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Abstract The article deals with a current state-of-art of fluid solid inter-
action (FSI) – the new branch of continuum physics. Fluid-solid interaction
is a new quality of modeling physical processes of continuum mechanics,
it can be described as the interaction of various (so far treated separately
from the point of view of mathematical modeling) physical phenomena oc-
curring in continuous media systems. The most correct is the simultane-
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ous application of the laws of the given physical disciplines, which implies
that fluid solid interaction is a subset of multi-physical applications where
the interactions between these subsets are exchanged on the surface in in-
terconnected systems. Our purpose is to extend the fluid solid interaction
aplications into new phenomena what follow from the industrial needs and
inovative thechnologies. Selecting the various approaches, we prefer the arbi-
traty lagrangean-eulerian description within the bulk of fluid/solid domain
and a new sort of advanced boundary condition on a surface of common
contact.

Keywords: Computational fluid dynamics; Computational solids dynamics; Arbitrary
Lagrangian Eulerian description; Fluid solid interaction; Micro-, Nano-mechanics

1 Introduction

It was nearly 20 years ago when scientists developing the science of fluid
and solid mechanics discovered that the ‘flux of momentum’ which is used
in solid mechanics has the same nature as the ‘flux of momentum’ in fluid
mechanics. It was indeed a revolutionary discovery that leads the army of
scientists to a great novelty: if the flux of momentum within solid and fluid
has the same nature then it can be exchanged on a surface of common
contact, in a place where fluid touching solid body. It was a beginning of
an unordinary project: to construct a science that connect CFD (compu-
tational fluid dynamics) with CSD (computational solid dynamics). The
place where CFD meted CSD was a surface of solid-fluid contact, say S.
In practice, this surface is a smooth, moving, manifold oriented by unit
normal vector ns (from the side of solid) and nf (from the side of fluid).
The FSI (fluid solid interaction) it is a name of this new science.

Essentially, fluid-solid interaction opening a new perspective, it can be
described as the interplay of various physical phenomena occurring in the
continuum media systems with the fluid solid contact surface S. One agrees
that an impact on the system can only be registered by simultaneously ap-
plying the laws of the physical disciplines involved. Thus, generally speak-
ing, the FSI is a subset of multi-physical applications, which typically in-
volve a solving new kind of surface S boundary conditions both connected
systems, governed by partial differential equations, coming from physical
models of fluid and solid.

For example, thermal-FSI is the simplest, most known and popular cou-
pling of CFD and CSD together via S and the balance of energy. It means
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that the thermal coupling is described as energy transport, conversion, and
exchange within a thin layer occurring in a contact with the solid and the
fluid [1, 2, 11–16]. Such novelty concept need an assumption that the flux
of energy in the solid body has the same nature as the flux of energy in
the fluid matter. In other words, within the thermal-FSI approach, the
basic assumption is that both, the solid deformation and the fluid flow,
are governed by the same kind of mass, momentum conservation which
should be adequately expressed for an effective fluid/solid thermal energy
exchange.

Yet another applications could combine the following simulations: fluid
dynamics, structure dynamics, thermal, acoustic, magnetic, electric or elec-
tromagnetic. In the biological fluid/solid systems the governing phenom-
ena is an exchange of ions. Coupled fluid/solid systems and formulas are
those that apply to multiple domains and dependent variables that typi-
cally describe different physical phenomena and in which no domain can
be solved when separated from each other and no set of dependent vari-
ables can be clearly eliminated at the level of differential equations [3,5]. It
is well-known that, for real industrial applications, due to their geometri-
cal complexity, there is a pointless search for quasi-analytical or linearized
solutions – it is necessary to use classical numerical techniques like CFD
and CSD. Therefore, starting from CFD or CSD one can obtain a differ-
ent look on FSI numerical tools. Therefore, in the literature [4,6] there are
many various, sometimes inconsistent, strategies for numerical solutions
FSI problems.

Only the arbitrary Lagrangian-Eulerian (ALE) description gives a proper
foundation for monolithic methods in which simultaneous solution for all
unknowns of the coupled fluid/solid system [7, 9, 10]: all interaction effects
between the dependent equations are covered; or partitioned methods in
which separate solution for the single physical fields: consideration of inter-
action effects by exchange of variables at the common interface S; or finally,
field elimination method eliminates of field variables at the level of differ-
ential equations. Of course, we must not forget about the most important
aspect of FSI coupling, namely the physics of the phenomenon. Depending
on the physical nature of the interaction different coupling methods [5–8]
for the involved physical fields are required like alternating solution of solid
and fluid problems with simple interchange of boundary conditions for S
(explicit coupling); solving the equations simultaneously (implicit coupling)
or combining a monolithic solver with a partitioned scheme (intermediate
strategy).
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In the numerical literature, the practice of FSI is dominated philosophy.
Thus, from practical point of view there are three strategies [9, 10] for
FSI-problems approaching. First, so-called weak coupled method (one-way)
in which the information interchange between subtasks is provided only
once per time step and no iteration for overall solution within time step is
available. Second, strong coupled method (two-way) – iteration for overall
solution within each time step gives a time accurate solution. And third
one, simultaneous solution in which the subfields are solved within only
one iteration using a consistent discretization in space and time.

The aim of our paper is to present a numerous achievements [11–35] of
the Department of Energy Conversion Institute of Fluid Flow Machinery
Polish Academy of Sciences (IMP PAN) in a quite new arrangement. Our
contribution is the consistent development and application of the compre-
hensive FSI problem to solve specific engineering problems, with particular
emphasis on the exploitation of energy devices. This allows for the devel-
opment of a number of recommendations and procedures that are already
commonly used in numerical modeling of complex, coupled heat-flow phe-
nomena, where feedback occurs most often from the solid state. This com-
putational philosophy is a relatively innovative approach and will probably
successfully replace the classic modelling approach with a separated CFD
and CSD. We are extending the basic assumption of FSI, that speaks on
the same nature of momentum flux occurring in solid and fluid, into an
extended assumption that every fluxes which appears within the fluid have
the same physical nature as adequate fluxes within solid body. Therefore,
by equalling these fluxes on S we obtain such subdomains of FSI as: mass-
FSI, momentum-FSI, thermal-FSI, electrical-FSI, and so on. For instance,
the angular momentum-FSI has been developed in [29], the biological-FSI
in [27] (see Table 1). We have also hope, that our assumption about the
physical equivalence of every fluxes, will be a ‘never-ending novelty’ of a cor-
ner stone for this new branch of continuum physics as is the FSI.

Table 1: Subdivision of different types of fluid solid interaction science.

Main mode of fluid/solid
coupling via Type of FSI

Mass balance mass-FSI
Momentum balance momentum-FSI
Energy balance thermal-FSI
Electric current balance electrical-FSI
Ions balance biological-FSI
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2 Momentum-FSI – the arbitrary
Lagrangian–Eulerian form
of the balance equations

The set of the ALE balance of mass, momentum and energy equations can
be expressed in the following form [10]:

∂

∂t


ρ
ρv
ρe

+ div


ρc

ρv⊗ c
ρec

 = div


0
t

t v + q

+


0
ρb

ρb · v

 , (1)

which, expressing the ALE relative velocity as c = v−w, can be expressed
further to be

∂
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ρ
ρv
ρe

+ div


ρ(v−w)

ρv⊗ (v−w)
ρe(v−w)

 = div


0
t

t v + q

+


0
ρb

ρb · v

 , (2)

where ρ and v are the density and velocity of the continuum particle, re-
spectively, – w is the discretisation lattice velocity, e = cvT + 1

2v2 is total
energy, cv is specific heat at constant volume, T is temperature of the con-
tinuum particle, t is the momentum flux (Cauchy stress tensor), q is the
total heat flux, b = −9.81ez is the gravitational acceleration. The momen-
tum flux, according to continuum physics tradition, can be divided into an
elastic (recoverable) part and a diffusive (dissipative) part:

t = p + τ c, (3)

where p is called an elastic momentum flux which is reversible and τ c is
a total diffusive momentum flux which describes irreversible phenomena.

The elastic part p is the spherical pressure tensor in the case of liquids
and gasses which cannot transfer the elastic shear stress. In the case of
solids, p is in the full form of the elastic stress tensor

p =
{
−pI = −pδijei ⊗ ej – fluid,
σ = σijei ⊗ ej – solid,

(4)

where p represents a thermodynamical pressure. The minus sign in the case
of a fluid is due to the fact that the elastic momentum flux is the pressure
directed towards the centre of the particle and compressing the substance.
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Thermodynamic pressure is constituted usually by the Carnot–Clapeyron
equation pυ = RT .

The Hooke law for isotropic, elastic bodies is usually used as a constitu-
tive equation in the model: σ = Lε = Lijklεklei⊗ ei, where L is four-order
elasticity tensor and ε the Almansi-type deformation tensor. In numerical
practise, the stress and deformation tensor are represented as the vectors
{σ} and {ε}, thus L is represented by the following 6×6 matrix of Hooke’s
law. For isotropic solid material this matrix is the function of Young’s mod-
ulus (E) and Poisson’s coefficient (ν):

{σ} =



σ11
σ22
σ33
σ12
σ23
σ31



= E

(1−ν)(1−2ν)



1−ν ν ν
ν 1−ν ν
ν ν 1−ν

1−2ν
1−2ν

1−2ν





ε11
ε22
ε33
ε12
ε23
ε31


. (5)

Usually τ c = 0 in solid but within fluid the total diffusive momentum flux
is defined to be a sum of different components:

τ c = τ + R + D + . . . , (6)
where τ is a viscous momentum flux, R is a turbulent momentum flux, D is
a diffusion momentum flux, dots ‘. . .’ represent other fluxes that have been
neglected in these considerations, e.g.: the transpirational momentum flux.
The viscous momentum flux is expressed by the following Stokes equation

τ = −2
3µIdI + 2µd, (7)

where µ is the molecular viscosity, Id = trd is the first invariant of the
strain rate, d = 1

2(v⊗∇+∇⊗ v) is the strain rate tensor. The turbulent
momentum flux R also known as turbulent Reynolds stress can be written,
in analogy to the Newtonian fluid, as the Boussinesq closure

R = −2
3µtIdI + 2µtd, (8a)

where µt is the turbulent viscosity coefficient.
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The another important balance within the bulk of fluid/solid domain,
that is treated with momentum balance is an additional geometrical con-
servation equation that is stated on the lattice velocity w. According to
Benson [7] we take the following relation as a base for determining of lat-
tice motion:

lapw +Kw = 0 in fluid/solid domain, (8b)

where K is a virtual rigidity of lattice and lap(·) = div{grad(·)}. Addition-
ally, the following boundary condition should be satisfied:

w|S = v|S on S. (8c)

3 Momentum FSI boundary conditions

Now, going into boundary conditions, specific for momentum-FSI, one
would consider equality of flux of momentum as a primary condition which
take place on a fluid-solid, moving contact surface S. This surface is ori-
ented by unit normal vectors nf and ns, respectively (ns = −nf ). If we
denote by ts and tf the solid and fluid stress tensors, then, according to
the Cauchy theorem, on the fluid-solid boundary we obtain:

tfnf + tsns = 0 on S (FSI). (9)

It is a classical equality of boundary forces, that can be spitted on equality
of normal components (like pressure) and equality of tangent component
(like friction or mobility forces). Sometime, in the practice, one uses the
name: ‘wall stress’ for tangent components, then Eq. (9) speaks about:
‘equality of wall stresses’. It was Louis Navier who assumed non-typical
contact between solid and fluid. In his case the solid is stress-less, ts = 0,
and on the boundary S appears, from the fluid sides, not only stress tensor
tf but a surface resistance force f(r)

f that is induced by a contact of two
different matters. When the condition: tfnf + tsns = 0 turns into more
‘richness’ one

tfnf + tsns + f(r)
f = 0. (10)

If the Cauchy stress is defined to be uncompressible, tf = −pI + 2µd,
and the surface friction force as f(r)

f = νv(I − nf ⊗ nf) then the bound-
ary phenomena are governed by two coefficients µ and ν. The first one µ
is responsible on internal friction of two fluid layers themselves (internal
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viscosity) and the second one ν – is a friction coefficient between fluid and
solid material (surface viscosity).

Then the Navier boundary condition says about untypical ‘ending’ of
fluid stresses and Eq. (10) takes an explicit form:

tfnf + f(r)
f = (−pI + 2µd) nf + νv (I− nf ⊗ nf) = 0. (11)

In the literature [2,12,21,25] it is known as the Navier slip condition, where
the slip length is defined as ls = µ/ν. Dimensionless coefficient of surface
viscosity, or dimensionless slip length is called: the Navier number.

In more complex manner the fluid-solid contact was built by Simon Denis
Poisson – who introduced some extra surface stress p(2)

s (from solid side).
Now assuming that this surface stress is an analog of three-dimensional
Cauchy stress, Poisson proposed an extension of Eq. (9) to be:

tfnf + tsns + div2 p(2)
s = 0. (12)

Here, in most simplest case, the surface tensor can be interpreted as surface
tension of solid body p(2)

s = γ a, described by γ [MPa/m] surface tension
that depends on a point and the curvature of surface S. Note that actual
contact surface S is described by the surface metric tensor a (or I2 = I −
n⊗ n = a) and the curvature tensor b = −grad2n. Invariants of curvature
tensor are the mean curvature and the Gauss curvature respectively:

I1b = trb = bαα = b11 + b22 = 1
R1

+ 1
R2

; I2b = det b = 1
R1

1
R2

, (13)

where R1 and R2 are the main values of b. In the Poisson condition
(Eq. (12)) the two-dimensional divergence is analogical to three-dimensional
one, it is defined as a contraction of two-dimensional gradient: div2(·) =
C23 grad2(·). Thus, two-dimensional divergence of the Poisson surface ten-
sion is

div2p(2)
s = grad2γ + γI1bnf . (14)

Poisson, in opposite to Navier, assume that the solid tensor ts, on the
boundary has normal and tangent components: tsns = t(s)ijns(j)ei = σ(s)nns
+τ s [τ sns = 0]. However, a fluid is static one and the Cauchy tensor be-
comes a function only fluid pressure, tf = −pfnf . Then, finally, one can
express the Poisson boundary condition (Eq. (12)) as a normal and tan-
gential parts: [

pf − σ(s)n + γ I1b
]

nf + [grad2γ + τ s] a = 0. (15)
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Let us note that the normal part of this equation was known In the litera-
ture as the Young–Laplace equation for a solid surface.

We must underline also that the Poisson approach is, in any sense, ‘rev-
olutionary’ one. He was able to introduce a new, independent, object into
continuum physics like the ‘surface stress tensor’ p(2). Only the relatively
quick development of FSI was a reason for revalorization of this forgotten
object. Let us assume that, in general, p(2) should be not treated as a simple
adding of fluid and solid surface properties, p(2)

f and p(2)
s , respectively:

p(2) = p(2)
f ⊗ p(2)

s ≈ p(2)
f + p(2)

s . (16)
Now, in generalization of Eqs. (10) and (12), one should distinguish a rea-
soning line ‘de Buat–Navier’, that was a scientific way such scientist as
Stokes, Reynolds, Maxwell, Helmholtz, Piotrowski, Duhem, Rybczyński,
and Smoluchowski, from the line of Poisson. This first one is a line of reason-
ing that is adding to FSI boundary condition many different surface forces
f(r)
f,s; f(a)

f,s; f(m)
f,s [19, 25, 29, 31], etc., The second one is a line of reasoning de-

veloped: Young, Poisson, Stokes, Gibbs, Duhem, Tolman, de Korteweg, and
Screven, which is focused on developing a properties of the surface stress
tensor p(2) [21]. The difference between the surface forces and the surface
tensor is a fundamental one. Therefore, form physical point of view, quite
different physical phenomena could be described by these objects. Thus,
if someone has no imagination of it, and ignores fundamental differences
than, then it is loosed in mathematics. And, the historically clean way of
developing of FSI, is destroyed. Even more, in 1950 Richard Tolman, pro-
posed an original concept of linear stress tensor of Cauchy, p(1), that make
a description of FSI contact more precise and complementary.

Finally, it was Gabriel Stokes who proposed a combination of Eqs. (10)
and (12) on S:

tfnf + tsns + div2p(2)
s + f(r)

f,s + f(a)
f,s = 0, (17)

where appears additional chemical-physical adhesive force f(a)
f,s = $nf . Fur-

ther, Stokes takes the tensor ts as anisotropic linear elastic ts = Lε and
for fluid tf = −pI + 2µ

(
d− 1

3 I1dI
)
− κ I1dI. Then the FSI boundary

conditions for momentum have now the extended Stokes form:[
−pI + 2µ

(
d− 1

3 I1dI
)
− κI1dI

]
nf

+ [Lε]ns + div2(γ a) + ν(vf − vs) +$nf = 0. (18)
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This fundamental equation, being the basic for momentum-FSI, should be
always the pattern, when we starting to more precise describing of mo-
mentum exchange between two continua. For instance, Osborne Reynolds
proposed in 1879 a further generalization of Stokes (Eq. (18)) in the fol-
lowing form:

tfnf + tsns + div2(p(2)
f + p(2)

s ) + f(r)
f,s + f(a)

f,s + f(m)
f,s = 0, (19)

where there appears an additional part f(m)
f,s which is called the ‘mobility

force’. This force is responsible for phenomena for many surface phenomena,
like ‘thermal transpiration’ [12,19,26].

4 Thermal FSI – remarks
Thermal contact on S depends not only of the normal flow of thermal
energy but also on a tangential transport of this energy. If we add, for
our considerations, a surface temperature θ2 responsible for this surface
transport, than we can extend of the classical boundary FSI condition qcf ·
nf + qcs · ns = 0 into a more advanced one. Additionally, we shall consider
a thermal layer (see Fig. 1) which becomes during the contact between
hot fluid and cold solid continua to be described by a thin but finite layer
described by two mechanisms. The first one is the Smoluchowski thermal
jump, described by the thermal length jump lsT and lfT acting from the side
of fluid and solids, respectively; and the second one is the overall transport
of thermal energy in macroscopic vicinity of the contact layer which are
described by the overall transfer coefficients αf and αs. Thus, taking these
above motivations into account, one can propose an advanced boundary
conditions of FSI in the form of thermal energy transport within the thin
thermal layer dividing hot fluid and cold solid to be [1, 20]:

∂t (ρ2cp2θ2) + div2 (ρ2cp2θ2I2v2) + div2 (λ2 grad2θ2)

+ ΛfT
(
T f2 − θ2

)
+ ΛsT (T s2 − θ2) + αf

(
Tf − T f2

)
+ αs (Ts − T s2 )

+
(
ffmech · v

f
slip + fsmech · vsslip

)
+ qcf · nf + qcs · ns = 0. (20)

In the above equation ρ2, cp2 are a mass density and heat capacity of the
thermal layer, v2 is the velocity of thermal layer, that usually can be equal
to vfslip, λ2 – thermal conductivity coefficient of thermal layer; ΛfT = lfT /λf
and ΛsT = lsT /λs are the Smoluchowski jump coefficients from the fluid



Fluid solid interactions – a novelty in industrial applications 85

and solid side, respectively;
(
T f2 − θ2

)
and (T s2 − θ2) are the Smoluchowski

jump of temperature field;
(
Tf − T f2

)
and (Ts − T s2 ) are the classical trans-

fer deriving temperatures between far-field Ts (solid) and Tf (fluid). The
mechanical source of surface energy is described by surface force working
on the slip velocity. And finally, in Eq. (20), the classical thermal-FSI con-
dition, qcf · nf + qcs · ns = 0, describes a normal flow of thermal energy,
where the total fluxes of heat, usually, are treated to be related with: dif-
fusional (Fourierian) transport, turbulent transport, radiative, diffusional
mass transport, non-elastic transport and so on:

qcf = qf + qtur
f + qrad

f + qdiff
f + . . . (fluid), (21)

qcs = qs + qtur
s + qrad

s + qnon-e
s + . . . (solid). (22)

In the above Eq. (21) and Eq. (22) most basic are still the Fourierian mode
of transport described by a classical linear function of temperature gradient:

qs = λs gradTs; qf = λf gradTf . (23)

Note that in the classical thermal-FSI approach, what is nothing else as
‘first order approximation’, there is no the Smoluchowski thermal jump,
therefore fluid and solid temperatures in the thermal layer coincidences:
T s2 = T f2 . If additionally we omit the surface transport of thermal energy
due to overall transport (αs = αf = 0) we obtain: qcf · nf + qcs · ns = 0.
But in the case of CSD, when fluid temperature is assumed to be known
Eq. (20) reduce to αf (Tf − Ts) + qcs · ns = 0, and vice versa, in the case
of CFD, when the solid temperature is assumed to be known Eq. (20) re-
duce to αs (Ts − Tf ) + qcf ·nf = 0. Dimensionless coefficients αs and αf are
known, in the literature, as the Stanton and Biot numbers, respectively.
Note that from the numerical point of view, Eq. (20) is very challeng-
ing. Additionally, at the moment, a state of the art thermal-FSI has no
possibilities for numerical solution of the full energy balance within the
thermal contact layer [16, 17]. The first reason of that is the insufficient
development of the finite element method as well as of the finite volume
method [3, 4]. Actually, both methods are prepared only in order to solve
simultaneously only one part of the equation in the following classical form:
qcf · nf + qcs · ns = 0 [14, 15,22–24].
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Figure 1: Realization of thermal-FSI by coupling of energy balance within the thermal
contact layer, where: qc

s – total diffusive heat flux in the solid body; qc
f – total

diffusive heat flux in the fluid/solid domain; Ts – solid temperature; Ts – fluid
temperature; n – normal vector.

5 Mass-FSI – some remarks
When one has to describe such phenomena as ‘draying of wet wood’ or
‘the evolution of stress-corrosion due to oxygen transport’, there is a need
to start with a FSI-question of coupling of fields through the balance of
mass. The exchanging of mass fluxes, when we are omitting a possibility of
surface mass transport, leads to the classical mass-FSI boundary condition

js · ns + jf · nf = 0, (24)

where the mass fluxes are described, for instance, by the isotropic Fick
relations: jf = Df grad cf ; jf = Df grad cf , where cf and cs are the con-
centration of the same species in fluid and solid, respectively. If the surface
motion of species are important, then one would repeat a line of reasoning of
the advanced thermal-FSI from Section 4. Especially, within a micro-flows,
the surface transport of mass with the slip velocity can give particular
effects [21,28].

6 Electrical-FSI – additional remarks
Transport of electricity within the Solid Oxide Full Cells domain takes
place mainly on a surface of a contact between an electrolyte and anode
or between an electrolyte and cathode [21]. It is therefore some need to
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develop a advanced mode of surface electric current flow. Then the classical
boundary condition j · n = 0 with the Ohm law j = σ gradφ one can to
allow some enhancement of electric current flow due to surface flow of it:

div2 (σ2 grad2 φ2) + j · n = 0, (25)

where the surface electric potential φ2 and the surface conductivity σ2 are
possible to determine from a benchmark so-called ‘triple-junction’ experi-
ment [21,28].

7 Thermal-FSI examples
The main specialization of the Department of Energy Conversion IMP PAN
is the thermal-FSI, therefore, one can find, in the literature numerous ex-
amples of our activity [2, 12, 14, 18, 30, 31, 37, 38]. Few of them are devoted
to concrete, real structures as appears in industrial applications, where the
thermal energy exchange is a leading phenomenon.

Let us start from the first group of examples deals with extremely ‘fast
start up’ of different devices of power plants. The first example of thermal-
FSI application is the main valve in a turbine of 400 MW (Fig. 2).

Figure 2: The distribution of temperature (left) and the Huber thermal effort in 10 min
of the cold start up of the valve [35].

In that case of ‘cold start-up’ the rate of heating of a casing massive body
has a great influence on a state of thermal stresses which we call: the ‘ther-
mal effort’. Up to now, in the literature, there is no enough attention devoted
to a problem of proper describing of the phenomena [15, 18, 32], therefore
we are developing researchers on an application of two concepts of thermal
effort: the Huber and the Burzyński ones.
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Yet another example of immediate start-up is a case of a braking cold
glasses during preparation of tee, when start-up is limited to a few seconds
(Figs. 3–5). In the case when a glass has a thin bottom and relatively thick
walls the process of heating starting from thin plate of bottom, and due
to its thermal expansion arise a great axi-symmetrical pressing of yet cold
vertical wall. It leads, finally, to breaking of the glass via vertical (not hori-
zontal) cracking of walls. The effective Huber-Mises-Hencky stress and the
effective Burzyński stress, calculated according to the Huber and Burzyński
thermal effort hypothesis, significantly differ between them, indicating that
the question of ‘effort hypothesis’ in the case of thermal state of stresses
should be stated from the very beginning.

Figure 3: Distribiuton of boiling water during 3 s [13,17].

Figure 4: Temperature distribution in the water and glass body [13,17].

The second group of thermal-FSI problems deals with cooling of hot ele-
ments of turbines and boilers during shout out. Due to enhanced flexibility
of power plants there is the need for new arrangement of ‘immediate shout
out’ of steam turbines. In Fig. 6 it is show a case of ‘flooding’ of working
hot turbine by a very cold water, such a situation has taken place during
the flooding of river Odra when some auxiliary turbine was accidentally
stopped. From thermal-FSI it follows that ‘immediate shout out’ by cold
water leads to equalization of temperatures yet after half of hour. The max-
imum thermal stresses appears within the rotor narrowing, and are ranges
of 0.3Rm.
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Figure 5: Distribution of the Huber and Burzyński thermal efforts during of glass heat-
ing [13,17].

(a) (b)

(c) (d)

Figure 6: The temperature field of water and turbine structure metal: a) at the beginning,
b) 1 h, c) 2 h, d) 12 h [16].

An another problem which appear during cooling of hot machines with ro-
tating parts, is so-called ‘wear off’ of moving elements with, for instance, the
casing of turbine [30,34]. Since the body of construction are usually massive
and cannot shrink up in the same time as the rotor shrinking, then after
few minutes of cooling the phenomena of ‘wear off’ starts lading to intensive
vibrations and noise. In Fig. 7 it is shown of relative thermal displacements
of crucial rotor elements, which indicate how huge axial clearances must be
designed.
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Figure 7: Comparison of thermal elongations during free and forced cooling of the
400 MW turbine rotor [30].

8 Mass-FSI examples

Stress-corrosion cracking (SCC), appearing within he blade system anchor-
age, is a very dangerous, delayed, failure process where corrosion is stim-
ulated by the level of stresses. It means, cracks initiate and propagate at
a slow rate (for example, 10 µm/s to 10 m/s) until the stresses, in the re-
maining ligament of metal, exceed the fracture strength. Since a sequence
of events involved in the stress-corrosion cracking process usually consists
in three stages, one can take only the main mechanism like: crack initiation,
steady-state crack propagation; and crack propagation or final failure. In
the case under consideration we are interested in a metal embrittlement due
to the rate of corrosion, since a mode of final failure of blade was not a brittle
fracture but continuous ductile, high cyclic, damage. It was assumed that
a mechanism of hydrogen reaction, evolution, absorption, diffusion leads to
‘embrittlement’, and the front of ‘embrittlement’, propagate into the body,
being constant within every finite element. However, this specific mecha-
nism is able to explain the continual crack-propagation rates. The mass-FSI
can provide the hydrogen of steam from internal channels of anchorage to
the FSI-surface S where take place of adsorption of environmental species
connected with surface reactions, that rates depends on the level of surface
stresses. This manner of mass-FSI action can be described as: ‘one-way
coupling’ (Fig. 8).
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Figure 8: The domain of stress-corrosion phenomena under FEM modelling, the main
surface of contact is SA-SE: SC – surface contact, SE – surface erosion, SD
– surface distance, SA – surface active, SB – surface boundary; the numerical
values given in the figure on the right are stresses in MPa.

For this illustration, an internal hydrogen embrittlement mechanism is as-
sumed in order to minimize the number of possible rate-determining steps.
For the typical steam turbine conditions (temperature, pressure, pH, so-
lute concentration and activity) we have modeled surface influx of hydro-
gen mass, and propagation of front of embrittlement into a metal. There
is the stress controlled process than the corrosion is more intensive if the
stretched stresses are higher (Fig. 9). Our numerical simulation have shown

Figure 9: Resulting stresses within the corrosive layer of thickness 60 µm, the blade still
under kinetic-static loading (3000 rpm) equivalent to normal blade stresses
σzz = 140 MPa.
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that changes in the steam environment of ‘blade food’ that modify the
rate-determining step will have a dramatic influence on the rate of embrit-
tlement front propagation, while alterations to factors not involved in the
rate-determining step will have little influence, if any. The observed in situ
corrosive layer thickness 60 µm can be obtained even in the time of three
weeks. It is time identical with the time of breakdown of blade.

9 Biological-FSI example
The most important are the cases of ‘double-way coupling’ when, due to
significant displacement of solid, the motion and velocity of a moving dis-
cretization lattice w should be also determined. One important case is the
motion of a common carotid artery (CCA), due to blood pressure pulsation
during a period of 1 s. The internal diameter of the artery [normal, healthy
patient] change during the period from 2.5 mm to 4.7 mm, since thin wall
of the intima-media has an even negligible rigidity and is very extensible.
In this case the momentum FSI boundary conditions (Eq. (19)) reduce to
the so-called Young condition:

τ intima−media
wall = τblood

wall < 150 Pa, (26)

which is known in the medicine of hypertension disease [27]. In the hyper-
tension disease the ‘wall stress’ is a criterion of an illness, and the level of
150 Pa is treated to be safety for a man.

10 Momentum-FSI examples
Yet another interesting case of application of ALE description is a vibrating
motion of elastic flexible steel sheet having displacements reaching even 50
time more than its thickness (see Fig. 10). It means that the ‘geometri-
cally non-linear-CSD’ analysis is unalienable and the deformations of dis-
cretization lattice within the fluid domain are meaningful and cannot be
ignored [10].

Going into another example, in industral practice is known a cases of
a flutter motion apperaing in the last stages of turbine blades. This case
needs the forced vibriation analsis, that occoears in unstationary flow of
water steam within low pressure conditions. In Fig. 11 it is shown an vibrat-
ing modes induced by ‘one-way coupling’ simulation of the Baumann blade
which occours in flutter motion with the resonance freqency H7 = 4300 Hz.
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Figure 10: Motion of flexible sheet in the wind channel: a) a detail of a mode of fluid
motion at the tip of sheet, b) comparison of the calculated and measurement
shape of sheet [10].

Figure 11: Resonance modes of flatter motion of the Baumann blade.

11 Conclusions

The aim of our paper is two-fold. Firstly, we want to turn an attention of
reader into a possibility of incorporating a quite new range of the phys-
ical ‘surface dominated phenomena’ into scientific considerations. In our
opinion, the fluid solid interaction (FSI) as a young science, has a very
promising perspectives of developing, both within the framework of the
finite volume method as well as the finite element method. It is obvious
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that the ‘advanced-FSI’ boundary conditions governed by Eqs. (19)–(20),
(24)–(25) are especially promising for description and modelling of micro-
and nano-mechanics. It follows from our achievements [1,13,20,33–38] that
such sophisticate phenomena like ‘thermal transpiration’; or the Smolu-
chowski jump, can be correctly described within the framework of contin-
uum physics [19,25].

Secondly, it was even more evident to shown the importance of numerous
applications of FSI into power plant industry. In the last ten years the
team of Department of Energy Conversion IFFM PAS at Gdańsk make
a numerous works owing to step by step developing experience in using and
developing of the FSI analytical and numerical tools. We are sure, that the
numbers of application of FSI will increase sufficiently, and the ‘fluid solid
interaction’ becomes an accepted branch of science.

Received 25 October 2021
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