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Abstract
The world population, and thus the need for food, is increasing every day. This leads to the 
ultimate question of how to increase food production with limited time and scarce land. 
Another obstacle to meet the food demand includes the stresses a plant goes through. These 
may be abiotic or biotic, but the majority are biotic, i.e., plant diseases. The major challenge 
is to mitigate plant diseases efficiently, more quickly and with less manpower. Recently, 
artificial intelligence has turned to new frontiers in smart agricultural science. One novel 
approach in plant science is to detect and diagnose plant disease through deep learning and 
hyperspectral imaging. This smart technique is very advantageous for monitoring large 
acres of field where the availability of manpower is a major drawback. Early identification 
of plant diseases can be achieved through machine learning approaches. Advanced ma-
chine learning not only detects diseases but also helps to discover gene regulatory networks 
and select the genomic sequence to develop resistance in crop species and to mark patho-
gen effectors. In this review, new advancements in plant science through machine learning 
approaches have been discussed.
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Introduction

The food demand is scaling upward day by day to meet 
the demands of an increasing population. But food se-
curity is threatened by various factors like unpredicted 
climate change, biotic and abiotic stresses, etc. Of all 
the alarming factors, biotic stress due to pathogen at-
tacks is the major one. Plants are vulnerable to many 
foreign pathogen attacks. Crop plants can be affect-
ed by more than one pathogen at a single time. The 
diverse nature of crop plants and the varied symp-
toms shown by the plants, onset of disease diagnosis 
are not possible by only optical observation. Some-
times a plant pathologist also faces problems iden-
tifying a disease correctly. Reports have shown that 
more than 50% of crop loss is mainly due to pests and 

diseases which can have negative consequences on all 
the entrepreneurs, industries, and mostly small farm 
holders whose entire livelihood depends on agricul-
ture (Harvey et al. 2014). Additionally, more than half 
of the population of developing countries are hungry 
and poor, hence making developing countries vulner-
able to pathogen-derived disruptions in the food sup-
ply chain (Sanchez and Swaminathan 2005). Hence, 
rapid detection, accurate diagnosis, and timely man-
agement of plant diseases can be the only solution 
for profitable agriculture. Therefore, in the modern 
era of agriculture, the inclusion of smart technologies 
can be a new frontier in plant disease detection and 
diagnosis.
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Efforts have been made in past years to prevent crop 
loss through integrated pest management (IPM). Rap-
id and correct identification of diseases is the first and 
foremost step for an effective crop protection strategy 
(Ehler 2006). Many governments and non-governmen-
tal organizations (NGOs), agricultural institutions, ex-
tension officers, or plant clinics have been working for 
a long time in rural and urban areas to avoid crop loss. 
Recently, the launching of a wide range of digital plat-
forms and online services has made it easier for both 
farmers and organizations to disseminate information 
more quickly (ITU 2015). Nowadays, the increasing 
use of the internet and mobile phones throughout the 
world has made a “one-click solution” approach for 
farmers. An automated computational plant disease 
detection system can facilitate and assist a patholo-
gist with easy disease detection (Mohanty et al. 2016). 
A simple and user-friendly system could be a novel 
tool for all farmers of the world who are facing difficul-
ties due to the scarcity of infrastructure. Entrepreneurs 
and industries having acres of land can also reduce 
time and labor costs with the use of smartphone-based 
approaches. Advanced HD cameras, extensive built-in 
software, and storage capacity have made it possible to 
create an effective plant disease diagnostic tool. 

The discovery of various graphical processing units 
(GPU) and advancements in machine learning-based 
artificial intelligence has gained so much popularity 
due to the development of many improvised models 
and methodologies leading to the formation of a new 
category termed deep learning (LeCun et al. 2015). 
Both machine learning and deep learning fall under 
the broad category of artificial intelligence (AI). Deep 
learning is a sub-category and an updated version of 
machine learning. Machine learning (ML) uses a wide 
range of algorithms, analyzes and then make decisions. 
On the other hand, deep learning creates an ‘artificial 
neural network’ by organizing the data to make an in-
telligent decision.

Deep learning models have highly advanced and 
feasible sectors like voice and image recognition. It 
analyzes a high volume of data to assist other related 
applications (LeCun and Bengio 1995; Ciresan et al. 
2011). Although the applications are limited, these 
models are used for easy and rapid detection of plant 
diseases. More exploration and incorporation of recent 
advanced techniques can open new ways in agriculture. 
Multiple tasks can be performed by these deep learn-
ing approaches such as leaf retrieval, image segmenta-
tion, deep analysis of high-volume data, and identifica-
tion of the problem. The first step is leaf retrieval which 
is challenged by various factors. The 2nd step, image 
processing is the most important step since the ac-
curate detection and identification of diseases mainly 
depend on this step. Image processing is carried out by 

the Chan-Vese algorithm which is the most effective 
one for proper segmentation. The last step is carried 
out by migration learning algorithms which analyze 
a set of data of diseased leaves to identify the disease.

Convolutional Neural Networks (CNNs), being 
a significant and powerful technique, can perform 
pattern recognition and can analyze a large volume of 
data. Thus, CNNs are one of the basic tools of deep 
learning used in agriculture. There is much evidence 
that these CNNs include effective systems to iden-
tify plants based on the morphological pattern of the 
leaves (Grinblat et al. 2016). In 2016, Sladojevic and his 
co-workers developed a model having a 91 and 98% 
success rate to detect 13 diseases of five different plants 
by using databases available on the internet (Sladojevic 
et al. 2016). Satisfactory performance was observed 
with the CNN model, developed by Fuentes and his 
co-workers for the detection of nine different tomato 
pests and diseases (Fuentes et al. 2017). 

Application of machine learning  
and deep learning  
in plant-pathogen interaction

Applications of machine learning can be used for non-
invasive plant disease detection, classification and pre-
diction technology. Disease and pest severity and its 
estimated loss are easily calculated through machine 
learning (Popp et al. 2013). Image processing and re-
mote sensing can give a high impact as light reflectance 
of a healthy leaf which will differ from that of a stressed 
leaf compared to visual analysis. These modern tech-
niques can be very useful and accurate crop protec-
tion strategies. Chlorophyll fluorescence sensors and 
thermography are two important measures used in leaf 
surface temperature and in chlorophyll activity analy-
sis. Both of the aforesaid sensors are very powerful for 
detecting stress responses, but different pathogens are 
not accurately distinguishable. Multispectral or hyper-
spectral sensors are considered to be two complemen-
tary techniques. Multispectral remote sensors con-
struct relatively few bands. Radiometric and geometric 
adjustments of the data are required to classify symp-
tomatology (Landgrebe 2003). Hyperspectral imaging 
constructs hundreds of narrow bands par pixel in the 
outcome image which accurately distinguish various 
symptoms (Lowe et al. 2017). Pre-processing and di-
mensionality reduction of hyperspectral imaging data 
is impactful to avoid the of dimensionality (Bruce et al. 
2002). Inefficient technology costs, therefore increas-
ing maximum storage capacity data through super-
computing is the trend of progress in this streamline 
(Table 1). 
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Earlier studies have demonstrated the utilization of 
less than 100 to more than 10,000 images for the test-
ing and training of different DL models (Moshou et al. 
2004; Ferentinos 2018).

Application of machine learning 
based on wide genome scale 

Machine learning has proven to be one of the major 
players in developing genomics such as whole genome 
sequencing driven by data explosion. In addition to 
this, the application of ML has spread to omic stud-
ies such as proteomics, metabolomics, structural ge-
nomics and regulatory genomics (Yip et al. 2013; Lib-
brecht and Noble 2015; Angermueller et al. 2016; Zou 
et al. 2019). The application and function of machine 
learning networks is also observed in the prediction 
of fungal and bacterial pathogen effector proteins, 
selection of resistance gene or genes against several 
pathogens and analyzing different gene regulations, 
etc. (Table 2). Several ML models can manage a wide 
range of “numerical algorithms” and algorithms 
which confer selection of resistance genes in plants, 
its function, rate of disease severity and some com-
plex traits (Gonzalez-Camacho et al. 2018). Moreo-
ver, ML models include advance technologies like 

hyperspectral imaging and genomic selection which 
have wider applications in plant science (Crossa et al. 
2017).

Various models for plant disease 
detection

GoogLeNet 

It is a 22-layer deep learning network and its archi-
tecture can solve computer vision tasks like object 
recognition and image classification, presented in 
the ImageNet Large-Scale Visual Recognition Chal-
lenge 2014. Nowadays, it is used for computer vision 
tasks such as adversarial training, face recognition, 
and detection. The input layer of this architecture 
takes an image of 224 × 224 dimensions. It achieves 
efficiency by simultaneously reducing the input im-
age and retaining important spatial information. This 
architecture is a powerhouse with high computational 
efficiency. GoogLeNet architecture consists of nine 
inception modules and two max-pooling layers be-
tween inception modules. The main goal of these max-
pooling layers is to downsample the input through the 
reduction of the width and height of the input data. 
Another effective process is reducing the input size by 

Table 1. Applied machine learning technology under different disease prediction models

Application Model Details References

Septoria blotch disease on wheat RF

The proposed model applied by Spectroradiometer, IR 
thermometer and Chl fluorescence for measurements. In this 
model 119 diverse vegetables were studied with respect to 
photosystem II, quantum quantity and leaf surface area 

Odilbekov et al. 
(2018)

Rape oil seeds infected by Alternaria 
(under glass house conditions) 

NN

The model consisting of two linear hyperspectral scanners  
and a thermographic camera. The wavelengths in the range 
of 430–2376 nm were employed for classification, with 
increments of c. 32 nm per pixel. The second derivative is 
practiced which estimates the switch in the slope of the curve

Baranowski et al. 
(2015)

Tomato infected  
with Phytophthora infestans 

NN
Measurements of hyperspectral images from soil and canopies. 
Utilization of wavelength, soil value and mean spectral values

Wang et al. 
(2008)

Easily detect infected plants  
from clusture caused by the causal 
pathogen Oidium neolycopersici,  
by using thermal image screening

SVM

A thermal imaging camera and pair of visible light imaging 
cameras. Features utilized in classification are standard 
deviation of temperature values measured by luminance, mean 
values of cyan and yellow color and a channel as well  
as disparity (depth information)

Raza et al.  
(2015)

Plant disease detection and diagnosis 
with the application of deep learning 
to differentiate between 58 classes  
of plant species and diseases

CNN
The collected image data of leaves from open data resources  
of 25 plant species

Ferentinos 
(2018)

The pre-planting risk prediction of 
Stagonospora nodorum blotch

MR, NN, RF
Prediction using longitude, cultivar resistance, latitude, 
preceding crop, seed treatment, tillage type and wheat residue, 
seeding rate and 431 unique disease cases

Mehra et al. 
(2016)
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lessening the networks’ computational load. Gaining 
a proper understanding of GoogLeNet architecture is 
very crucial to knowing the advancement of deep conv 
networks within the deep learning field. 

Cifar-10 

Cifar-10 is a collection of images used in several com-
puter vision algorithms and machine learning. This 
dataset can be used to train a computer to recognize 
several objects. It contains 60,000 color images of 
32 × 32 in 10 classes. There are 10,000 test images and 
50,000 training images. It carries five training batches 
and one test batch. The training batches do not contain 
evenly distributed images and are in random order. 
The images in this dataset are of low resolution and 
allow researchers to try different algorithms. 

AlexNet 

This is a convolutional neural network architecture, 
introduced in 2012 for the composition of a consecu-
tively stacked convolutional layer. This trained network 
uses graphical processing units (GPUs). It has eight 
layers, of which five are convolutional layers and three 
are fully connected. The special features of AlexNet are 
Multiple GPUs, ReLU Nonlinearity, and overlapping 
pooling. The multiple GPUs system carries half of the 
model’s neurons on one GPU while the other half is on 
another GPU. It also requires less training time than 
other models. Similarly, this model uses a standard 

function, i.e., Rectified Linear Units (ReLU) which 
takes less time and is six times faster than CNN using 
tanh function. Overlapping pooling can cause a reduc-
tion of error of 0.5% and can be harder to overfit.

ResNet-20 

This model, Residual Network, was proposed in 2015 
by Microsoft researchers. It requires skipping con-
nections and connects directly to the output by skip-
ping training of a few layers. The major advantage of 
this type of connection is, if any layer disturbs any of 
the performance, then it will be skipped through regu-
larization. ResNet is far more accurate than other sys-
tems which also use skip connection such as highway 
networks, LSTM, etc. The approach behind this net-
work is to allow the network to fit the residual map-
ping.

VGG16 

VGG16 is a CNN model which was proposed by 
K. Simonyan and A. Zisserman from Oxford Uni-
versity. The whole dataset is comprised of more than 
14 million images belonging to 1,000 classes. AlexNet 
is usually preferred by substituting large kernel-sized 
filters with multiple kernel-sized filters. The major dis-
advantage of this model is that it is very slow to train 
and has large bandwidth. This model is 533 MB which 
is a drawback. But still, it is used in many deep learning 
image classification problems.

Table 2. Machine learning models applied for the prediction of genomic data for plant pathogen interaction and effector proteins for 
sub-cellular localization 

Description Model References

Forecast of bacterial type-IV secreted proteins by the application of 100 C-terminal residues. The 
negative training sets of non effectors were generated by arbitrarily choosing proteins from the 
organisms represented in the positive training set

SVM
Wang et al.  

(2014)

The creation of gene regulatory network of the pathogenic fungus Fusarium graminearum out 
of many transcriptomic datasets

BNI
Guo et al.  

(2016)

Molecular research for rust resistance by using genomics which encompasses example scripts of 
ML models for forecasting resistance against rusts in wheat

RF, SVM
Ornella et al.  

(2017)

It helps to identify effector proteins in the apoplast. It was found that effector has synonymous 
characterization with the localized proteins on the same loci. Thus, it can use larger amounts 
of training data from plants, neutralizing the low number of training examples of apoplastic 
effectors

RF
Sperschneider et al. 

(2018)

Assumption of bacterial type-III secreted proteins with application of deep learning trained 
on the 100 N-terminal residues. Negative training data belongs to type-I to type-VIII secreted 
proteins

DCNN
Xue et al.  

(2018)

A computational interactome for arranging vital genes correlated with complex agronomic 
characters/traits in rice (Oryza sativa) employing 485 transcriptomic datasets

RF
Liu et al.  
(2017)

Recognition of numerous stress conditions through stress-responsive genes and pinpoint 
candidate genes for broad resistance in rice (Oryza sativa). Classify if stress response is abiotic 
or biotic trained on contrastively expressed genes from 559 microarray samples from 13 stress 
situations

SVM
Shaik and Ramakrishna 

(2014)
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Support vector machine (SVM) 

SVM stands for support vector machine which uses 
classification algorithms for two group classification 
problems. It is an array of learning methods employed 
for regression, classification and outlier’s detection. Its 
major advantage is its versatile nature which means 
several kernel functions can be specified. This module 
is effective in high dimensional spaces and effective 
where no samples are smaller than any of the dimen-
sions. This module is memory efficient since it utilizes 
a portion of training points in the decision function. 
The major drawback is that this module’s calculations 
use expensive fivefold cross-validation.

LeafNet 

It is a plant identification system (Barré et al. 2017) 
that can recognize leaf images for species identifica-
tion. This is a CNN-based identification model which 
has the ability to generate a better representation of leaf 
images than that of hand-crafted customized systems. 
This model can reduce the time spent by researchers 
to identify different species by recognizing their more 
domain-specific characters such as leaf venation, leaf 
edges, etc. The identification can be up to 850 leaf im-
ages per millisecond. The only drawback of this mod-
ule is that it is very time-consuming to train this model 
for an extensive data set.

The process of machine learning

Lately, neural networks have been employed in many 
diversified domains as a paradigm of end-to-end 

learning. The neural network has produced diseased 
crops, associated diseases and disease progress maps 
since its output is very efficient. In the neural network 
prediction model, it needs numerical data input about 
disease incidence or disease severity and a disease 
progress model. Deep NN model can map from the 
insert layer to exit or output layer with accurate nodal 
values in successive chains. The main challenge of the 
NN model is to get accurate nodal and edge values by 
which a disease prediction model can be established 
properly. Modulation of the network parameters can 
alter the mapping area and direction for the training 
process (Mohanty et al. 2016). These processes are very 
computationally energizing and have been revamped 
drastically by both conceptual and engineering inno-
vations (Le Cun et al. 2015 Schmidhuber 2015). In or-
der to develop precise image classifiers for plant disease 
diagnosis, a standardized dataset of images of diseased 
and healthy plants is necessary. Until now, no such da-
taset has been freely available to the public. Therefore, 
after recognizing the problem, the PlantVillage project 
was initiated by accumulating 10,000 images of both 
diseased and healthy crop plants (Hughes and Salathe 
2015). It has also made the dataset accessible to eve-
rybody. Mohanty and co-workers reported 26 diseases 
in 14 crop species employing 54,306 images with an 
enlarged neural network approach. They computed the 
performance of different models based on their poten-
tiality of anticipating the crop disease pair very pre-
cisely and also reported 38 classes. The model accom-
plished a mean F1 score of 0.9934 (overall accuracy of 
99.35%) and hence it has been identified under three 
different headings: dataset description, measurement 
of performance, and visualization techniques. A sche-
matic outline of machine learning procedure is shown 
in Figure 1.

Fig. 1. Schematic representation of machine learning procedures
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Dataset description

As previously mentioned, there were 54,306 images of 
plant leaves utilized for the dataset which were labeled 
into 38 classes. Each class label signifies a crop disease 
pair by submitting the image of the plant leaf. Images 
of 256 × 256 pixels were resized to conduct both the 
model optimization and assessment on these downs-
caled images. Throughout the experiments, they used 
three various versions of the PlantVillage dataset. 
They started with the colored version of PlantVillage 
data followed by the gray-scaled version and finally, 
they ran all the experiments of the segmented ver-
sion of PlantVillage dataset. Minimization of the bi-
ases was done with a regulated collection of data by 
eliminating the subsidiary background information. 
Segmentation was performed automatically with the 
help of a script adapted in their dataset. They chose 
a technique based on a series of marks produced by 
scrutiny of color, brightness, and the saturation la-
bels of different parts of the images in various color 
spaces.  Fixing the color casts during processing was 
found to be very helpful in eliminating a few poten-
tial biases. This experiment was planned to evaluate 
whether the neural network learns the “notion” of the 
plant disease or if it simply learns the inherent biases 
in the dataset.

Measurement of performance

To confirm whether the whole approach suits the new 
data exactly and to make sure that there is no overfit-
ting, they run the experiments on different ranges of 
test-train set splits, namely 20–80 (20% of the dataset 
as a whole for testing and 80% for training), 40–60 
(40% of the dataset as a whole for testing and 60% for 
training), 50–50 (50% of the whole dataset used for 
testing and 50% for training), 60–40 (60% of the da-
taset as a whole for testing and 40% for training) and 
finally 80–20 (80% of the dataset as a whole for testing 
and 20% for training). It is important to note that in 
many cases, the PlantVillage dataset has several cop-
ies of images of the same leaf (taken from various an-
gles), and has the mapping of 41,112 images of similar 
cases out of 54,306 images. Among all the combina-
tions of the test-train splits, it was expected that all the 
images of the same leaf go either in the testing set or 
in the training set. Moreover, for all the experiments 
the mean F1 score, mean precision, mean recall to-
gether with the overall precision were determined over 
the total period of training at regular intervals (i.e., at 
the peak of every epoch). They employed the mean F1 
score for the comparison of results across the series of 
experimental configurations. 

Approach

There are two popular systems, AlexNet and Google-
Net. Both of the aforementioned servers are used un-
der the networking system. Krizhevsky et al. (2012) 
and Szegedy et al. (2015) used them to assemble a path 
named Image Net data base (Deng et al. 2009, Russa-
kovsky et al. 2015). The design of the AlexNet archi-
tecture is similar to that of the LeNet-5 (LeCun et al. 
1989) architecture. Usually, the LeNet architecture 
variants are comprised of an array of stacked convo-
lution layers followed by connected layers. The ReLu 
non-linear activation units are connected with the nor-
malization layer and a pooling layer of the convolution 
layers. AlexNet is comprised of five convolution layers, 
subsequently three completely connected layers, and 
eventually closed with a SoftMax layer. The first two 
convolution layers are connected (conv[1,2]) and are 
directly linked to a normalization and a pooling lay-
er. The last convolution layer (conv5) is connected to 
a single pooling layer. The fully connected layer (fc8) 
of the adapted version of the AlexNet is comprised of 
38 outputs which are identical to the number of classes 
in the dataset, which finally feed the SoftMax layer. The 
SoftMax layer can rapidly normalize the whole input 
which it receives from fc8, hence generating distribu-
tion of values over all 38 classes which add up to 1. 
Subsequently, the values can be explicated as the confi-
dences of the neural network that submitted the input 
image denoted by the respective classes. All seven lay-
ers of AlexNet consist of a ReLu non-linearity activa-
tion unit linked with them, and the first two connected 
layers (fc[6, 7]) contain a dropout layer cognate with 
them, having a dropout ration of 0.5.

GoogleNet architecture is exceedingly deeper as 
well as wider with 22 layers. However, it has a notice-
ably lower number of parameters (⁓5 million param-
eters) than AlexNet (⁓60 million parameters). The 
important characteristic of GoogleNet architecture is 
the application of ‘network in network’ architecture 
(Lin et al. 2013) in the form of an inception mod-
ule. Inception modules utilize parallel convolutions 
of dimensions: 1 × 1, 3 × 3, 5 × 5 including a parallel 
max-pooling layer, empowering it to hold diversified 
features in parallel.  Lastly, a filter concatenation layer 
causes the output to connect with all the parallel layers. 
It treats one inception module out of nine inception 
modules all of which were employed in the version 
of GoogleNet architecture utilized in the experiment 
(Szegedy et al. 2015). The execution of both networks 
on the PlantVillage dataset were conducted by train-
ing the model from scratch in the first case, followed 
by adapting already trained models in the second case 
on the ImageNet dataset employing transfer learning. 
The re-initialization of the weights of the layers fc8 is 
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present in case of AlexNet and loss classifier layers are 
(1,2,3) present in  case of GoogleNet. Sometimes in 
transfer learning, we do not limit .the learning of any 
of the layers while training the models. The vital point 
of difference between the two learning approaches, i.e., 
transfer vs. training from scratch, is that the initial state 
of weights of some layers allows the transfer learning 
method to employ a large quantity of visual knowledge 
which was already studied by the pre-trained Goog-
leNet and AlexNet models developed from ImageNet. 
Sixty experiments were conducted. Each experiment 
ran for a total of 30 epochs. One epoch is defined as 
the number of training duplications in which the spe-
cific neural network has completed a whole pass of the 
total training set. Based on empirical observations of 
all the experiments it was concluded that each time the 
learning converged well within 30 epochs. To compare 
all the findings from every experiment, the standardi-
zation of the hyperparameters such as stochastic gra-
dient descent (solver type), 0,005 (base learning rate), 
learning rate policy: step (decreases by a factor of 
10 every 30/3 epochs), 0.9 (Momentum), 0.0005 (weight 
decay), 0.1 (Gamma), Batch size: 24 (GoogLeNet), 
100 (AlexNet) were employed in each experiment.  

Each experiment was performed employing its own 
fork of Caffe (Jia et al. 2014) which is a rapid, open-
source framework for deep learning. For results, the 
overall accuracy can be repeated utilizing a standard 
instance of Caffe. 

Significance of deep learning (DL) models  
in plant disease detection

The DL module was developed after the introduction 
of AlexNet for detection, segmentation, and classifi-
cation. Thereafter, the modified or improved DL ar-
chitectures has gradually evolved with better results 
in visualization of the input image for distinct iden-
tification and classification of disease. Of the modi-
fied DL methods, the PlantVillage dataset has been 
more widely accepted and practiced since it consists of 
54,306 images of 14 various crops having 26 plant dis-
eases. The implementation of DL models is performed 
by two visualization techniques, Without Visualization 
Technique and Visualization Technique, which are de-
scribed below.

Visualization techniques

Without Visualization Technique

Sibiya and Sumbwanyambe (2019) reported that the 
classification of disease in maize plants was carried out 
by employing CNN and histogram techniques to jus-
tify the model. Zhang et al. (2018a) reported that the 
identification of disease in tomato was done by using 
AlexNet, GoogleNet, and ResNet. After using every 

model of CNN architecture, ResNet was regarded as the 
best. The execution of LaNet models for detection of 
banana diseases employed the F1-score and CA for the 
evaluation of the model in both the color and grayscale 
(Amara et al. 2017). Of all CNN-based modules, only 
five models were applied, AlexNet, AlexNetOWTbn, 
GoogleNet, Overfeat, and VGG architecture, of which 
the VGG was found to be superior over the remain-
ing four models (Ferentinos et al. 2018). Eight different 
plant diseases were detected and identified by apply-
ing DL models, GoogleNet, ResNet-50, ResNet-101, 
Inception-v3, and InceptionResNetv2 along with three 
classifiers, K-nearest neighbor (KNN), Support Vec-
tor Machine (SVM), and Extreme Learning Machine 
(ELM) (Türkoğlu and Hanbay 2019). After a fair com-
parison of all the combinations of models and classifi-
ers, ResNet-50 was found to be the best along with the 
SVM classifier based on the performance metrics of 
sensitivity, specificity, and F1-score. The identification 
and detection of diseases in cassava were done with 
a novel DL model called inception-v3 (Ramcharan et al. 
2017).  Different diseases of cucumber were classified 
by using two versions of CsNN with the highest ac-
curacy being 0.823 (Fujita et al. 2016). Ancient plant 
disease identification and classification methods were 
substituted with the super-resolution convolutional 
neural network (SRCNN) (Yamamoto et al. 2017). 
Based on accuracy, of all the DL models, AlexNet ar-
chitecture in particular was found to be effective for the 
classification of tomato plant diseases (Durmus et al. 
2017). A comprehensive comparative analysis was 
done and it was found that six tomato diseases were 
detected by employing AlexNet and VGG-16 DL ar-
chitectures (Rangarajan et al. 2018; Too et al. 2019). 
Hence in this technique, there was no visualization of 
identification of disease symptoms. 

Through image visualization procedure

This technique utilizes the visualization of any symp-
toms on the leaf of diseased plants and hence we can 
better classify and identify the diseases (Brahimi et al. 
2018). Visualization was performed with a saliency 
map which identified and detected 13 various diseases 
with the help of CaffeNet CNN architecture and at-
tained classification accuracy of up to 96.30% which 
was much better than the SVM model (Sladojevic et al. 
2016). To distinguish the spot of disease symptoms, 
a number of filters are used by CNN architectures like 
AlexNet and GoogleNet with the help of the PlantVil-
lage dataset (open accessed) (Mohanty et al. 2016). 
Performance was determined by using F1 score, pre-
cision (P), recall (R) and gross accuracy. Grayscale, 
color and segmentation were used for the examination 
of performance and to make a vibrant comparison be-
tween two CNN architectures such as GoogleNet and 
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AlexNet. GoogleNet was found to be better. Activation 
of the visualization of the first layers significantly visu-
alized disease spots. Olive plant diseases were detected 
and identified with the modified LeNet model which 
utilizes edges and segmentation maps to locate the spot 
of the disease (Cruz et al. 2017).  Four cucumber dis-
eases were successfully identified and classified and the 
accuracy was compared with random forest, support 
vector machines, and AlexNet models in which images 
were analyzed and disease symptoms identified accu-
rately. A unique deep learning technique was developed 
which is referred to as a teacher or student network. 
It put forward an innovative visualization method to 
detect symptoms of plant diseases. The prediction per-
centage was calibrated by employing different detectors 
such as SSD, Faster-RCNN and RFCN. These were ex-
ecuted with well-known architectures such as AlexNet, 
VGG, GoogLeNet, ResNet-50, ZFNet,and ResNetXt-
101 for relative learning and indicated that the best 
models of all architectures was the ResNet-50 model. 
Three CNN models, namely, ResNet-50, Inception-
V2, and MobileNet-V1, were used to identify banana 
diseases and pests along with two detectors such as 
Faster-RCNN and SSD (Selvaraj et al. 2019). Different 
combinations of the CNN models were input with dis-
eased plant images such as heat maps to anticipate the 
occurrence of a specific disease (De Chant et al. 2017). 
LeNet architecture was standardized to detect and 
classify diseases of the soybean plant (Wallelign et al. 
2018). The occlusion technique was developed with 
GoogleNet which triggers the identification of sympto-
matic regions of the disease. GoogleNet outperformed 
the AlexNet model which was also used to try to de-
tect tomato plant diseases (Brahimi et al. 2017). The 
identification and classification of wheat diseases were 
performed with two models, namely VGG-FCN and 
VGG-CNN, for the visualization of all the features in 
each block (Lu et al. 2017). The clustering method of 
the VGG-CNN model was utilized for the detection 
of fusarium wilt in radish (Ha et al. 2017). For detection 
of individual symptoms/spots of diseases, a DL model 
was developed and employed and also for identifica-
tion, classification, and quantification of eight soybean 
stresses a deep CNN network was employed successful-
ly (Ghosal et al. 2018; Barbedo 2019). Patches of symp-
toms on rice plants were identified by using CNN which 
implements future maps. There was a novel mobile ap-
plication designed by using the deep residual neural net-
work in which there was easy identification of diseases 
with the help of hot spot (Picon et al. 2019). A custom-
ized hot spot technique was designed based on the al-
gorithm in which all the hotspots present are pooled by 
alteration in the segmented image to get color constan-
cy. Moreover, all the procured hot spots were described 
with two descriptors, which can estimate the color of 
a particular disease and detect the texture of the hot 

spots (Johannes  et al. 2017). An advanced visualiza-
tion method was developed with correlation coefficient 
and deep learning architectures VGG-16 and AlexNet 
(Khan et al. 2018). The dilation CNN model can be 
used for the identification and classification of cucum-
ber diseases (Zhang et al. 2019b). LeNet (CNN model) 
was very effective for the identification of grape dis-
eases which utilizes color space and different vegetation 
indices (Kerkech et al. 2018). For practical implementa-
tion of a more precise DL model there must be an ac-
tual/real background/environment. However, in most 
of the above-mentioned approaches, the chosen data-
set considered plain background which is not an actual 
and naturalistic condition for the identification and clas-
sification of plant diseases (Amara et al. 2017).

Novel/customized deep learning 
(DL) models for disease detection 
in plants

There have been some reports that novel/custom-
ized DL models get better/distinct detection of plant 
diseases, namely, upgraded GoogleNet and Cifar-10 
models whose efficiency compared with AlexNet and 
VGG. It was also reported that there was an excep-
tional overall accuracy of 98.9% (Zhang et al. 2018b). 
Liu et al (2017a, b) reported a new DL model which 
was pioneered to acquire higher levels of accuracy, i.e. 
97.62% for proper identification of plant diseases than 
other models such as GoogLeNet, VGG-16, ResNet-
20, SVM and AlexNet. The extended dataset covers 
13 different factors such as brightness and sharpness, 
horizontal symmetry, rotation to different angles, al-
teration, etc. The complete dataset was transformed 
into PCA (principal component analysis) jittering 
and Gaussian noise. Moreover, the correct selection 
or choice of the dataset should be done in such a way 
that it must be possible to extend the dataset. A novel 
CNN architecture called LeafNet, developed to detect 
and classify diseases of tea, attained much more pre-
cision than MLP (Multi-Layer perceptron) and SVM 
(support vector machine) (Chen et al. 2019a). Two 
new DL models were commenced, namely, modified 
MobileNet and reduced MobileNet whose precision 
level was almost equal to the VGG model, whereas the 
reduced MobileNet achieved a classification precision 
of 98.34% and also had a lesser number of parameters 
than the VGG models which showed time efficiency 
(Kamal et al. 2019). PlantDiseaseNet is exceptionally 
valuable for the complex environment of the agri-
cultural ecosystem (Arsenovic et al.  2019). A CNN 
model, known as VGG-inception architecture out-
performed several DL models such as several versions 
of ResNet, VGG, GoogLeNet, and AlexNet. They can 
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also be used for inter-object/class detection for which 
the clear and distinct vision of symptoms of five 
various types of diseases in apple trees was possible 
(Jiang et al. 2019).  

Modelling and algorithms

Solution framework

The whole plant disease identification model skeleton 
works on three basic deep learning steps: the localiza-
tion of plant leaves, the segmentation of images, the ex-
traction of plant disease, and the identification of dis-
ease (Fig. 2). To locate the diseased leaf in the complex 
environment the RPN algorithm is employed to train 
the leaf dataset, followed by formulating the regression 
neural network and classifying the neural network. The 
second step is the diseased leaf segmentation which is 
performed by Chan-Vese algorithm. This algorithm is 
based on the zero-level set and minimum energy func-
tion and with the help of iterative computation, the leaf 
contour is attained. Training of the pretrained transfer 
learning architectures is used to get diseased leaf rec-
ognition on a simple background.

Leaf localization

To classify neural network, the pivotal work is to de-
temine if the image within the boundary box is back-
ground or an object. During training Intersection over 
Union (IoU) is taken as a yardstick of classification, the 

boundary box found to be IoU greater than 0.5 is de-
noted as an object and IoU less than 0.1 is considered 
to be background. IoU calibrates the relevance between 
the pretended leveled boundary box and the predicting 
boundary box. The formula of IoU is shown below:

		  IoU = S1/S2,

where: S1 signifies the overlap region of predicting 
boundary box and S2 signifies the total region of it. 

Leaf segmentation

After obtaining the data of the previous steps the mod-
el does leaf image segmentation with the Chan-Vese 
algorithm. This algorithm aims at lessening the energy 
functions and getting blade profiles by using iterative 
calculations. The Chan-Vese algorithm works by the 
level set to fabricate the energy function to compel the 
region as a whole rather than to regulate the surface 
transformation with the help of explicit control speed 
F. The minimum summation of the variances between 
the gray values of the image outside and inside the con-
tour and the length of the contour improved to make it 
coincide and is known as the energy function. The pro-
cedure for leaf segmentation is illustrated in the form 
of a flow chart (Fig. 3). 

Disease leaf identification

In this method, training is completed quickly and car-
ries out disease identification in a simple environment, 
decreasing the need for deep learning algorithms for 

Fig. 2. Schematic representation of model frameworks
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the hardware essentiality. By employing the transfer 
learning mechanism, the shallow neural network for 
the source task is changed to the neural network for 
a target task due to the reality of the shallow network 
which has equal features for different learning objects. 
The performance of transfer learning surpasses the 
new learning practices in convergence and ultimate 
findings.

Hyperspectral imaging in plant 
disease detection

Several imaging techniques such as multispectral im-
aging (Veys et al. 2019), thermal imaging, fluorescence, 
and hyperspectral imaging (Signoroni et al. 2019) have 
been developed to detect plant disease at early stages 
(Mahlein et al. 2019). Among all the imaging tech-
niques the hyperspectral imaging technique has been 
the most relevant and effective one.  The hyperspec-
tral imaging (HSI) system can identify the region of 
interest, and a feature ranking-KNN (FR-KNN) model 
can generate adequate results which can differentiate 
diseased and healthy plants (Xie et al. 2017). The so-
called redundancy problem was overcome by a sepa-
rate selection procedure called orthogonal subspace 
projection (OSP) (Shuaibu et al. 2018). The HSI can 
identify all diseases that occur on the leaf of groundnut 

by employing the sensitive bands and hyperspectral 
vegetation index (Chen et al. 2019b). The hyperspec-
tral imaging can also detect tomato diseases by SVM 
classifiers whose performance was judged by sensitiv-
ity, specificity, F1 score and overall accuracy (Mogha
dam et al. 2017). HSI has been employed successfully 
in machine learning models for identifying disease 
(Hruska et al. 2018). The multispectral imaging tech-
niques with the combination of the random forest (RF) 
classifier achieved a precision of 89.3% for wheat dis-
ease identification (Su et al. 2018). Plant diseases were 
detected by SVM based on the hyperspectral data and 
obtained an accuracy of up to 86% (Rumpf et al. 2010). 
Hyperspectral imaging of leaf blight of rice (causal 
organism – Xanthomonas oryzae pv. oryzae) and its 
severity detection is illustrated in Figure 4. Disease 
severity was scaled on a five-point scale followed by 
three times input and four times screening with the 
healthy leaves.

The deep learning approach based on the HSI was 
suggested by the contextual details which provide spec-
tral and spatial characteristics (Ma et al. 2015). The 
novel 3D-CNN model was used for an accurate, fast, 
and efficient approach, which was formerly known as 
CNN techniques, assured the employment of both spa-
tial as well as spectral data (Paoletti et al. 2018). The 
feature extraction protocol of the CNN model for HSI 
classification employed the dropout and L2 regulari-
zation method to avoid overfitting (Chen et al. 2016). 
The deliberate combination of DL models with the HSI 
by researchers enable them to distinctly see disease 
symptoms. Thereafter, a hybrid method was designed 
and standardized. It was comprised of DCNN, LR, 
and PCA and eventually had better findings (Yue et al. 
2015). Several DL models such as 2D-CNN-LSTM/
GRU, LSTM/GRU and 1D/2D-CNN (2D-CNN had 
better results) were compared for better precision 
and to prevent overfitting. Consequently, to prevent 
overfitting, an innovative and advanced method, i.e. 
2D-CNN-BidLSTM/GRU was proposed for the HSI 
which executed a 0.75 F1 score and 0.73 accuracies 
for identification of wheat diseases (Jin et al. 2018). 
To detect symptoms before their complete appearance 
on the tomato plant, there was a novel DL technique 
called generative adversarial nets (GAN) (Wang et al. 
2019). For detection of potato infecting viruses, the DL 
on HIS attained remarkable values of recall (0.88) and 
precision (0.78) (Polder et al. 2019). Symptomatologi-
cal characterization of wheat leaf, using Dl architecture 
called multiple Inception-Resnet models which analyze 
both spatial as well as spectral information, attained 
an accuracy of 85% which is substantially higher than 
that of the RF-classifier (77%) (Zhang et al. 2019a). The 
schematic representation of hyperspectral imaging is 
provided in the form of a flow chart (Fig. 5).

	

Fig. 3. Flow chart on procedure of segmentation of leaf images 
(ANN – artificial neural network)
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Conclusion and future scope

The models based on deep learning have features of fast, 
high precision, high training efficiency, unsupervised 
and universal acceptability. However, there are many 
challenges such as accuracy feasibility and overfitting 
in the detection of plant diseases under very complex 
and diverse environmental conditions. To solve these 
issues novel deep learning models combined with RPN 
algorithm, CV algorithm, and TL algorithm have been 
developed. Compared to traditional approaches mod-
ern approaches are superior in terms of robustness, 

and faster convolutional neural networks. They also 
minimize the number of parameters that are essential 
for obtaining better results. Under field conditions, the 
main challenge is to nullify the effect of complex and 
diverse environmental conditions to get  better results 
through a deep learning architecture. Hence, research-
ers can know the effect of climatic complexity in ob-
taining better information about diseases in the field. 
So, DL models can act as information technology in 
agricultural production which eventually favors sus-
tainable agriculture. Most researchers have especially 
utilized the PlantVillage model as their standard DL 
model where it consists of many images with a sim-
ple/plain background but practically a realistic back-
ground is needed. Hyperspectral/multispectral imag-
ing technology is robust and effective in the detection 
of different diseases provided it is utilized with the 
most efficient DL models. Deep learning models save 
time and promote the need-based application of pesti-
cides since they can identify diseases before symptoms 
appear. Therefore, it avoids the indiscriminate use of 
agricultural chemicals which are hazardous to mankind 
and the environment as well. DL models should be de-
veloped in such a way that they can also detect disease 
severity throughout the entire cycle. There is also a need 
for comprehensive research to standardize the DL mod-
el for many diseases with much-enhanced accuracy.
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