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ZASTOSOWANIE SIECI NEURONOWYCH W MODELOWANIU
MATEMATYCZNYM PROCESU SEDYMENTACJI

Urządzenia sedymentacyjne są powszechnie stosowane w oczyszczaniu zawiesin przemysłowych i w
gospodarce komunalnej. Efektywność procesu sedymentacji ma ważne znaczenie w ochronie środowiska.
Celem badań było rozpoznanie możliwości zastosowania sieci neuronowych do obliczania efektywności
procesu sedymentacji. Jako dane wejściowe do przetwarzania wzięto wyniki obliczeń otrzymanych z symula­
cji komputerowych prowadzonych według modelu matematycznego uwzględniającego obciążenie powierzch­
niowe w urządzeniu sedymentacyjnym oraz parametry fizyczne zawiesiny, w tym gęstość rozkładu prawdo­
podobieństwa wielkości cząstek fazy stałej. Rozważano i porównywano dwa typy funkcji gęstości rozkładu
wielkości cząstek fazy stałej zawiesiny: rozkład logarytmiczne-normalny i uogólniony rozkład gamma.

Badania zostały przeprowadzone za pomocą sieci typu feed-forward (bez sprzężenia zwrotnego o jed­
nym kierunku przepływu informacji). Wybrano sposób uczenia z nauczycielem metodą wstecznej propagacji
błędu (backpropagation) według algorytmu Levenberg-Marquardta. W przypadku, gdy sieci były uczone za
pomocą zbiorów zawierających poniżej 400 zestawów danych wówczas popełniane błędy przekraczały war­
tość I%. Sieci uczone za pomocą zbiorów zawierających około 500 zestawów danych dawały możliwe do
zaakceptowania wyniki. Popełniany przez nie błąd był mniejszy niż I%. Na tej podstawie można wniosko­
wać, że najmniejszym uczącym zbiorem danych, jest zbiór zawierający około 500 zestawów. Najlepsze
wyniki obliczeń uzyskano, gdy liczba zestawów wynosiła 5 tysięcy - różnice obliczeń efektywności sedy­
mentacji wynosiły poniżej 0.5 %. Dalsze zwiększanie liczby zestawów danych powyżej 5 tysięcy obniżało
dokładność obliczeń.

Summary

The sedimentation devices are commonly used in the clarifying of industrial suspensions and in the civil
engineering. The sedimentation efficiency plays very important role in the environmental protection. The aim
of the research was to investigate the possibilities of applying neural networks in computing the efficiency of
sedimentation processes. Input data were the results of computer stimulation performed according to the
mathematical model taking into account the overflow rate in the sedimentation facilities and physical para­
meters of the suspension, such as probability density function of solid particle size. Two probability density
functions of solid particle size were compared: log-normal distribution and gamma distribution.

Feed-forward neural networks (with no feedback and with one- stream flow of information) were ap­
plied in research work. Teacher-supervised teaching, according to back-propagation method with the use of
Levenberg-Marquardt algorithm, was chosen. When neural networks were taught with the use of sets includ-
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ing less than 400 data elements, the errors were more than I%. Neural networks taught by means of series
including more than 500 data sets would yield acceptable results and the error was less than I%. Accordingly,
one can presume that the smallest teaching set is the one composed of 500 data elements. The best results
were obtained when the number of data sets was about 5 OOO - the differences in computed sedimentation
efficiency were then less than 0.5%. A further increase in the number of data elements - above 5 OOO - would
lead to lower accuracy of calculations.

INTRODUCTION

Water plays a very important role in interrelated natural processes. It has very special
functions and has to be protected from pollution. Coal mines and steelworks are main
sources of inland water pollution. Unfortunately, the usage of closed water circulation
systems in technological processes still cannot eliminate solid contaminants, such as heavy
metals and other toxic compounds.

In industry water is mainly treated in settling facilities - various types of settling tanks.
The costs of settling tank operation and maintenance are low though the investment costs
tend to be rather high. To ensure a long service life of settling tanks utmost care is given to
settling tank modernisation to improve the efficiency of sedimentation processes and hence,
to obtain better results of water purification. Lamella sedimentation is a method for more
intense water purification, widely applied nowadays. Application of lamella sedimentation
improves the efficiency of processes or machine capacity. Forecasting the sedimentation
efficiency is the fundamental though most difficult problem in design of lamella
sedimentation facilities.

The results of theoretical and practical studies on modernisation of settling tanks with
lamella packets [2, 6] include not only their application in mining and metallurgy but also
the development of design methods based on mathematical models providing analytical
results. At present the Department of Technological Device and Environmental Protection
is engaged in new research on new lamella sedimentation technologies and new designs of
sedimentation facilities. They include studies on cross-current sedimentation processes
[7, 8], the efficiency of which will be much higher than that of counter-current
sedimentation processes, and on sedimentation processes in a complex system including
co-current and counter-current flows of suspension. Sedimentation facilities and processes
are so complex that the possibility of formulating a proper analytic mathematical model is
said to be minimal. To solve such difficult and complex non-linear mathematical problems
the researchers often resort to neural networks. The research work presented in this study
was undertaken with the aim to recognise the potentials of neural networks for forecasting
the efficiency of the sedimentation processes and mechanisms.

Neural networks can be used in such applications thanks to some of their features
[13, 14, 16]:

the possibility of creating free, non-linear transformations without formulating proper
mathematical models (i.e.: without showing the relationships between input and output
data),
the possibility of teaching a given neural network i.e. the process of developing proper
non-parametric mapping of output data into input data in the net,
the possibility of multidimensional data processing thanks to the parallel structure of
the network, hence parallel data processing is possible.
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Because of those features neural networks can be used in many branches of science
and industry, e.g. in modelling of chemical engineering processes [4, 14], in modelling of
metal plastic working [9, 10, 14] and in detection and location of structural defects [11].

The aim of the research is to determine the possibilities of neural networks application
to forecasting the efficiency of sedimentation facilities when one of the most important
factors influencing that efficiency, i.e. the solid particle size is a random variable with the
log-normal or generalized gamma distribution.

CALCULATION OF SEDIMENTAION EFFICIENCY FOR LOG-NORMAL
DISTRIBUTION OF SOLID PARTICLE SIZE

First studies on applications of neural network to calculations of the sedimentation
efficiency are presented in [4]. The calculations provided there are based on the assumption
that the distribution of solid particle size is the log-normal distribution with the density
function ft. d; 111, CJ) 

f( dim.o )= ~ exj- _!_( In d-m 12]
Zn do ł'l 2l CJ ) 

(1) 

where
d - solid particle size (particle diameter),
111 - parameter of distribution - the mean value of distribution function of particle

diameters,
CJ - parameter of distribution - the standard deviation of the particle diameter

distribution function.
The sedimentation efficiency is obtained from the formula:

(2) 

where
TJ - the efficiency of sedimentation,

<PN ( x) - the value of log-normal distribution function of x, 

dg - diameter of the limiting particle, i.e. a particle whose rate of descent equals

the overflow rate q. 

The relationship between the diameter of limiting particles and the overflow rate q is
derived from the Stokes equation applied on the basis of the generalized Hazen's
sedimentation theory [5], that is:
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(3)

where
tło - dynamic viscosity coefficient,

p,p
0 

density of solid particles, density of the medium (liquid),

q - overflow rate,
g - gravitational acceleration.
The coefficient of dynamic viscosity µ0 depends mainly on temperature t. For water

this dependency may be obtained from an empirical equation (4)

1 +0.0337 t + 0.000222 t2 
(4) 

The choice of log-normal distribution of particle size was justified by the fact that it is
simple for calculations and it is frequently used in mathematical modelling of
sedimentation processes. The log-normal distribution involves two parameters only and
therefore the calculations are relatively simple. It is a well-known fact, however, that a
smaller number of parameters leads to a lower precision of calculations.

CALCULATION OF SEDIMENTATION EFFICIENCY IN THE CASE
OF THE GENERALIZED GAMMA DISTRIBUTION OF PARTICLE SIZES

We can make an assumption that distribution of the solid phase in the suspension is a
random variable with generalized Stacy gamma distribution. That generalized distribution
has three parameters: da, p, n. The function of probability density j( d; da, p, n) can be
written as:

f(d;d
0
,p,n)= n ( !!_)pn-t ·exp[-(!!_)"]

do f'(p) l do l do 
(5) 

where
do 

p, n 
re»

- distribution parameter, called the scale parameter,
parameter of distribution, called shape parameter,
gamma Euler function defined by the equation:

=
f'(p)= f xp-l «: dx 

o

(6) 

When the solid particle size follows the generalized gamma distribution, the efficiency
of sedimentation rJ is defined by the equation (7):
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[ ( d Jill [ ( d 111: r pr-_[_ 2 r p+~r_L 

nt d ·d p n)=l- do +[~] - n do 
g, o,, I'(p) dg I'(p) 

(7) 

where 
r(a,b) - incomplete gamma function defined by the equation 

b 

r( b) _ 1 f a-1 -r d a, --- x · e t 
I'(c) o 

(8) 

And in relation to (7): 

n 
a=p or a=p+- 

2 l
d l/1 b= __f_ 
do 

(9) 

STRUCTURE OF ANALYSED NEURAL NETWORKS 

When studies on the applications of neural network to calculating the sedimentation 
efficiency were undertaken, an assumption was made that the created neural networks 
should have the structure of reversed pyramids and that they should have three layers plus 
the input one. It is the best configuration of a feed-forward network, taught by a teacher. 

The structure of compared neural networks is presented in Fig. 1, for the log-normal 
distribution of particle size the structure is [5 20 11 1], which means that the number of 
inputs ,, i" is 5; input data included the following parameters: 

- temperature - ranging from 1 O to 40°C, 
p - density of solid particle material ranging from 1 500 to 4 500 kg/rrr' 
m - the mean value of natural logarithms of solid phase particles ranging 

from 0.5 to 3.5, 
a - standard deviation of natural logarithms of solid particles size ranging from 

0.1 to 1.2, 
q - overflow rate ranging from of0.l to 2 m3/m2/h. 

There are 20 neurons in the first hidden layer (j = 20) and 11 neurons (k = 11), in the 
hidden second layer while the output layer has only one neuron. The datum at the network 
output (i.e. the correct response of the neural network to input data) was the efficiency of 
sedimentation TJ obtained from the equation (2). The results of computer calculations are 
presented in [4]. 

To examine networks being taught on data generated from the mathematical model in 
which particle sizes followed the generalized gamma distribution, the network with the 
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Fig. 1. Structure of studied neural networks

structure of [6 20 11 l] was created. It means that the index i for that network was 6, j was
20 and index kwas 11. Input data include the following parameters:

t temperature - ranging from 10 to 40°C,
p density of solid particle material ranging from 1 500 to 4 500 kg/rrr'
d0 scale parameter of the generalized gamma distribution of particle size,
p shape parameter of generalized gamma distribution of particle size,
n shape parameter of generalized gamma distribution of particle size,
q overflow rate ranging from 0.1 to 2 m3/m2/h.

The parameter at the network output was the efficiency of sedimentation 77 obtained
from the equation (7).

COMPUTER SIMMULATION USING THE GENERALIZED GAMMA
DISTRIBUTION

Selection of appropriate data is of primary importance for neural network teaching.
Input data in the present analysis are the simulation results obtained on the basis of
mathematical models presented in the earlier sections.

Another important problem is the choice of adequate software affording the
development and analysis of neural networks. MATLAB software package [l, 15] is
considered to be the best and the most suitable one (mainly because it is easily available
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and has strong computing power). All calculations were done at the University Computer 
Centre CYFRONET-AGH, using the computer "Maria" having the computing power of 
11.52 Gtlops. 

Several options of computer programs for generating and teaching neural networks 
were developed using the chosen mathematical model and the software package. 
Additionally, the programme for network testing was created. The aim of the final stage of 
research was to carry out numerous tests on different types of neural networks. The results 
help to answer the question whether neural networks taught from data sets generated by 
mathematical models based on gamma distribution of particle size can be applied in 
calculations of the sedimentation efficiency. 

The method uses feed-forward neural networks (with no feedback, providing only one 
direction for information flow). A teacher-supervised method (backpropagation method, in 
accordance with the Levenberg-Marquardt algorithm) was selected. 

In the first stage the approximated size of the neural network was defined. 
Accordingly, eight neural networks were created, with different numbers of neurons in the 
subsequent hidden layers. Networks were taught by means of data set including 5 OOO data 
elements - generated at random, according to the mathematical model. It allowed for 
specifying the number of neurons in the subsequent hidden layers: 20, 11, l neurons, 
respectively. 

These neural networks were taught with data sets of various size so as to obtain the 
neural network model where the approximation results would best agree with the input 
data. Data sets used in teaching were recorded in teaching sets of variable length, including 
data at the network input and correct answers at the output. 

The teaching process was restricted to 100 periods only so as to prevent network 
overlearning and to limit the teaching time (it was found out that 100 periods were 
sufficient because after that the teaching process would stop). Besides, the minimal error 
made by the network was limited to 10-7_ It means that whichever restricting value is 
reached, the teaching process is interrupted. 

DISCUS ION OF RESULTS 

The results of several computer simulations reveal that in situations when networks 
were taught with sets including 400 data sets the errors exceeded l %. Only the networks 
taught with sets including 500 data sets would yield acceptable results and the error would 
be less than l %. Accordingly, we can conclude that the smallest teaching set ought to 
include 500 elements. It should be mentioned here that when other neural networks are 
applied (different in size, structure or kind), the size of the required teaching set can slightly 
change. The relationship between the standard error value and the number of data sets in 
the teaching series for the neural network structure [6 20 11 l] is presented in Fig. 2. It can 
be clearly seen on the graph that the number of 5 OOO data sets in the teaching series seems 
the most effective one in the light of standard error minimization. Further increase in the 
number of data sets (in excess of 5 000) leads to greater errors. 

Thus we conclude that computations of the mean standard error and the smaHest 
number of data sets in a teaching series seem to be most representative and valuable options 
for further analyses. 



66 WŁODZIMIERZ P. KOWALSKI, KRZYSZTOF KOŁODZIEJCZYK, TOMASZ ZACHARZ

0.040 

O.D30 

...g 
O) 

-o 0.020 [ii 
-o
C

t! 

0.010 

O.OOO 

ł

'

l__ ------ --<- .
o 2000 4000 6000 8000 10000 

number ofdata sets in the teaching series

Fig. 2. Standard error value for networks with the structure [6 20 11 I) vs. number of data sets in the teaching
series

Results obtained for 5 OOO data sets are presented in Fig. 3 and 4. Fig. 3 shows the
differences in calculated values of sedimentation efficiency, while Fig. 4 presents the
relationship between the efficiency obtained at the network output and the corresponding
value calculated from the mathematical model. It follows from Fig 3 that the differences in
calculated values fall into the interval (-0.005, 0.005). The maximum error was 0.003616
while the standard error was 0.001092, which may be considered very good results.

Analogous relationships for networks taught with data sets composed of 500 data
elements are presented in Fig. 5 and 6. Here, the maximum error was 0.021953 while the
standard error was 0.005765. These results are worse than the previous one, yet the data set
had only 500 elements. However, taking into consideration the accuracy of sedimentation
efficiency measurements in industrial conditions, the results can be regarded as satisfactory.

COMPARISON OF CALCULATION RESULTS OBTAINED FOR TWO TYPES
OF SOLID PARTICLE SIZE DISTRIBUTIONS

The standard error for neural networks with the structure [5 20 11 l] (log-normal
distribution) and neural networks with the structure [6 20 11 l] (generalized gamma
distribution) are presented in Fig. 7. A data set containing 108 testing series was used to
extensively test the networks.

Graphs representing the errors made by the two neural networks are presented. It can
be clearly seen that for teaching series including more than 500 data sets the error would
remain on the same level (0.5%). Major differences are found when we deal with smaller
data sets (about 300 elements).

Network teaching using the data generated by generalized gamma distribution leads
to much smaller errors. That is related to the number of neurons in the input layer which
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Fig. 3. Differences between sedimentation efficiency at the output of networks taught with series including 
5 OOO data sets and sedimentation efficiency computed in accordance with the mathematical model 
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Fig. 5. Differences between sedimentation efficiency at the output of networks taught with series including
500 data sets and sedimentation efficiency computed in accordance with the mathematical model
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Fig. 7. Standard error value in calculations for neural networks having the structure [6 20 11 I] (generalized 
gamma distribution) or [5 20 11 I] (log-normal distribution) and being taught using series with variable 
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involves the greater number of data in the teaching series, even though the number of data 
sets remains the same. It can be concluded, therefore, that both the number of data in the 
teaching series and the number of network inputs (i.e. the number of neurons in the input 
layer) are most important. When the number of inputs is very small but the number of data 
sets is significant, the network can make major errors. The results of the research work 
reveal that there is a certain optimal number of neurons for which the network gives the 
best results, hence there might also be a certain optimal number of data sets at the input (the 
number of network inputs) which ensure the best results. 

When analysing the graphs, we notice that apart from mathematical model used to 
generate teaching sets, the smallest errors are found in networks taught by means of series 
including 5 OOO data sets. We have to bear in mind that the difference in quality of network 
answers appears only when the error made by the network is considerable, beyond the 
acceptable range. In earlier studies the acceptable error was found to be the one involved in 
network teaching with the series including 500 or more data sets. 

CONCLUSIONS 

The analysis and discussions of results leads us to the conclusion that application of 
neural networks as the ,,tool" for evaluating the efficiency of sedimentation processes is 
justified. It follows from the comparison of the two methods that better results are achieved 
for neural networks taught with data sets generated on the basis of mathematical model 
assuming tri-parameter generalized gamma distribution of particle size. However, better 
results are obtained throughout the range where neural networks cannot be used to calculate 
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the sedimentation efficiency. In the light of these conclusions, both mathematical models
seem to have an equal value for practical applications. The differences in quality of
calculations can be explained by the architecture and number of data at the network input,
and not by quality of data generated by the two mathematical models.
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