝑂𝐵 − 𝑡𝑝 + 𝑡

)
𝑦(𝑡)d𝑡 +

𝑡𝑝∫
𝑡𝑝−𝑇𝑂𝐵

G2
(
𝑇𝑂𝐵 − 𝑡𝑝 + 𝑡

)
𝑢(𝑡)d𝑡, (22)

where successive time moments are given by

𝑡𝑝 = 𝑡0 + 𝑝 · 𝑇 − (𝑡0 modulo 𝑇), 𝑝 = 𝑛start, 𝑛start + 1, . . . .
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5. Experimental results

The results of the described algorithm applied to the data collected from
a glass conditioning installation are presented in this section. First of all, the
analysed industrial process is briefly described and obtained results are discussed
in the next part. The presented method is intended to be implemented in real
industrial control systems, but for now only the off-line experiments based on
the previously collected historical data was performed. However, the algorithm
operation remains the same in both cases.

5.1. Brief description of the process

Glass conditioning process is carried out after melting a glass batch. The
goal of this operation is to obtain a desired glass temperature profile along the
forehearth. Molten glass flows out of a glass furnace, over working end zones and
finally gets to forehearths. Typical forehearth is a long channel divided into several
zones. Each zone is equipped with gas burners and in some of them cooling valves
or cooling dampers are also installed. The desired glass temperature in each zone
depends on a type of currently produced containers and should be stabilised with
accuracy up to 1◦C.
The diagram of a typical forehearth is presented in Fig. 3. Molten glass tem-

peratures in zones 1–3 are controlled by PID controllers. For the first two zones,
gas-air mixture pressure and cooling valve position are manipulated variables.
In the third zone, only the gas-air mixture pressure can be adjusted. The glass
temperature in the last spout zone can be controlled manually. Each forehearth
zone is controlled regardless of neighbouring ones.

Figure 3: Forehearth control system
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Ensuring the proper temperature control, during the conditioning process, is
especially important when a production is changed. Not only the temperature
set points in the foreherath’s zones can be changed, but also the amount of
glass flowing through the forehearth (glass pull rate). It significantly affects the
dynamics of the process. Moreover, the current glass pull rate cannot be measured
in the analysed installation. Approximate values of this parameter are provided
by plant operators, usually delayed and can be only used as a guide. Hence, the
difficulties in the process identification occur. In the paper, the adaptive method
for lumped-parametermodelwas presented. Other common approach assumes the
use of partial differential equations [11,13]. An application of Laguerre functions
for on-line identification of the process model was presented in [7].

5.2. Description and results of the performed experiments

Experiments were performed based on the historical process data originating
from two zones of the same forehearth. In both zones, there are two system
inputs and one output (the measured temperature). The SISO subsystems have
the following inputs:

• SISO1 – the temperature measured in the previous forehearth zone,

• SISO2 – the gas-air mixture pressure.
In both experimental cases, changes of the temperature set points and the glass
pull rate were noticeable. Coefficients of the MFM were adjusted separately for
each case. Their values are presented in Table 6 for the first data set and in
Table 8 for the second set. In both cases, the constraint vector 𝜼 was selected
as the eigenvector of the Gram matrix corresponding to its minimal eigenvalue.
It guarantees minimisation of the performance index 𝐽, if the vector 𝜼 is taken
from the unit ball. Common coefficients of the developed algorithm can be found
in Table 5. The GSM was utilized for solving the re-identification problem as
previously.

Table 5: Parameters of the identification method

Parameter Description Value
𝑇 Model identification interval 1000𝑠
𝑇𝑂𝐵 Observation interval 500𝑠
𝑛start Number of initial identification intervals 5
𝑛reident Number of re-identification intervals 2
𝑡𝑟 Model change threshold 500

𝑖𝑡𝑒𝑟max Max. re-ident. method iterations 10
𝑖𝑡𝑒𝑟𝐺𝑆 Gauss-Seidel method iterations 5
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Table 6: MFM coeficients – 1. data set

Parameter Description Value
𝑁 , 𝑀 Loeb-Cahen function parameters 3, 4
𝑛 SISO𝑘 transfer function denominator order 2
𝑚 SISO𝑘 transfer function numerator order 0
ℎ Filtering function support width 75𝑠

The logged system inputs are presented in Fig. 4 and the obtained results in
Fig. 5 for the first data set. Analogously, for the second data set, the system inputs

Figure 4: System inputs – 1. data set

Figure 5: Experimental results – 1. data set
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Table 7: Identified model parameters – 1. data set

Int. Model 𝑎𝑘0 𝑎𝑘1 𝑎𝑘2 𝑏𝑘0

1-7
SISO1 1 63.96 1.14 × 103 0.99
SISO2 1 67.21 1.50 × 103 2.30

8-9
SISO1 1 63.96 1.14 × 103 0.99
SISO2 1 77.82 1.47 × 103 2.68

Table 8: MFM coeficients – 2. data set
Parameter Description Value
𝑁, 𝑀 Loeb-Cahen function parameters 5, 6
𝑛 SISO𝑘 transfer function denominator order 3
𝑚 SISO𝑘 transfer function numerator order 0
ℎ Filtering function support width 150𝑠

are depicted in Fig. 6 and the results in Fig. 7. In both cases, the input delay for
the SISO1 model was included. This delay depends on the glass pull rate and the
length of the zone. The adopted values were 260𝑠 for the first data set and 667𝑠 for
the second. Identified parameters of the models in the subsequent intervals can
be found in Table 7 and in Table 9. The intervals, for which the initial model was
obtained aremarked as I, while the intervals for which the previously re-identified
model was applied for the first time are marked as R.

Figure 6: System inputs – 2. data set
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Figure 7: Experimental results – 2. data set

Table 9: Identified model parameters – 2. data set

Int. Model 𝑎𝑘0 𝑎𝑘1 𝑎𝑘2 𝑎𝑘3 𝑏𝑘0

1–8
SISO1 1 2.10 3.05 × 103 2.07 × 106 1.43
SISO2 1 1.08 × 103 3.13 × 103 2.68 × 105 7.48

9–13
SISO1 1 2.10 3.05 × 103 2.07 × 106 1.43
SISO2 1 7.73 × 102 3.62 × 103 2.04 × 105 9.53

The performed experiments proved the relevance of the proposed method.
The obtained results are not perfect, but the nature of temperature changes was
reflected. The mean squared error value was equal to 0.32 for the first data set
and 0.20 for the second. In the last identification intervals the offset between the
real system output and the simulation is virtually zero, which indicates that the
model correction algorithm works properly.

6. Conclusions

The described identification method uses very advanced mathematical
methodology but gives the results that seems to be very useful in practical appli-
cations. The performed experiments proved that the dynamics of the industrial
process can be accurately reflected with the use of adaptive linear models. Certain
disadvantage of the method is that the initial model can be obtained only after
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𝑛start intervals. However, this is not a big drawback for the analysed application.
The accurate model is especially needed in the final part of the production change
process, after a certain period of time, to avoid temperature overshoots. In the
future, the algorithm can be modified. One of the ideas involves using a linear
programming method in the re-identification part of the algorithm. Considering
additional constraints for the identified parameters could give another way to
influence the dynamics of the obtained models.
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