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Abstract. In this paper, a model of an electromagnetic system with two levitating magnets is presented. Modeling was performed using the
results of experiments. The data obtained make it possible to fit the magnetic forces between two magnets using a 5th order polynomial. The time
series show that dry friction constitutes an important part of damping forces. The differential equations of motion consider strong nonlinearities
of magnetic and damping forces. These terms cause the nonlinear hardening effect. The energy recovered by magnetic induction is dissipated
in the resistors. Numerical simulations show that resistance has an impact on magnet dynamics and energy recovery. From the resonance
characteristics obtained, optimal resistance is determined when energy recovery is the highest.
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1. INTRODUCTION
Climate changes require a new perspective on energy issues.
Global air pollution and the greenhouse effect make it neces-
sary to find alternative sources of energy. For example, the Eu-
ropean Union is implementing an energy transformation pro-
gram. The foreseen changes are described in [1]. Some aspects
of the so-called green energy transformation in Poland are de-
scribed in [2]. Among others, the research object (Arena Przy-
widz building) and proposed modifications in its thermal and
electrical installation are described. The author shows the con-
tribution of the Institute of Fluid-Flow Machinery of the Polish
Academy of Sciences to the Polish green energy transforma-
tion. However, the best solution would be to reduce energy de-
mand altogether. Therefore, in the literature, one can find many
studies on energy recovery. The inclusion of such devices in the
energy mix could be advantageous because their production is
related to existing processes. For example, walking, sport and
dancing are associated with human activities. The feet gener-
ate pressure forces on the ground. This effect can be used for
energy recovery, especially in public places. In [3], the applica-
tion of a mat prototype with piezoelectric elements is consid-
ered. This mat can be located on the floor, for example in a su-
permarket, and it will allow energy harvesting from human feet
steps. The authors present the results of their research, conclud-
ing that energy of 0.0604 W can be recovered from ten human
steps. It can be used to supply devices with low energy con-
sumption. The results of similar studies are presented in [4].
Pasquale et al. compared two strategies with piezoelectric or
electromagnetic transducers. The proposed harvesters were em-
bedded in clothes, and energy was recovered from human body
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motion. The study indicated higher efficiency of the electro-
magnetic device. It can recover power of 0.7 mW, while the
piezoelectric element can generate about 0.33 µW. The ma-
chines running continuously are better objects for energy har-
vesting. During normal operation, they usually generate vibra-
tions. Implementing an additional harvester subsystem on the
machine can convert some mechanical energy into electricity.
In this case, the literature also mentions mainly piezoelectric or
electromagnetic harvesters. Applications for these devices are
the most widely proposed. Review studies [5, 6] discuss vari-
ous aspects of piezoelectric solutions, providing data about the
sources of information about different ways of modeling piezo-
electric elements, popular electrical circuits used for energy re-
covery, and selected applications. Sarker et al. published a sim-
ilar review article, but for electromagnetic harvesters [7]. The
goal of the paper was to organize the state of the art and sug-
gest a low power smart sensor circuit that would harvest en-
ergy from an electromagnetic solution. An analysis of the data
in [5–7] demonstrates that both devices use different effects to
convert energy. These are magnetic induction and piezoelectric
effect for electromagnetic and piezoelectric harvesters, respec-
tively. A very sound comparison of selected devices from both
groups is presented in [8]. Bo and Gardonio analyzed two ap-
propriately chosen seismic vibration energy harvesters. It is im-
portant that the authors tried to obtain solutions with identical
properties wherever it was possible. For example, the proposed
harvester subsystems had the same mass and natural frequen-
cies. The results showed that for the implementation of optimal
real impedance, the maximum recovery power was 0.04 W and
0.02 W for the electromagnetic and piezoelectric transducers,
respectively. Under comparable conditions, the effectiveness of
both solutions was similar. Thus, the choice of a harvester type
may depend on individual characteristics of the base object.
The studies presented above are characterized by low energy
recovery efficiency. In the literature, some suggestions on how

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e141721, 2022 1

https://orcid.org/0000-0002-6749-8232
https://orcid.org/0000-0001-8293-6977
mailto:a.mitura@pollub.pl


A. Mitura and K. Kecik

to increase energy power obtained are given. Ostrowski et al.
present the concept of a mechanical amplifier inserted between
a mechanical object and an electromagnetic harvester [9]. Me-
chanical vibrations, i.e. relative displacement between sprung
and unsprung masses in a car suspension, were strengthened by
the amplifier using a gear. This mechanical amplifier can mul-
tiply kinematic excitation of the electromagnetic harvester. In
most studies, the harvester electrical circuit consists of a resis-
tor. This is the easiest way to recover energy. However, it might
not be useful in that many applications. An alternative to this so-
lution is the idea presented in [10]. The authors proposed using
an electromagnetic subsystem as a generator. Obtained electric-
ity could thus be used for self-powering a magnetorheological
damper. This solution is interesting because the vibration con-
trol adaptation is performed automatically. The electromagnetic
subsystem can replace the controller, i.e. it performs the mea-
surement function and acts as the external power source.

The first joint research of the authors of this paper was
an analysis of non-linear vibration absorption using a pendu-
lum [11]. The pendulum swing eliminated vibration of the re-
search object (single oscillator). In subsequent studies, attempts
were made to recover energy from the pendulum’s movement.
The pendulum is not very deformable, so electromagnetic de-
vices were predisposed in this case. In [12], two independent
concepts of electromagnetic harvesters were considered. The
first harvester was a rotary device, with its axis of rotation in-
terconnected with that of the pendulum. The second solution
was a subsystem with one levitating magnet (so-called maglev
system) mounted inside the pendulum. The energy recovery ef-
fectiveness of both variants was tested independently. The ro-
tary harvester could limit the pendulum swing and reduce vibra-
tion absorption of the base object. The maglev harvester proved
a better solution because the generated modification of the pen-
dulum dynamics was lower. In other studies [13, 14], the pen-
dulum with a built-in maglev subsystem was excited kinemat-
ically. It was fixed on the shaker armature instead of the base
object. Experimental and numerical studies showed a nonlin-
ear trend of the electromechanical coupling coefficient [13] and
existence of the so-called electrical suppression [14]. Similar
conclusions were also drawn by other researchers. Sneller and
Mann presented theoretical relationships between induced volt-
age, magnet relative velocity and nonlinear electromechanical
coupling [15]. The function of nonlinear coupling was com-
pared to the coil flux linkage, and it depended on the magnet po-
sition in relation to the inductive coil. The curve of electrome-
chanical coupling was described using Taylor series expansion.
In [9], the nonlinear trend of electromechanical coupling was
described using the Fourier series approximation. A polyno-
mial function was applied to estimate electromechanical cou-
pling in [13]. This problem is often simplified to a constant
coefficient of electromechanical coupling. In [16], an equiva-
lent constant coefficient was estimated by four different meth-
ods. These methods included experimental testing and finite el-
ement analysis. Obtained values were similar, with the maxi-
mum deviation of about 5%. It is important to stress that the
value was obtained for small vibrations. The possibility of in-
creasing the energy recovery level from the classical maglev

system with one movable magnet seems to be limited. There-
fore, new modifications of this harvester structure are designed.
The easiest solution is to add a second movable magnet. Abed
et al. proposed a 2 DOF model of the maglev system [17]. In
the description of the forces between the magnets, nonlinear
terms were included. The quadratic and cubic terms of mag-
netic forces were used in the equation of motion. However, lin-
ear damping was assumed. The authors determined the system
dynamics and energy recovery. For example, a hardening effect
was detected. In this model, dry friction was not included. It can
be caused by some imperfections, for example a gap between
a movable magnet and a tube. Green et al. tested the possibility
of using three models: Coulomb, hyperbolic tangent and Lu-
Gre to describe friction [18]. It was assumed that normal force
at contact was constant. This simplifies the friction problem to
a significant extent. Generally, in many studies, the friction ef-
fect is neglected [17] or inadequately considered [18]. However,
the authors’ own observations indicate that this assumption is
not correct. For low levels of excitations, a problem with start-
ing magnet vibration is often visible during tests. This prob-
lem was an inspiration for research on friction in a levitation
system. However, this issue is not well described in the litera-
ture. In the latest research, Kecik and Mitura showed that fric-
tion was variable in a system with one levitating magnet [19].
The designated mathematical model and experimental tests al-
lowed establishment of a relationship between frictional and re-
pel forces. It was found that by reducing the distance between
the magnets, normal and friction forces could be increased. This
change could be described by means of a linear function. Gen-
erally, the effect of variable friction is not strong. However, the
authors studied a system with one levitating magnet and a sig-
nificant distance between the fixed magnets. This approach may
be interesting in a system with two levitating systems. The ad-
dition of a movable magnet can radically change the level of
friction forces.

This paper is a continuation of previous research. A signifi-
cant modification in the previous prototype of the energy har-
vester is made by adding a second levitating magnet. The ob-
tained system with two degrees of freedom has new properties,
and they are investigated experimentally and numerically. In
Section 2 “Model of a 2 DOF system”, a strongly nonlinear
mathematical model is proposed. Its parameters are determined
via experimental testing. The effect of friction on the system
dynamics is considered. In a subsequent section, the developed
model is extended to include electrical elements (coils, resis-
tors). Based on numerical simulations, the influence of the so-
called electric damping on the dynamics and energy recovery is
determined. Finally, a summary and conclusions are presented.

2. MODEL OF A 2 DOF SYSTEM
A schematic of the prototype device is shown in Fig. 1. The
considered system was modeled as a 2 DOF system. The pa-
rameters were selected based on results from experimental tests.
The schematic shows the most important elements of the sys-
tem. Inside the plexiglass tube, there are two smaller fixed mag-
nets B1,B2 and two larger movable magnets A1,A2. All mag-
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nets are made of neodymium. The larger cylindrical magnets
have a length of 35 mm and a diameter of 20 mm. The smaller
magnets are rings with an outside diameter of 20 mm, an inside
diameter of 5 mm, and a length of 5 mm. The hole diameter
in the tube is 22 mm. The results show the presence of a gap
between the tube and the magnets. Magnetic interactions cause
levitation of the movable magnets. It is called pseudo-levitation
because without a tube this effect would be impossible. The
magnets induce repulsion, and they also try to turn around. Fi-
nally, two-point contact between the movable magnet and the
tube is observed. This fact is also presented in Fig. 1. Motion
of the elements is described relative to the stationary coordinate
global system Ozx. The location of this coordinate system is re-
lated to the position of the center of B1 when the system was not
excited. Differential equations of motion with kinematic exci-
tation can be written in a general form:

m1z̈1−FB1−A1−FB2−A1+FA2−A1+Fd1+m1g+α1i1 = 0, (1)

m2z̈2+FB1−A2+FB2−A2−FA2−A1+Fd2+m2g+α2i2 = 0, (2)

where z1,z2 are the coordinates of the absolute magnet move-
ments, and m1 = m2 = 0.09 kg are the movable magnet masses.

Fig. 1. Schematic of an electromagnetic system

Forces F with an appropriate subscript are the magnetic (in-
dexes using magnet symbols) or damping forces (indexes us-
ing the letter d) identified via experimental testing. The tube
is mounted onto the shaker armature, the motion of which is
described by zs. This kinematic excitation is hidden in the mag-
netic forces, for example in FB1−A1 or FB2−A2. However, the
terms α1i1 and α2i2 describe the influence of the coils and re-
sistors on the motion of the magnets. A description of these
terms and an analysis of energy recovery from magnet motion
are presented in the next section. In this section, only the me-
chanical aspects and magnetic effects were presented.

2.1. Modeling of magnetic forces
The appropriate orientation of the magnets: SN–NS–SN–NS
creates magnetic springs (see Fig. 1). The spring forces are
symbolically described as FB1−A1, FB2−A1, FB1−A2, FB2−A2 and

FA2−A1. The indexes indicate the magnets which generate re-
spective magnetic forces. In this system, two pairs of identi-
cal magnets (A1, A2 and B1, B2) were applied. Therefore, the
magnetic forces were experimentally determined for two cases.
Characteristics of the interaction between one small and one
large magnet (Case I) and between two larger magnets (Case II)
were determined. In the tests, one of the magnets was station-
ary. The other movable magnet was loaded with an additional
mass, and the change in the distance between both magnet cen-
ters (∆A−Aor ∆B−A) was measured. Curves obtained experimen-
tally and their approximations using polynomials are presented
in Fig. 2.

a)

b)

Fig. 2. Characteristics of magnetic suspensions: Case I a) and
Case II b). Points – experimental data, solid line – polynomials fit

In both cases, the experimental data were fitted by 5th order
polynomials:

FB−A = a0 +a1∆B−A +a2∆
2
B−A

+ a3∆
3
B−A +a4∆

4
B−A +a5∆

5
B−A, (3)

FA−A = b0 +b1∆A−A +b2∆
2
A−A

+ b3∆
3
A−A +b4∆

4
A−A +b5∆

5
A−A (4)

with the obtained values of the polynomial coefficients being
presented in Table 1.

In a subsequent step, forces FB1−A1, FB2−A1, FB1−A2, FB2−A2
and FA2−A1 were related to the dependencies in equations (3),
(4). This required writing distances ∆ as a function of variables
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Table 1
Values of polynomial coefficients, equations (3), (4)

Coefficient Value Coefficient Value

a0 534.588 b0 668.828

a1 –54878.708 b1 –31972.138

a2 2298250.857 b2 578339.903

a3 –48447629.279 b3 –4659587.477

a4 510470867.643 b4 14056672.514

a5 –2142177188.14 b5 0

zS, z1 and z2. The simplest way to do so was to determine FA2−A1
from equation (4), because the distance between the movable
magnets was ∆A2−A1 = z2− z1. Hence, this force can be written
in the following form:

FA2−A1 = b0 +b1 (z2− z1)

+ b2 (z2− z1)
2 +b3 (z2− z1)

3

+ b4 (z2− z1)
4 +b5 (z2− z1)

5 . (5)

When analyzing the interaction between the movable mag-
net A1 and the lower (FB1−A1) or upper (FB2−A1) fixed mag-
net, it can be assumed that the distance ∆B2−A1 should be larger
than the horizontal axis range presented in Fig. 2a. Generally,
the minimum distance ∆B2−A1 will be greater than 0.055 m, be-
cause at this value the magnets A1, A2 and B2 would be in con-
tact. This is a physical limit due to magnet length, as one and
a half lengths of the large magnet plus half a length of the small
magnet yields exactly 0.055 m. Consequently, force FB2−A1 for
∆B2−A1 > 0.055 m is negligible. This term has been omitted in
the model:

FB2−A1 = 0. (6)

Interaction with a closer magnet FB1−A1 corresponds to the
presented curve (Fig. 2a). However, the distance between the
magnets is ∆B1−A1 = z1− zs, and the magnetic force can be cal-
culated from:

FB1−A1 = a0 +a1 (z1− zS)

+ a2 (z1− zS)
2 +a3 (z1− zS)

3

+ a4 (z1− zS)
4 +a5 (z1− zS)

5 . (7)

Repeating the same analysis for the second movable magnet
(A2) and the fixed magnets, the magnetic forces take the follow-
ing forms:

FB1−A2 = 0, (8)

FB2−A2 = a0 +a1 (L+ zS− z2)

+ a2 (L+ zS− z2)
2 +a3 (L+ zS− z2)

3

+ a4 (L+ zS− z2)
4 +a5 (L+ zS− z2)

5 , (9)

where the distance between the upper fixed magnet and mag-
net A2 is ∆B2−A2 = L+ zS− z2. The parameter L specifies the
distance between the centers of the fixed magnets. In the tested
system, the L value is 0.15 m. The experimental data and their
analysis allowed us to determine magnetic forces.

Based on equations (1)–(9), the differential equations of mo-
tion, including only magnetic and gravity forces, can be writ-
ten as:

m1z̈1 +m1g−
{

a0 +a1 (z1− zS)

+a2 (z1− zS)
2 +a3 (z1− zS)

3 +a4 (z1− zS)
4

+a5 (z1− zS)
5}+{

b0 +b1 (z2− z1)

+b2 (z2− z1)
2 +b3 (z2− z1)

3 +b4 (z2− z1)
4

+b5 (z2− z1)
5}= 0, (10)

m2z̈2 +m2g+
{

a0 +a1 (L+ zS− z2)

+a2 (L+ zS− z2)
2 +a3 (L+ zS− z2)

3

+a4 (L+ zS− z2)
4 +a5 (L+ zS− z2)

5}
−
{

b0 +b1 (z2− z1)+b2 (z2− z1)
2

+b3 (z2− z1)
3 +b4 (z2− z1)

4

+b5 (z2− z1)
5}= 0. (11)

Equations (10) and (11) enable the determination of movable
magnet equilibrium positions. For a static case, accelerations
(z̈1, z̈2) and kinematic excitation (zS) are equal to 0. After solv-
ing equations (10), (11) for the above assumption, the values
of variables z1 and z2 can be calculated. To distinguish these
values, the defining equilibrium positions are marked as z1e and
z2e. For different distances L between the fixed magnets, the ob-
tained equilibriums are different, too. Knowing the equilibrium
positions, natural frequencies for low vibrations can be deter-
mined. For this purpose, nonlinear curves from Fig. 2 should
be linearized near the equilibrium position. Linearized relation-
ships between the magnetic forces can be written as:

FB1−A1 = k1 (z1− zs) = k1 (z1e + z1d− zs) , (12)

FA2−A1 = k2 (z2− z1) = k2 (z2e + z2d− z1e− z1d) , (13)

FB2−A2 = k3 (L+ zS− z2) = k3 (L+ zS− z2e− z2d) , (14)

where variables z1 and z2 respectively, consist of two parts:
constant z1e or z2e (equilibrium position) and dynamic z1d or
z2d (low vibration about the equilibrium position). Functions
(12)–(14) describe the lines tangent to the nonlinear curves of
magnetic force at equilibrium position points. Therefore, via
linearization, linear stiffness coefficients are determined:

k1 =
dFB1−A1

d∆B1−A1

∣∣∣∣
∆B1−A1=z1e−zs

, (15)

k2 =
dFA1−A2

d∆A1−A2

∣∣∣∣
∆A1−A2=z2e−z1e

, (16)

k3 =
dFB2−A2

d∆B2−A2

∣∣∣∣
∆B2−A2=L+zs−z2e

. (17)
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Substituting equations (12)–(14) into (1), (2), a linearized
model without damping forces is obtained:

m1z̈1d +m1g− k1(z1e + z1d− zs)

+ k2(z2e + z2d− z1e− z1d) = 0, (18)

m2z̈2d +m2g+ k3(L+ zS− z2e− z2d)

− k2 (z2e + z2d− z1e− z1d) = 0. (19)

Equations (18), (19) for a static case (z̈1 = z̈2 = zS = 0) have
the following form:

m1g− k1(z1e)+ k2(z2e− z1e) = 0, (20)

m2g− k3 (z2e)− k2(z2e− z1e) = 0. (21)

A comparison of equations (18), (19) with (20), (21) can sim-
plify mathematical notation of the linearized model for natural
vibrations (zs = 0):

m1z̈1d− (k1 + k2)z1d + k2z2d = 0, (22)

m2z̈2d− (k3 + k2)z2d + k2z1d = 0. (23)

In equations (22), (23), the employed sign convention re-
quires a comment because in the classical 2 DOF linear oscil-
lator it is the reverse. This is due to the fact that, in lineariza-
tion, the coefficients calculated from equations (15)–(17) will
have negative values. Finally, after substituting the parameter
value, the sign convention will follow the classical form of the
linear model with the positive stiffness coefficients. By solv-
ing an eigenvalue problem for equations (22), (23), it is possi-
ble to calculate linear natural frequencies. Figure 3 presents the
equilibrium positions and linear natural frequencies versus the
distance L between the fixed magnets.

The curves in Fig. 3 show clear trends. When the distance L
is increased, the coordinates of both equilibrium positions are
higher. However, the trend with respect to changes in linear nat-
ural frequencies is the opposite. For a larger L, lower frequency
values are obtained. The next step of the modeling was per-
formed for L equal to 150 mm.

2.2. Identification of damping forces
In differential equations (1), (2), there still exist unknown
damping forces Fd1 and Fd2. In this system, the energy dissipa-
tion process is complex. It is assumed that the most important
factors affecting the damping forces are air resistance and dry
friction:

Fd1 = c1ż1 + c2ż1 |ż1|+T1 , (24)

Fd2 = c1ż2 + c2ż2 |ż2|+T2 , (25)

where c1 and c2 are the linear and nonlinear coefficients de-
scribing air resistance, and T1 and T2 are friction forces between
the magnets and the tube.

The magnets are placed inside the tube to constrain free air-
flow. To reduce air resistance, special holes are made in the
tube. The model of air resistance is nonlinear and it is the sum
of linear and quadratic terms [20]. These terms are assumed
to depend on the absolute velocities, and the damping coeffi-
cients are the same for both movable magnets (c1, c2). The final
terms T1 and T2 denote the Coulomb friction. Magnetic interac-
tion induces forces as well as a magnetic moment. This moment
makes the movable magnet rotate in the tube. As a result, a two-
point contact between the magnet and the tube is observed. This
moment affects the normal forces at these points and, finally,
the dry friction level. Proportional dependencies between nor-
mal and magnetic forces are assumed. Finally, dry friction takes
the forms below:

T1 = µ0N1sgn(ż1− żS)

= µ0(εFB1−A1 + εFA2−A1)sgn(ż1− żS)

= µ(FB1−A1 +FA2−A1)sgn(ż1− żS) , (26)

T2 = µ0N2sgn(ż2− żS)

= µ0(εFB2−A2 + εFA2−A1)sgn(ż2− żS)

= µ(FB2−A2 +FA2−A1)sgn(ż2− żS) , (27)

where coefficient µ includes the friction coefficient µo and the
scale factor between the magnetic and normal forces ε . A di-
rect determination of the unknown coefficients of air resistance

a) b)

Fig. 3. Changes in equilibrium positions (a) and linear natural frequencies (ω0 = 2π f0) (b) versus distance L
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(c1, c2) and dry friction (µ) is difficult. Therefore, the damp-
ing parameters are estimated by comparing experimental and
numerical dynamic responses.

Experiments are performed using the experimental setup pre-
sented in Fig. 4. The tested system with levitating magnets is
mounted onto an electrodynamic shaker armature. Kinematic
excitation is controlled by the LMS controller, which uses a sig-
nal from the accelerometer in a feedback loop. Magnet motion
is measured in a contactless manner using the Phantom V9.1
high-speed camera.

Fig. 4. View of the experimental setup

In the experiments, the coils and resistors were not added
to the system because the application of an electrical system in-
duces additional forces, which would prevent correct identifica-
tion of the searched parameters. A sine test was performed on
an electrodynamic shaker. Kinematic excitation with the con-
stant acceleration amplitude of 0.6g was generated. However,
the excitation frequency was swept linearly from 6 to 15 Hz.
System responses were measured with a high speed camera.
The excitation frequency was changed slowly, and the time
of one test was set, equal to 180 s. Clips were recorded with
a speed of 250 frames per second. An analysis of the visual
data made it possible to determine absolute displacements zS,
z1 and z2 (Fig. 5).

Based on equations (1)–(9) and (24)–(27), the final form of
the differential equations of motion can be written as:

m1z̈1 + c1ż1 + c2ż1 |ż1|+m1g+α1i1 +
{

a0

+ a1 (z1− zS)+a2 (z1− zS)
2 +a3 (z1− zS)

3

+ a4 (z1− zS)
4 +a5 (z1− zS)

5}(−1

+ µsgn(ż1− żS))+
{

b0 +b1 (z2− z1)

+ b2 (z2− z1)
2 +b3 (z2− z1)

3 +b4 (z2− z1)
4

+ b5 (z2− z1)
5}(1+µsgn(ż1− żS)) = 0, (28)

m2z̈2 + c1ż2 + c2ż2 |ż2|+m2g+α2i2

+ {a0 +a1 (L+ zS− z2)+a2 (L+ zS− z2)
2

+ a3 (L+ zS− z2)
3 +a4 (L+ zS− z2)

4

+ a5 (L+ zS− z2)
5}(1+µsgn(ż2− żS))

+ {b0 +b1 (z2− z1)+b2 (z2− z1)
2 +b3 (z2− z1)

3

+ b4 (z2− z1)
4 +b5 (z2− z1)

5}(−1
+ µsgn(ż2− żS)) = 0. (29)

The numerical model of the system, i.e. equations (28), (29),
was developed using the Matlab software. Many simulations
were performed for different values of parameters c1, c2 and µ .
The values of other parameters are listed above. Only α1 and α2
are equal to zero, because at this stage of the analysis the system
is without coils and resistors. The n points are obtained from
each simulation. The number n corresponds to the number of
captured images, i.e. n= 180×250= 45000. However, the time
interval between the points depends on the camera recording
speed ∆t = 1/250= 0.004 s. All i points from the obtained time
series (z1i or z2i with the index num) are compared with the
reference signals, experimental data (z1i or z2i with the index
exp). The optimal values of these parameters are determined
based on the minimization of objective function δ criterion:

minδ (c1,c2,µ)

δ (c1,c2,µ) = max{δ1 (c1,c2,µ) , δ2 (c1,c2,µ)} , (30)

a) b)

Fig. 5. Time series from the sine tests on the shaker: a) frequency forward, b) frequency backward. Blue line – zS, gray line – z1, black line – z2
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where the following relative errors are used:

δ1(c1,c2,µ) =
n=45000

∑
i=1

(
z1,num− z1,exp

)2
, (31)

δ2(c1,c2,µ) =
n=45000

∑
i=1

(
z2,num− z2,exp

)2
. (32)

The values of parameters c1, c2 and µ for simulations
were randomly taken from the intervals: (c1,min; c1,max),
(c2,min; c2,max), (µmin; µmax). The minimum value was equal
to 0. The maxima of the parameter domains were taken such
that a single non-zero limit (for example c1,max when c2,max =
µmax = 0) would give a negligibly small oscillation of the mag-
nets. Performing more simulations makes it possible to find the
optimal solution when equation (30) has the minimum value.
Finally, the following damping model coefficients from the
applied procedure were estimated: c1 = 0.0386 Nsm−1, c2 =
0067 Ns2m−2, µ = 0.0347 (−).

Figure 6 shows a comparison of the time series obtained from
the optimal simulation variant and experimental data. Both re-
sponses are similar. It should be emphasized that this is possible
only when the normal force depends on the repulsive forces of
the magnets. At the initial stage of this study, numerical sim-
ulations for the classical approach with constant normal forces
were also performed. For this case, it was not possible to find
responses similar to the experimental data.

a)

b)

Fig. 6. Comparison of the time series from optimal simulation and
experimental data: a) frequency forward, b) frequency backward. Gray
line – z1,num, black line – z2,num, red line – z1,exp, green line – z2,exp

The obtained responses confirm the existence of a harden-
ing effect. It is more visible for the resonance characteristics
obtained from the numerical results (Fig. 7). For the forward
frequency sweep (solid line), the amplitude jump is visible for
a higher excitation frequency of about 11.4 Hz. For the back-
ward frequency sweep (dashed line), the amplitude jump is ob-
served for a lower frequency of about 10.7 Hz.

Fig. 7. Characteristics of maximum and minimum values of system
responses. Simulations made with the constant excitation acceleration
amplitude of 0.6g. Solid line – forward frequency, dashed line – back-

ward frequency, gray line – z1, black line – z2

The tested system has two degrees of freedom, so two reso-
nance regions can be expected. The time series clearly show the
existence of one such region. To identify the second resonance
region, higher excitation is required, for example 1.5g for the
excitation frequencies near the second resonance zone. How-
ever, the excitation amplitude of 0.7g gives oscillations near
the physical limit in the first resonance zone. The magnet dis-
tance ∆A2−B2 must be larger than the sum of half a length of the
smaller magnet and half a length of the larger magnet. Hence,
relative motion x2− xS should be smaller than 0.13 m (L mi-
nus the above sum). For the application of a slightly higher
excitation level, this limit is not satisfied, and impacts of the
magnets are generated. On the other hand, the existence of fric-
tion constrains motion when the shaker amplitude was reduced.
Cases when dry friction is a barrier to the magnet relative mo-
tion were also observed. Due to significant friction, for this sys-
tem it is not possible to experimentally find resonance regions
for low vibrations and to directly compare them with the results
of the linearized model (Fig. 3b). The visible resonance area in
the resonance curves (Fig. 7) is shifted towards higher frequen-
cies by the hardening effect. This system is specific because the
magnet’s motion without impact and stopping is possible for
a very narrow level of excitation.

Therefore, in this study, system vibrations with a 0.6g exci-
tation amplitude are investigated.

3. ANALYSIS OF ENERGY RECOVERY
In this section, we examine the developed model. Equations
(28), (29) have been supplemented with electrical components
(coils and resistors). The analysis of harvester properties is the-
oretical. For the time being, inductive coils have not been made.
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Results obtained give some guidelines for their design. Gener-
ally, mathematical description is based on previous studies of
a system with one degree of freedom [12–14]. The electrical
equations of electrical circuits can be written in the following
forms:

LC1q̈1 +R1q̇1 = α1 (ż1− żS) , (33)

LC2q̈2 +R2q̇2 = α2 (ż2− żS) , (34)

where LC1 and LC2 are the inductances of both inductance coils,
while R1 and R2 stand for total resistance in the first and sec-
ond electrical circuits. Total resistance is the sum of the resis-
tance of the coil and resistor in its circuit. Electric variables are
charges q1 and q2, whereas α1 and α2 are the electromechani-
cal coupling coefficients. Equations (33), (34) are independent.
Therefore, it is assumed that the upper magnet motion does not
generate current in the bottom coil and vice versa. This is possi-
ble when the distance between the coils, coil length and magnet
vibration level are properly selected. An example of a config-
uration with one magnet and two coils is presented in Fig. 8.
Nonlinear curves of the electromechanical coupling coefficient
are visible. The curves reach the minimum and maximum val-
ues when the magnet center coincides with one end of the coil.
In the presented case, the magnet in equilibrium position has
the maximum electromechanical coupling coefficient. Now, if
the magnet vibrations are appropriately smaller than the dis-
tance between the coils, the magnet will generate current only
in the closer coil. The electromotive forces in the coils will de-
pend on the curve region: a red curve region around the maxi-
mum value and a blue curve region where the values are close
to zero. The second simplification relates to the constant value
of the coupling coefficient. In the literature one can find studies
in which an equivalent constant value is used [16]. It can also
be explained by Fig. 8. If only a portion of the red curve near its
maximum is used, then this shape can be described as the sum
of the constant and some nonlinear terms. In the first order of
approximation, only a constant value of the electromechanical
coupling coefficient can be applied.

Fig. 8. Examples of curves of electromechanical coupling coefficient
versus magnet position in relation to the coils. The coupling between
magnet and right coil (red), the coupling between magnet and left coil

(blue)

Generally, inductances LC1 and LC2 are much lower than total
resistances R1 and R2. Consequently, the inductances can be
omitted and the equations can be written as:

i1 = q̇1 =
α1

R1
(ż1− żS) , (35)

i2 = q̇2 =
α2

R2
(ż2− żS) , (36)

where i1 and i2 are the currents. Equations (28), (29) contain
electrical terms α1i1 and α2i2. Substituting equations (35), (36),
we obtain:

α1i1 =
α2

1
R1

(ż1− żS) = c1e (ż1− żS) , (37)

α2i2 =
α2

2
R2

(ż2− żS) = c2e (ż2− żS) . (38)

Substituted with the new forms of the electrical terms, equa-
tions (37), (38) show that the system has additional damping,
the so-called electrical damping. Their coefficients c1e and c2e
depend on the values of total resistance and electromechan-
ical coupling coefficients. In this study, it was assumed that
the coupling coefficients α1 and α2 are constant and equal to
20 Vsm−1. The proposed value has a level similar to that from
our previous studies with the single magnet [13, 14]. However,
the values of the coefficients have been reduced, because after
adding the second coil the total electrical damping in the system
should not be too excessive. The power of recovered energy can
be written as follows:

P1 = R1i21 =
α2

1
R1

(ż1− żS)
2 , (39)

P2 = R2i22 =
α2

2
R2

(ż2− żS)
2 . (40)

Numerical simulations were made for equations (28), (29),
considering the new notation of electrical terms, i.e. equa-
tions (37), (38).

3.1. Primary case analysis
The so-called primary case was a system with a spacing be-
tween the magnets B1−B2 made equal to L = 150 mm. This
case was chosen as primary because the experimental dynam-
ics tests to identify damping forces were performed for it. A nu-
merical analysis was continued for this fixed magnet distance,
where the values of resistances were predominantly varied.
However, the considerations were limited to the variants where
the resistances of both harvesters were the same, i.e. R1 = R2.
Test results obtained for the system with connected energy re-
covery circuits are shown in Fig. 9 and 10.

A certain part of mechanical energy is converted into elec-
trical energy, but electrical damping affects the system oscil-
lations. A lower resistance generates higher electrical damping
(see equations (37), (38)). Therefore, in Fig. 9a we can see a sig-
nificant reduction in the hardening effect (R1 =R2 = 2 kΩ). For
a higher resistance of 10 kΩ, hardening reduction is small.
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a)

b)

Fig. 9. Characteristics of maximum and minimum values of system
responses. Simulations were made with the constant excitation accel-
eration amplitude of 0.6g and resistances a) R1 = R2 = 2000 Ω and
b) R1 = R2 = 10000 Ω. Solid line – forward frequency, dashed line –

backward frequency, gray line – z1, black line – z2

Equations (39), (40) are quadratic terms. Therefore, the en-
ergy power can change from 0 to the maximum value. Fig-
ure 10 provides two important pieces of information. First, in
both resistance cases the power recovery is lower for the bot-
tom movable magnet (gray line) than for the upper movable
magnet (black line). The greater power recovery P2 is approx-
imately two times higher than the second value P1. The ratio
P2 : P1 in the peaks is 0.1103 W:0.05413 W= 2.0377 (Fig. 10a)
and 0.04765 W:0.02453 W= 1.9425 (Fig. 10b). This trend re-
sults from the fact that upper magnet oscillations are larger
than those of the bottom movable magnet (Fig. 9). Proba-
bly the gravity forces of movable magnets shift their equi-
libriums closer to the lower fixed magnet and this may pre-
dispose the upper movable magnet to larger vibrations. Sec-
ondly, equations (39), (40) suggest that for increasing power,
resistance should be as low as possible and the vibration rel-
ative speed should be as high as possible. However, energy
recovery is higher for the curves in Fig. 10a when both fac-
tors are lower. In this case, the resistances have smaller val-
ues (R1 = R2 = 2000 Ω < 10000 Ω). In contrast, the ampli-
tudes in Fig. 9a are smaller than those in Fig. 9b. Therefore,
it can be supposed that the vibration velocities will also be
lower when the resistances are equal to 2000 Ω. Performed ad-
ditional calculations confirmed that relative magnet velocities
were larger for R1 = R2 = 10000 Ω. These maximum ampli-

a)

b)

Fig. 10. Characteristics of maximum values of power recovery en-
ergy. Simulations were made with the constant excitation accelera-
tion amplitude of 0.6g and resistances a) R1 = R2 = 2000 Ω and
b) R1 = R2 = 10000 Ω. Solid line – forward frequency, dashed line

– backward frequency, gray line – P1, black line – P2

tudes of relative velocities for top and bottom magnets were
0.773 m/s and 0.469 m/s or 1.11 m/s and 0.74 m/s, respectively,
for resistance 2 kΩ and 10 kΩ. Figures 9 and 10 show the char-
acteristics only for two selected cases. The curves show that
resistance affects magnet vibration and energy recovery. For
maximum energy recovery, the optimal resistance will proba-
bly be a compromise between magnet vibration and energy re-
covery. To find the optimal resistance value, more curves were
plotted. Obtained results are presented as color maps (Figs. 11
and 12).

More curves allow for a better understanding of the influ-
ence of resistance on magnet dynamics and energy recovery.
For simplicity’s sake, it can be generalized that reduction in
resistance values leads to lower magnet vibrations and greater
energy recovery. Therefore, some mechanical energy is trans-
formed into electricity. On each map, the global maximum is
shown as a white point. These points in Fig. 11 mark the high
resistance when electrical damping is lower (see equations (37),
(38)). Large vibrations do not guarantee the greatest energy re-
covery. The maximum level of electrical powers results from
a compromise between vibration velocity and resistance value
(see equations (39), (40)). Optimal resistance for the upper and
bottom harvester can be determined from the location of a white
point in Fig. 12. Generally, both harvesters have different loca-
tions of the optimal solution. The upper harvester produces the
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a)

b)

Fig. 11. Color maps showing the maximum z1 (a) and maximum z2
(b) versus resistance and excitation frequency. The maps were ob-
tained with forward frequency sweep and 0.6g excitation amplitude.

The white point marks the global maximum

most energy when R1 = R2 = 1981 Ω. The bottom harvester
generates the maximum power for R1 = R2 = 1634 Ω.

Optimal resistances are different for each harvester. There-
fore, a simple collective criterion has been applied. Recovery
energy is dissipated on the resistors in a heat form, which de-
pends on electrical power. Heating efficiency can be defined as
the sum of the heats generated in both resistors. Analogically,
the process is optimal when the sum of P1 and P2 reaches the
maximum value. In the next section, maps of the collective cri-
terion are shown. For the case under analysis, the location of
the optimal point is visible in Fig. 13d. It is R1 = R2 = 1634 Ω,
when the obtained sum of the maximum electric powers is equal
to 0.1652 W. This optimal case occurs for an excitation fre-
quency of 10.21 Hz. This value is close to the first linear natural
frequency (see Fig. 3).

Summing up, the results show the possibility of energy re-
covery at a low level. For example, Fig. 10 shows that the
maximum electrical power for the selected resistance values
(R1 = R2 = 2 kΩ) is about 110.3 mW and 54.13 mW for the
upper and bottom harvester, respectively. In the numerical anal-
ysis based on the sum of powers, the optimal resistance value
was found to be R1 = R2 = 1634 Ω (Fig. 13d). In this case,
the recovered energy power changed insignificantly to 112 mW
and 53.2 mW for the upper and bottom harvester, respectively.
This shows that around the optimal point there exists a certain
area where the energy recovery level is very similar.

a)

b)

Fig. 12. Color maps showing the maximum P1 (a) and maximum
P2 (b) versus resistance and excitation frequency. The maps were ob-
tained with forward frequency sweep and 0.6g excitation amplitude.

The white point marks the global maximum

3.2. Influence of distance L
The analysis of the so-called primary case (L = 150 mm) has
been described above. In this section, the analysis was extended
to cover other variants of distance L between the fixed magnets.
Based on the numerical simulations, color maps have been cre-
ated (Fig. 13). The main focus was on determining the influence
of distance L on energy recovery. Therefore, the maps show the
sum of the maximum powers from both harvesters versus load
resistance and distance L.

Two aspects should be given particular attention when ana-
lyzing the color maps. They are: the white point location and
the scale level of the color bar. This information describes the
influence of distance L on optimal resistance and the maximum
energy recovered. The maximum value of the color scale (see
color bars in Fig. 13) increases with distance L. The maximum
values correspond to the maximum sum of maximum powers
P1 and P2. For the smallest distance L = 135 mm, the maximum
sum is 14.18 mW (Fig. 13a). For a subsequent L, the level of re-
covered energy increases. Finally, for the highest tested value of
L = 170 mm, the maximum sum is 491.6 mW (Fig. 13h). This
trend can be clearly observed. If we want to recover more en-
ergy, we have to use a larger distance L between the fixed mag-
nets. The influence of L on the optimal resistance value is not
unequivocal. As distance L increases, the optimal resistances
have the following values: 2476 Ω, 1832 Ω, 1783 Ω, 1634 Ω,
1486 Ω, 1783 Ω, 2426 Ω and 1832 Ω. To simplify, it can be as-
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a) b)

c) d)

e) f)

g) h)

Fig. 13. Color maps showing the sum of maximum P1 and maximum P2 versus resistance and excitation frequency when L is equal to:
0.135 m (a), 0.14 m (b), 0.145 m (c), 0.15 m (d), 0.155 m (e), 0.16 m (f), 0.165 m (g), 0.17 m (h). The maps were obtained with forward

frequency sweep and 0.6g excitation amplitude. The white point marks the global maximum
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sumed that the optimal resistance for this system is about 2 kΩ.
However, the maximum energy recovery can be closely related
to the resonance phenomenon. Figure 3 shows that an increase
in L leads to reduction in the natural frequencies. The optimal
white point location on the maps changes in a similar manner.
For L = 135 mm, the optimal point is observed when the ex-
citation frequency is equal to 12.54 Hz. For a higher distance
L, the optimal point shifts towards lower values. Finally, for
L = 170 mm, the optimal point is located at 9.772 Hz.

4. CONCLUSIONS
This study focused on the modeling and analysis of an electro-
magnetic system with two levitation magnets. The conclusions
can be grouped into two areas.

The first group of comments relates to the problem of fric-
tion. This issue is not widely considered in the literature, but
this study has shown that it can be important in a system with
two levitating magnets. The experimental data were approxi-
mated by the developed model only when the friction effect
was considered. In addition, the normal forces had to be depen-
dent on the magnetic forces. The problem will be analyzed in
the future. The authors would like to verify the experimentally
determined relationship between normal and magnetic forces.
However, it is not an easy task in the proposed 2DOF system.

The other group of conclusions relate to the energy recov-
ery process. The influence of resistance on the magnet dynam-
ics and obtained electrical power was presented. As expected,
with higher energy recovery the magnet vibrations decreased.
For the assumed electromechanical coupling coefficient, op-
timal resistance was estimated. It was assumed to be about
R1 = R2 = 2 kΩ. For different values of L optimal resistance
could change by about 25%. These changes may result from
the existence of non-linear mechanical damping, for example
the friction effect. For a single harvester there exists a relation-
ship between optimal resistance, the equivalent electromechan-
ical coupling coefficient and the equivalent mechanical linear
damping coefficient [16]. For different values of L, such equiva-
lent mechanical linear damping coefficient would probably also
be different. In the future, the use of other energy recovery sys-
tem configurations will be considered, e.g. one coil between
two movable magnets.
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