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Linguistic 𝑞-rung orthopair fuzzy prioritized
aggregation operators based on Hamacher 𝑡-norm
and 𝑡-conorm and their applications to multicriteria

group decision making

Nayana DEB, Arun SARKAR and Animesh BISWAS

The linguistic 𝑞-rung orthopair fuzzy (L𝑞-ROF) set is an important implement in the
research area in modelling vague decision information by incorporating the advantages of 𝑞-
rung orthopair fuzzy sets and linguistic variables. This paper aims to investigate the multicriteria
decision group decision making (MCGDM) with L𝑞-ROF information. To do this, utilizing
Hamacher 𝑡-norm and 𝑡-conorm, some L𝑞-ROF prioritized aggregation operators viz., L𝑞-
ROF Hamacher prioritized weighted averaging, and L𝑞-ROF Hamacher prioritized weighted
geometric operators are developed in this paper. The defined operators can effectively deal with
different priority levels of attributes involved in the decision making processes. In addition,
Hamacher parameters incorporated with the proposed operators make the information fusion
process more flexible. Some prominent characteristics of the developed operators are also well-
proven. Then based on the proposed aggregation operators, an MCGDM model with L𝑞-ROF
context is framed. A numerical example is illustrated in accordance with the developed model
to verify its rationality and applicability. The impacts of Hamacher and rung parameters on
the achieved decision results are also analyzed in detail. Afterwards, a comparative study with
other representative methods is presented in order to reflect the validity and superiority of the
proposed approach.

Key words: linguistic 𝑞-rung orthopair fuzzy set, multicriteria group decision making,
Hamacher operations, prioritized aggregation operator

1. Introduction

Multicriteria decision making (MCDM) has emerged as an important branch
in modern decision science. It refers to find a suitable choice based on the
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evaluation information by a decision-maker (DM) from a collection of alternatives
under a set of criteria. If the evaluation of alternatives against a certain criterion
is performed under multiple DMs instead of a single DM, then the process is
termed as multicriteria group decision making (MCGDM). With the increase
in vagueness of environment day by day and the inherent fuzziness connected
with human perception, decision information cannot always be provided using
crisp numbers. In response to this issue Zadeh [1] first introduced the notion of
fuzzy set. After that, several extensions of fuzzy set were developed, including
intuitionistic fuzzy sets (IFSs) [2], interval-valued IFSs [3], Pythagorean fuzzy
sets (PFSs) [4, 5], interval-valued PFS [6, 7], Fermatin fuzzy sets (FFSs) [8] etc.
Since these extensions of fuzzy sets appear, they have received more and more
attention in solving decision-making problems [9–15]. By enlarging the scope of
IFS, PFS and FFS, recently, another variant of fuzzy set, 𝑞-rung orthopair fuzzy
(𝑞-ROF) set (𝑞-ROFS) [16], has been developed as an efficient tool in terms of
capturing uncertainty during the process of MCGDM. For 𝑞-ROFSs membership
degree 𝜇 and non-membership degree 𝜈 satisfy the condition that sum of their
𝑞-th power is less than or equal to 1, i.e., 𝜇𝑞 + 𝜈𝑞 ¬ 1. As a more generalized
fuzzy set, 𝑞-ROFS include fuzzy sets, IFSs, PFSs, and FFSs as special cases with
certain conditions. For instance, 𝑞-ROFS reduces to IFS, PFS, FFS by taking the
value of rung parameter 𝑞 = 1, 2, 3, respectively. So 𝑞-ROFS is the most valuable
and focused extension of fuzzy sets in which DMs can modify the range of their
judgement values by varying rung parameter 𝑞 based on different indeterminate
degrees.
So far, 𝑞-ROFSs have attracted many scholars attention. Liu and Wang [17]

investigated multi-attribute decision making (MADM) problems with 𝑞-ROF
information on developing 𝑞-ROF weighted averaging (WA) and weighted ge-
ometric (WG) operators. They [18] further extended Archimedean Bonferroni
mean operators to 𝑞-ROF environment. Heronian mean was utilized to fuse 𝑞-
ROF data, and thereby a MADM approach was developed by Wei et al. [19].
On the basis of the cosine function, Wang et al. [20] studied novel similarity
measures for 𝑞-ROFSs. Further, a study on induced logarithmic distance mea-
sures for 𝑞-ROFSs was conducted by Zeng et al. [21]. In recent days, a variety of
applications [22–28] on 𝑞-ROFSs have been developed by numerous researchers.
However, 𝑞-ROFS theory has successfully been applied in several decision-

making processes, but in real-world issues, many attribute values are present
that are often difficult to express quantitatively. In such cases, it seems suitable to
express them using a qualitative form. To address such situations, Liu and Liu [29]
invented linguistic 𝑞-ROF (L𝑞-ROF) set (L𝑞-ROFS), following the advantage of
𝑞-ROFS and linguistic variables [30], which is a generalization of linguistic
intuitionistic fuzzy (LIF) set (LIFS) [31] and linguistic Pythagorean fuzzy (LPF)
set (LPFS) [32]. In recent years, several significant researches on L𝑞-ROFS have
been carried out, along with numerous decision-making theories.
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In short, L𝑞-ROFS have been studied effectually from different perspectives,
including information measures [33,34], traditional decision techniques [35,36],
aggregation operators [29, 37–41]. Nevertheless, to generate the ranking of al-
ternatives, aggregation operators usually can address decision making situations
more effectively than conventional decision techniques because aggregation oper-
ators can produce a ranking of alternatives along with their collective evaluation
values. In contrast, traditional techniques can be only able to produce ranking
results. Liu and Liu [29] introduced some aggregation operators based on power
Bonferroni mean and utilized them for MCGDM under L𝑞-ROF environment.
An interactional partitioned Heronian mean based decision method with L𝑞-ROF
information has been developed by Lin et al. [37]. Further, Liu and Liu [38] in-
vestigated L𝑞-ROF power Muirhead mean aggregation operators for MCGDM.
Recently, Akram et al. [39] proposed anEinsteinmodel in order to build a L𝑞-ROF
group decision-making framework, and Liu et al. [40] developed some general-
ized point weighted aggregation operators for L𝑞-ROF group decision-making
context as well.
It is important that in the process of MCDM, the required aggregation op-

erators must be general and flexible enough to capture the relationship between
the different criteria when aggregating the values of attributes. Assuming that
the criteria are at the same priority level may lead to serious loss of information.
Yager [42] introduced the prioritized averaging operator to overcome these issues,
which may take into account various priority levels of criteria during the aggre-
gating procedure. However, so far, the aggregated operators to fuse L𝑞-ROF
information have not taken prioritization relation among criteria into account.
Thus, introducing the concept prioritized aggregation (PA) operator in L𝑞-ROF
environment for developing someMCGDM techniques would be a useful study in
Literature. It is important to point out that among the existing aggregation opera-
tors for L𝑞-ROF numbers (L𝑞-ROFNs), most of the aggregation functions involve
algebraic sum and product in order to carry the aggregation process. However,
the operational rules play an important role in aggregating decision information.
Hamacher operations [43], a generalized form of algebraic and Einstein opera-
tions [44], have significant importance in the aggregation process by means of
a flexible parameter. Several achievements [45–47] have been discovered in the
past decades employing Hamacher operational rules in the aggregation process.
Therefore motivated by the idea of Hamacher 𝑡-norms and 𝑡-conorms with PA op-
erators, some L𝑞-ROF aggregation operators, viz., L𝑞-ROFHamacher prioritized
WA (L𝑞-ROFHPWA), and L𝑞-ROF Hamacher prioritized WG (L𝑞-ROFHPWG)
operators have been developed in this paper.
The paper is structured as follows. Section 2 reviews several fundamental con-

cepts such as L𝑞-ROFSs, Hamacher 𝑡-norms and 𝑡-conorms and PA operators.
Hamacher operational laws for L𝑞-ROFNs are proposed in Section 3. Section 4
introduces some newly L𝑞-ROF PA operators based on Hamacher operations,
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viz., L𝑞-ROFHPWA and L𝑞-ROFHPWG operators. Further, some characteris-
tics of these developed operators are also exhibited in this section. Section 5
illustrates an MCGDM approach utilizing the proposed aggregation operators.
A numerical example utilizing the developed approach has been provided in Sec-
tion 6. Comparative and sensitivity analyses are discussed in Section 7. Finally,
an overall summarization and scope for future studies have been demonstrated in
Section 8.

2. Preliminaries

Some basic ideas of linguistic term set (LTS), L𝑞-ROFS, PA operator, and
Hamacher 𝑡-norm and 𝑡-conorm are briefly discussed in this section.

2.1. LTS

Definition 1 [48] Let 𝔖 = {𝔖0, 𝔖1, 𝔖2, . . . , 𝔖𝑡} be a finite-ordered discrete
set with odd cardinality and the terms 𝔖0, 𝔖1, 𝔖2, . . . , 𝔖𝑡 can be specified in
terms of various real-world scenarios. Then 𝔖 is said to be a LTS if it satisfies
the following conditions:

(i) If 𝑖 > 𝑗 , then 𝔖𝑖 > 𝔖 𝑗 , implies 𝔖𝑖 is superior than 𝔖 𝑗 (Ordered);

(ii) ¬(𝔖𝑖) = 𝔖 𝑗 , where 𝑗 = 𝑡 − 𝑖 (Negation);

(iii) If 𝑖 ¬ 𝑗 , that is, 𝔖𝑖 ¬ 𝔖 𝑗 , then min
(
𝔖𝑖,𝔖 𝑗

)
= 𝔖𝑖 (Min operator);

(iv) If 𝑖 ­ 𝑗 , that is, 𝔖𝑖 ­ 𝔖 𝑗 , then max
(
𝔖𝑖,𝔖 𝑗

)
= 𝔖𝑖 (Max operator).

For example, when an expert wants to evaluate the quality of comforts of a car,
he/she may feel more convenient to assess it using LTS as

𝔖 = {𝔖0, 𝔖1, 𝔖2, . . . , 𝔖6}
= {extreme low, very low, low, medium, high, very high, extreme high} .

Further, Xu [49] prolonged the notion of discrete LTS 𝔖 to continuous LTS
(CLTS) 𝔖 such that 𝔖 = {𝔖ℏ |𝔖0 ¬ 𝔖ℏ ¬ 𝔖𝑡 , ℏ ∈ [0, 𝑡]} and the components
likewise meet all of the preceding requirements.

2.2. Lq-ROFS

Definition 2 [29] An L𝑞-ROFS B̃ defined in a universe of discourse 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} is represented by

B̃ =

{〈
𝑥,𝔖𝛾B̃

(𝑥),𝔖𝜁B̃
(𝑥)

〉 �� 𝑥 ∈ 𝑋

}
, (1)
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where 𝔖𝛾B̃
(𝑥), 𝔖𝜁B̃

(𝑥) ∈ 𝔖[0,𝑡] denote the linguistic membership and non-

membership degrees, respectively satisfying the condition 0 ¬
(
𝛾B̃

)𝑞
+
(
𝜁B̃

)𝑞
¬ 𝑡𝑞

(𝑞 ­ 1) for every 𝑥 ∈ 𝑋 . For convenience, Liu and Liu [29] represents a L𝑞-ROFN
as 𝛽 =

〈
𝔖𝛾,𝔖𝜁

〉
. The linguistic indeterminacy degree of 𝑥 to 𝛽 is presented as

𝔖𝜋
𝛽
(𝑥) = 𝔖

(𝑡𝑞−𝛾𝑞−𝜁𝑞)
1
𝑞
.

Definition 3 [29] Let 𝛽 =
〈
𝔖𝛾,𝔖𝜁

〉
be an L𝑞-ROFN, the score function, 𝑆

(
𝛽

)
,

and accuracy function, 𝐴
(
𝛽

)
, of the L𝑞-ROFN can be defined as

𝑆

(
𝛽

)
=

(
𝑡𝑞 + 𝛾𝑞 − 𝜁𝑞

2

) 1
𝑞

, (2)

and
𝐴

(
𝛽

)
= (𝛾𝑞 + 𝜁𝑞)

1
𝑞 . (3)

The following comparison method based on the score and accuracy functions is
presented to compare any two L𝑞-ROFNs.
Definition 4 [29] Let 𝛽1 =

〈
𝔖𝛾1 ,𝔖𝜁1

〉
, 𝛽2 =

〈
𝔖𝛾2 , 𝔖𝜁2

〉
be any two L𝑞-ROFNs

(i) If 𝑆
(
𝛽1

)
< 𝑆

(
𝛽2

)
, then 𝛽1 ≺ 𝛽2;

(ii) If 𝑆
(
𝛽1

)
= 𝑆

(
𝛽2

)
, then

• if 𝐴
(
𝛽1

)
< 𝐴

(
𝛽2

)
, then 𝛽1 ≺ 𝛽2 which means 𝛽2 is better than 𝛽1;

• if 𝐴
(
𝛽1

)
= 𝐴

(
𝛽2

)
, then 𝛽1 ≈ 𝛽2, which means 𝛽1 is equal to 𝛽2.

2.3. PA operator

Yager [42] originally introduced the PA operator, which is presented in the
following:

Definition 5 [42] Consider {𝐶𝑖 | 𝑖 = 1, 2, . . . , 𝑛} as a collection of criteria, the
linear ordering 𝐶1 � 𝐶2 � . . . � 𝐶𝑛 represents their priority. This ordering
reveals that if 𝑗 < 𝑘 then criteria𝐶 𝑗 has a higher priority than𝐶𝑘 .𝐶 𝑗 (𝑥) ∈ [0, 1]
denotes the assessment value of any alternative 𝑥 evaluated on the criteria 𝐶 𝑗 .

If 𝑃𝐴
(
𝐶 𝑗 (𝑥)

)
=

𝑛∑︁
𝑗=1

𝑤 𝑗𝐶 𝑗 (𝑥), where 𝑤 𝑗 =
𝑇𝑗

𝑛∑
𝑗=1

𝑇𝑗

, 𝑇𝑗 =

𝑗−1∏
𝑘=1

𝐶𝑘 (𝑥)

( 𝑗 = 2, . . . , 𝑛), 𝑇1 = 1. Then 𝑃𝐴
(
𝐶 𝑗 (𝑥)

)
is called the PA operator.
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2.4. Hamacher t-norms and t-conorms

In 1978, Hamacher [43] introduced one of generalized 𝑡-norm and 𝑡-conorm,
which is known as Hamacher 𝑡-norms and 𝑡-conorms, and expressed as (𝜍 > 0):

• Hamacher 𝑡-norm: 𝑇𝐻
𝜍 (𝑥, 𝑦) = 𝑥𝑦

𝜍 + (1 − 𝜍) (𝑥 + 𝑦 − 𝑥𝑦) ,

• Hamacher 𝑡-conorm: 𝑆𝐻𝜍 (𝑥, 𝑦) =
𝑥 + 𝑦 − 𝑥𝑦 − (1 − 𝜍) 𝑥𝑦
1 − (1 − 𝜍) 𝑥𝑦 .

3. Hamacher t-norms and t-conorms based operational laws for Lq-ROFNs

According to the Hamacher 𝑡-norms and 𝑡-conorms, the following operational
rules of L𝑞-ROFNs are defined as follows.

Definition 6 Let 𝔖 = {𝔖ℏ : ℏ ∈ [0, 𝑡]} be a CLTS, 𝛽1 =
〈
𝔖𝛾1 ,𝔖𝜁1

〉
,

𝛽2 =
〈
𝔖𝛾2 ,𝔖𝜁2

〉
and 𝛽 =

〈
𝔖𝛾,𝔖𝜁

〉
be three L𝑞-ROFNs. Then, the Hamacher

operational laws of L𝑞-ROFNs are defined as (𝜆 > 0)

(i) 𝛽1 ⊕𝐻 𝛽2 =

〈
𝔖

𝑡

(
𝑡𝑞𝛾

𝑞

1 +𝑡
𝑞𝛾

𝑞

2 −𝛾
𝑞

1 𝛾
𝑞

2 −(1−𝜍 )𝛾
𝑞

1 𝛾
𝑞

2
𝑡2𝑞−(1−𝜍 )𝛾𝑞1 𝛾

𝑞

2

) 1
𝑞
, 𝔖

𝑡

(
𝜁
𝑞

1 𝜁
𝑞

2
𝜍𝑡2𝑞+(1−𝜍 )(𝑡𝑞 𝜁 𝑞1 +𝑡𝑞 𝜁 𝑞2 −𝜁 𝑞1 𝜁

𝑞

2 )
) 1
𝑞

〉
;

(ii) 𝛽1 ⊗𝐻 𝛽2 =

〈
𝔖

𝑡

(
𝛾
𝑞

1 𝛾
𝑞

2
𝜍𝑡2𝑞+(1−𝜍 )(𝑡𝑞𝛾𝑞1 +𝑡𝑞𝛾𝑞2 −𝛾𝑞1 𝛾𝑞2 )

) 1
𝑞
, 𝔖

𝑡

(
𝑡𝑞 𝜁

𝑞

1 +𝑡𝑞 𝜁 𝑞2 −𝜁 𝑞1 𝜁
𝑞

2 −(1−𝜍 )𝜁 𝑞1 𝜁
𝑞

2
𝑡2𝑞−(1−𝜍 )𝜁 𝑞1 𝜁

𝑞

2

) 1
𝑞

〉
;

(iii) 𝜆𝛽 =

〈
𝔖

𝑡

(
(𝑡𝑞+𝛾𝑞 (𝜍−1))𝜆−(𝑡𝑞−𝛾𝑞 )𝜆

(𝑡𝑞+𝛾𝑞 (𝜍−1))𝜆+(𝜍−1) (𝑡𝑞−𝛾𝑞 )𝜆

) 1
𝑞
, 𝔖

𝑡

(
𝜍 𝜁 𝑞𝜆

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝜁 𝑞 ))𝜆+(𝜍−1)𝜁 𝑞𝜆

) 1
𝑞

〉
;

(iv) 𝛽𝜆 =

〈
𝔖

𝑡

(
𝜍𝛾𝑞𝜆

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝛾𝑞 ))𝜆+(𝜍−1)𝛾𝑞𝜆

) 1
𝑞
, 𝔖

𝑡

(
(𝑡𝑞+𝜁 𝑞 (𝜍−1))𝜆−(𝑡𝑞−𝜁 𝑞 )𝜆

(𝑡𝑞+𝜁 𝑞 (𝜍−1))𝜆+(𝜍−1) (𝑡𝑞−𝜁 𝑞 )𝜆

) 1
𝑞

〉
.

4. Development of Hamacher operations-based PA operators
on Lq-ROF environment

In the following, utilizing Hamacher operations, the PA operator is extended
into L𝑞-ROFNs and L𝑞-ROFHPWA and L𝑞-ROFHPWG operators are proposed.
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Definition 7 Let
{
𝛽1, 𝛽2, ..., 𝛽𝑛

}
represents a collection of L𝑞-ROFNs, where

𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) and 𝑞 ­ 1. Then L𝑞-ROFHPWA operator is

defined as

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊕
𝐻

𝑖=1

©­­­«
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®¬ (4)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight vectors of 𝛽𝑖 with 𝜔𝑖 ∈ [0, 1] and

𝜔𝑖 =
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

, 𝑇𝑖 =
𝑖−1∏
𝑘=1

𝑆

(
𝛽𝑘

)
𝑡

(𝑖 = 2, . . . , 𝑛), 𝑇1 = 1 and 𝑆

(
𝛽𝑖

)
is the score of 𝛽𝑖.

Theorem 1 Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) represents a collection of L𝑞-

ROFNs. Then, the aggregated result is also a L𝑞-ROFN based on L𝑞-ROFHPWA
operator, and

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊕
𝐻

𝑖=1

©­­­«
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®¬
=

〈
𝔖

𝑡

©­­­­­­­«
𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­«
𝜍

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.
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Proof. Based on Definition 6,

𝑇𝑖
𝑛∑
𝑖=1
𝑇𝑖

𝛽𝑖

=

〈
𝔖

𝑡

©­­­­­­«
(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­«
𝜍 𝜁

𝑞
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑖

(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)𝜁

𝑞
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Then, it can be obtained that

2⊕
𝐻

𝑖=1

©­­­­«
𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®®¬
=

𝑇1
2∑
𝑖=1

𝑇𝑖

𝛽1 ⊕𝐻

𝑇2
2∑
𝑖=1

𝑇𝑖

𝛽2 =

=

〈
𝔖

𝑡

©­­­­­­­«
(𝑡𝑞+𝛾𝑞1 (𝜍−1))

𝑇1
2∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞1 )

𝑇1
2∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞1 (𝜍−1))

𝑇1
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞1 )

𝑇1
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­«
𝜍 𝜁

𝑇1
2∑
𝑖=1

𝑇𝑖

𝑞

1

(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞1 ))

𝑇1
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)𝜁

𝑇1
2∑
𝑖=1

𝑇𝑖

𝑞

1

ª®®®®®®®¬

1
𝑞

〉
⊕𝐻

〈
𝔖

𝑡

©­­­­­­­«
(𝑡𝑞+𝛾𝑞2 (𝜍−1))

𝑇2
2∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞2 )

𝑇2
2∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞2 (𝜍−1))

𝑇2
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞2 )

𝑇2
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­«
𝜍 𝜁

𝑇2
2∑
𝑖=1

𝑇𝑖

𝑞

2

(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞2 ))

𝑇2
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)𝜁

𝑇2
2∑
𝑖=1

𝑇𝑖

𝑞

2

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©­­­­­­­­«
2∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
−
2∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

2∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)

2∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­­­«
𝜍
2∏
𝑖=1

𝜁

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝑞

𝑖

2∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)

2∏
𝑖=1

𝜁

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®®¬

1
𝑞

〉
.

So, the theorem is true for 𝑛 = 2.
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Now let theorem is true for 𝑛 = 𝑚, i.e.,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑚

)
=

𝑚⊕
𝐻

𝑖=1

(
𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝛽𝑖

)

=

〈
𝔖

𝑡

©­­­­­­­«
𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
−
𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­«
𝜍

𝑚∏
𝑖=1

𝜁

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1

𝜁

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.

Now would show that it is true for 𝑛 = 𝑚 + 1,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑚, 𝛽𝑚+1

)
=

(
L𝑞-ROFHPWA

(
𝛽1, 𝛽2, . . . , 𝛽𝑚

))
⊕𝐻

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝛽𝑚+1

=

〈
𝔖

𝑡

©­­­­­­­«
𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
−
𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­«
𝜍

𝑚∏
𝑖=1

𝜁

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1

𝜁

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
⊕𝐻
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𝔖

𝑡

©­­­­­­­«
(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­«
𝜍 𝜁

𝑞
𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝑖

(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)𝜁

𝑞
𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©­­­­­­­­«
𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
−
𝑚+1∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚+1∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­­«
𝜍
𝑚+1∏
𝑖=1

𝜁

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚+1∏
𝑖=1

𝜁

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®®¬

1
𝑞

〉
.

Since it is valid for 𝑛 = 𝑚 + 1, theorem is proved for all 𝑛. 2

In the next, some particular cases, concerning parameter 𝜍, for L𝑞-ROFHPWA
operator are discussed.

• When 𝜍 = 1, L𝑞-ROFHPWA operator reduces to the L𝑞-ROF weighted
average (L𝑞-ROFPWA) operator as follows:

L𝑞-ROFPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©­­­­­­­«
𝑡𝑞−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑡𝑞

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­«
𝑛∏
𝑖=1

(
𝜁𝑖
𝑡

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞ª®®®®¬
1
𝑞

〉
.

• When 𝜍 = 2, L𝑞-ROFHPWA operator reduces to the L𝑞-ROF Einstein
weighted average (L𝑞-ROFEPWA) operator as follows:
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L𝑞-ROFEPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©­­­­­­­«
𝑛∏
𝑖=1
(𝑡𝑞+𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©­­­­­­­­«
2

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝑡𝑞−𝜁 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.

Example 1Let 𝛽1 = 〈𝔖4,𝔖4〉, 𝛽2 = 〈𝔖6,𝔖2〉, 𝛽3 = 〈𝔖5,𝔖3〉 and 𝛽4 = 〈𝔖7,𝔖2〉
be four L𝑞-ROFNs on LTS

{
𝑆𝑖

�� 𝑖 = 0, 1, . . . , 8}. Utilizing the score function of
L𝑞-ROFNs, 𝑆

(
𝛽1

)
= 6.3496, 𝑆

(
𝛽2

)
= 7.1138, 𝑆

(
𝛽3

)
= 6.7313 and 𝑆

(
𝛽4

)
=

7.5096 are obtained. So, 𝑇1 = 1, 𝑇2 = 0.7937, 𝑇3 = 0.7058 and 𝑇4 = 0.5939.
Then using L𝑞-ROFHPWA operator, the aggregated value of 𝛽1, 𝛽2, 𝛽3 and 𝛽4
is calculated as (Considering 𝜍 = 3, 𝑞 = 3)

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, 𝛽3, 𝛽4

)
=

〈
𝔖

8

©­­­­­­­­«
4∏
𝑖=1
(83+(3−1)𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
−
4∏
𝑖=1
(83−𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖

4∏
𝑖=1
(83+(3−1)𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
+(3−1)

4∏
𝑖=1
(83−𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
3
,

𝔖

8

©­­­­­­­­­«
3
4∏
𝑖=1

𝜁

3 𝑇𝑖
4∑
𝑖=1

𝑇𝑖

𝑖

4∏
𝑖=1
(83+(3−1)(83−𝜁 3𝑖 ))

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
+(3−1)

4∏
𝑖=1

𝜁

3 𝑇𝑖
4∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®®®¬

1
3

〉
= 〈𝔖5.6021, 𝔖2.7571〉 .

Furthermore, the proposed L𝑞-ROFHPWA operator meets certain important
properties, which are stated as follows.

Theorem 2 (Idempotency) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a col-

lection of 𝑛 L𝑞-ROFNs. If 𝛽𝑖 = 𝛽 =
〈
𝔖𝛾,𝔖𝜁

〉
for all 𝑖 = 1, 2, . . . , 𝑛, then

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= 𝛽.
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Proof. Since 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
=

〈
𝔖𝛾,𝔖𝜁

〉
= 𝛽 for all 𝑖 = 1, 2, . . . , 𝑛;

Then,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= L𝑞-ROFHPWA

(
𝛽, 𝛽, . . . , 𝛽

)

=

〈
𝔖

𝑡

©­­­­­­­«
𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1

(𝑡𝑞−𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

(𝑡𝑞−𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­«
𝜍

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝜁 𝑞 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©­­­­­«
(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1) (𝑡𝑞−𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­­«
𝜍 𝜁

𝑞

©­­­­«
𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®¬

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝜁 𝑞 ))

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)𝜁

𝑞

©­­­­«
𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®¬

ª®®®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

(
(𝑡𝑞+(𝜍−1)𝛾𝑞 )−(𝑡𝑞−𝛾𝑞 )

(𝑡𝑞+(𝜍−1)𝛾𝑞 )+(𝜍−1) (𝑡𝑞−𝛾𝑞 )

) 1
𝑞
, 𝔖

𝑡

(
𝜍 𝜁 𝑞

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝜁 𝑞 ))+(𝜍−1)𝜁 𝑞
) 1
𝑞

〉
=

〈
𝔖𝛾, 𝔖𝜁

〉
.

Hence the theorem is proved. 2
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Theorem 3 (Boundedness) Let 𝛽𝑖 =
〈
𝑆𝛾𝑖 , 𝑆𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a collection of

L𝑞-ROFNs, and 𝛾− = {𝛾𝑖}, 𝛾+ = {𝛾𝑖}, 𝜁− = {𝜁𝑖}, 𝜁+ = {𝜁𝑖} then

𝛽− ¬ L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
¬ 𝛽+,

where 𝛽− =
〈
𝑆𝛾− , 𝑆𝜁+

〉
and 𝛽+ =

〈
𝑆𝛾+ , 𝑆𝜁−

〉
.

Proof. Let 𝑓 (𝑥) = 𝑡𝑞 + (𝜍 − 1)𝑥
𝑡𝑞 − 𝑥

, 𝑥 ∈ [0, 𝑡), then 𝑓 ′(𝑥) = 𝑡𝑞𝜍

(𝑡𝑞 − 𝑥)2
> 0, thus 𝑓

is an increasing function. Since 𝛾− ¬ 𝛾𝑖 ¬ 𝛾+, for all 𝑖 = 1, 2, . . . , 𝑛,

(𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)
(𝑡𝑞 − (𝛾−)𝑞) ¬

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ¬

(
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞) .

So,(
(𝑡𝑞 + (𝜍−1) (𝛾−)𝑞)

(𝑡𝑞 − (𝛾−)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

( (
𝑡𝑞 + (𝜍−1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
( (
𝑡𝑞 + (𝜍−1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

⇔
𝑛∏
𝑖=1

(
(𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)

(𝑡𝑞 − (𝛾−)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 ⇔ (𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)
(𝑡𝑞 − (𝛾−)𝑞) + (𝜍 − 1)

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1) ¬
(
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞) + (𝜍 − 1)

⇔ 1
(𝑡𝑞+(𝜍−1) (𝛾−)𝑞)

(𝑡𝑞−(𝛾−)𝑞) + (𝜍 − 1)
­

1

𝑛∏
𝑖=1

( (𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )
(𝑡𝑞−𝛾𝑞𝑖 )

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)

­
1

(𝑡𝑞+(𝜍−1) (𝛾+)𝑞)
(𝑡𝑞−(𝛾+)𝑞) + (𝜍 − 1)

⇔ 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞

­
𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

­
𝜍

(
𝑡𝑞 − (𝛾+)𝑞

)
𝜍𝑡𝑞
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⇔ 1 − 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞

¬ 1 −
𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬ 1 − 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞

⇔ (𝛾−)𝑞

𝑡𝑞

¬ 1 −
𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(𝛾+)𝑞

𝑡𝑞

i.e.,

𝛾− ¬ 𝑡

©­­­­­­«
𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 −
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®¬

1
𝑞

¬ 𝛾+. (5)

Again let g(𝑦) =
(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝑦))

𝑦
, 𝑦 ∈ (0, 𝑡], 𝜍 > 0, then g′(𝑦) = − 𝜍𝑡𝑞

𝑦2
< 0,

thus g(𝑦) is a decreasing function.
Since for all 𝑖, 𝜁+ ­ 𝜁𝑖 ­ 𝜁−, then(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−(𝜁+)𝑞

) )
(𝜁+)𝑞 ¬

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−𝜁𝑞

𝑖

) )
𝜁
𝑞

𝑖

¬
(𝑡𝑞+(𝜍−1) (𝑡𝑞−(𝜁−)𝑞))

(𝜁−)𝑞 ,

thus, ( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (𝜁+)𝑞

) )
(𝜁+)𝑞

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − 𝜁

𝑞

𝑖

) )
𝜁
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (𝜁−)𝑞))

(𝜁−)𝑞
) 𝑇𝑖

𝑛∑
𝑖=1

𝑇𝑖 ⇔
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (𝜁+)𝑞

) )
(𝜁+)𝑞

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
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¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − 𝜁

𝑞

𝑖

) )
𝜁
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
𝑛∏
𝑖=1

(
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (𝜁−)𝑞))

(𝜁−)𝑞
) 𝑇𝑖

𝑛∑
𝑖=1

𝑇𝑖

⇔
(
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (𝜁+)𝑞

) )
(𝜁+)𝑞 ¬

𝑛∏
𝑖=1

( (
𝑡𝑞 + 𝑡 (𝜍 − 1)

(
𝑡𝑞 − 𝜁

𝑞

𝑖

) )
𝜁
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (𝜁−)𝑞))

(𝜁−)𝑞 ⇔ 𝜍𝑡𝑞 − (𝜍 − 1) (𝜁+)𝑞

(𝜁+)𝑞 + (𝜍 − 1)

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − 𝜁

𝑞

𝑖

) )
𝜁
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1) ¬ 𝜍𝑡𝑞 − (𝜍 − 1) (𝜁−)𝑞

(𝜁−)𝑞 + (𝜍 − 1)

⇔ 1
𝜍𝑡𝑞

(𝜁+)𝑞
­

1

𝑛∏
𝑖=1

( (𝑡𝑞+(𝜍−1)(𝑡𝑞−𝜁𝑞𝑖 ))
𝜁
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)

­
1
𝜍𝑡𝑞

(𝜁−)𝑞

⇔ 𝜁+ ­ 𝑡

©­­­­­­­«
𝜍

𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − 𝜁

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

𝜁

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®¬

1
𝑞

­ 𝜁−. (6)

From (5) and (6), it is clear that

𝑆

(
𝛽−

)
¬ 𝑆

(
L𝑞-ROFHPWA

(
𝛽1, 𝛽2, ..., 𝛽𝑛

))
¬ 𝑆

(
𝛽+

)
.

Therefore, 𝛽− ¬ L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
¬ 𝛽+.

Definition 8 Let
{
𝛽1, 𝛽2, ..., 𝛽𝑛

}
be a set of L𝑞-ROFNs, where 𝛽𝑖 =

〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) and 𝑞 ­ 1. Then L𝑞-ROFHPWG operator is defined as

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊗
𝐻

𝑖=1

(
𝛽𝑖

)𝜔𝑖

, (7)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight vectors of 𝛽𝑖 with 𝜔𝑖 ∈ [0, 1] and

𝜔𝑖 =
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

, 𝑇𝑖 =
𝑖−1∏
𝑘=1

𝑆

(
𝛽𝑘

)
𝑡

(𝑖 = 2, . . . , 𝑛), 𝑇1 = 1 and 𝑆

(
𝛽𝑖

)
is the score of 𝛽𝑖.
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Theorem 4 Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a set of L𝑞-ROFNs. Then, the

aggregated result from the L𝑞-ROFHPWG operator is also a L𝑞-ROFN, where

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

𝑛⊗
𝐻

𝑖=1

(
𝛽𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

=

〈
𝔖

𝑡

©­­­­­­­­«
𝜍

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­«
𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1
(𝑡𝑞−𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Proof. Proof of this theorem is similar to the proof of Theorem 1.
Now, some particular cases of the L𝑞-ROFHPWG operator are discussed

based on parameter 𝜍.

• When 𝜍 = 1, L𝑞-ROFHPWG operator reduces to the L𝑞-ROF prioritized
weighted geometric (L𝑞-ROFPWG) operator as follows:

L𝑞-ROFPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©­­­­«
𝑛∏
𝑖=1
( 𝛾𝑖

𝑡 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞ª®®®®¬
1
𝑞
, 𝔖

𝑡

©­­­­­­­«
𝑡𝑞−

𝑛∏
𝑖=1
(𝑡𝑞−𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑡𝑞

ª®®®®®®®¬

1
𝑞

〉
.

• When 𝜍 = 2, L𝑞-ROFHPWG operator reduces to the L𝑞-ROF Einstein
prioritized weighted geometric (L𝑞-ROFEPWG) operator as follows:
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L𝑞-ROFEPWG
(
𝛽1, 𝛽2, 𝑙𝑑𝑜𝑡𝑠, 𝛽𝑛

)
=

〈
𝔖

𝑡

©­­­­­­­­«
2

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝑡𝑞−𝛾𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞
,𝔖

𝑡

©­­­­­­­«
𝑛∏
𝑖=1
(𝑡𝑞+𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1
(𝑡𝑞−𝜁 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Theorem 5 (Idempotency) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a col-

lection of 𝑛 L𝑞-ROFNs. If 𝛽𝑖 = 𝛽 =
〈
𝔖𝛾,𝔖𝜁

〉
for all 𝑖 = 1, 2, . . . , 𝑛, then

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= 𝛽.

Theorem 6 (Boundedness) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖𝜁𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a collection

of L𝑞-ROFNs, and 𝛾− = min
𝑖

{𝛾𝑖}, 𝛾+ = max
𝑖

{𝛾𝑖}, 𝜁− = min
𝑖

{𝜁𝑖}, 𝜁+ = max
𝑖

{𝜁𝑖}
then

𝛽− ¬ L𝑞-ROFHPWG
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
¬ 𝛽+.

The proofs of Theorem 5 and 6 are analogous to the previous.

5. An MCGDM approach based on Lq-ROF prioritized aggregation operators

In this section, a novel MCGDM approach have been propounded, in which
the evaluation information is in the form of L𝑞-ROFNs.
For a group decision making problem, let E =

{
E (1) , E (2) , . . . , E (𝑢)} be the

set of the DMs and the linear ordering E (1) � E (2) � . . . � E (𝑢) represents
the prioritization relationship among the DMs’ in such a manner that DM, E (𝑘) ,
has a higher priority than DM, E (𝑙) , if 𝑘 < 𝑙. Suppose A = {𝐴1, 𝐴2, . . . , 𝐴𝑚}
be a discrete collection of alternatives. G = {G1,G2, . . . ,G𝑛} represents the set
of criteria with their prioritization as G1 � G2 � . . . � G𝑛, so that criteria G𝑗

has a higher priority than G𝑖, for 𝑗 < 𝑖. DMs provide their evaluation values
in terms of L𝑞-ROFNs based on LTS: 𝔖 = {𝔖0,𝔖1,𝔖2, . . . ,𝔖𝑡}. A L𝑞-ROF

decision matrix (L𝑞-ROFDM) 𝑋 (𝑙) =

[
𝛽
(𝑙)
𝑖 𝑗

]
𝑚×𝑛

=

[〈
𝔖

𝛾
(𝑙)
𝛽𝑖 𝑗

,𝔖
𝜁
(𝑙)
𝛽𝑖 𝑗

〉]
𝑚×𝑛
, where〈

𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

,𝔖
𝜁
(𝑙)
𝛽𝑖 𝑗

〉
denotes a L𝑞-ROFN given by the DM E (𝑙) for the alternative 𝐴𝑖
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under the criteria G𝑗 . Here corresponding to the DM E (𝑙) , 𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

indicates the

satisfaction degree of the alternative 𝐴𝑖 concerning the criteria G𝑗 ; whereas𝔖𝜁
(𝑙)
𝛽𝑖 𝑗

indicates that of dissatisfaction degree.
The purpose is to find the best suitable alternative(s) in light of the presented

approach. The computational process is summarized step-by-step as follows.

Step 1. Normalize X̃ (𝑙) , if required, into 𝑅(𝑙) =
[
𝑟̃
(𝑙)
𝑖 𝑗

]
𝑚×𝑛
as follows:

𝑟̃
(𝑙)
𝑖 𝑗

=



〈
𝔖

𝛾
(𝑙)
𝛽𝑖 𝑗

, 𝔖
𝜁
(𝑙)
𝛽𝑖 𝑗

〉
if G𝑗 is type of benefit criteria;〈

𝔖
𝜁
(𝑙)
𝛽𝑖 𝑗

, 𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

〉
if G𝑗 is type of cost criteria.

Step 2. Calculate the value of 𝑇 (𝑙)
𝑖 𝑗
(𝑙 = 1, 2, . . . , 𝑢) with the following equations.

𝑇
(𝑙)
𝑖 𝑗

=


1 for 𝑙 = 1,
𝑙−1∏
𝑘=1

𝑆

(
𝑟̃
(𝑘)
𝑖 𝑗

)
𝑡

for 𝑙 = 2, 3, . . . , 𝑢.
(8)

Step 3. To aggregate all the individual L𝑞-ROFDM 𝑅(𝑙) =

[
𝑟̃
(𝑙)
𝑖 𝑗

]
𝑚×𝑛

(𝑙 =

1, 2, . . . , 𝑢), using the L𝑞-ROFHPWA operator and obtain overall DM 𝑅 =[
𝑟̃𝑖 𝑗

]
𝑚×𝑛 as

𝑟̃𝑖 𝑗 = L𝑞-ROFHPWA
(
𝑟̃
(1)
𝑖 𝑗

, 𝑟̃
(2)
𝑖 𝑗

, . . . , 𝑟̃
(𝑢)
𝑖 𝑗

)
=

〈
𝔖

𝑡

©­­­­­­­­­­«

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

−
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

ª®®®®®®®®®®¬

1
𝑞
,
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𝔖

𝑡

©­­­­­­­­­­«
𝜍

𝑢∏
𝑙=1

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞 )) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝜁
(𝑙)
𝑖 𝑗

)
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑞

ª®®®®®®®®®®¬

1
𝑞

〉
. (9)

or, using the L𝑞-ROFHPWG operator

𝑟̃′𝑖 𝑗 = L𝑞-ROFHPWG
(
𝑟̃
(1)
𝑖 𝑗

, 𝑟̃
(2)
𝑖 𝑗

, . . . , 𝑟̃
(𝑢)
𝑖 𝑗

)

=

〈
𝔖

𝑡

©­­­­­­­­­­«
𝜍

𝑢∏
𝑙=1

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 )) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝛾
(𝑙)
𝑖 𝑗

)
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑞

ª®®®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­­­«

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

−
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝜁
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

ª®®®®®®®®®®¬

1
𝑞

〉
. (10)

Step 4. Calculate the values of 𝑇𝑖 𝑗 as

𝑇𝑖 𝑗 =


1 for 𝑗 = 1
𝑗−1∏
𝑘=1

𝑆 (𝑟̃𝑖𝑘 )
𝑡

for 𝑗 = 2, 3, . . . , 𝑛.
(11)
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Step 5. Aggregate the L𝑞-ROFNs 𝑟̃𝑖 𝑗 for each alternative 𝐴𝑖 using the L𝑞-
ROFHPWA (or L𝑞-ROFHPWG) operators as follows:

𝑟̃𝑖 = L𝑞-ROFHPWA (𝑟̃𝑖1, 𝑟̃𝑖2, . . . , 𝑟̃𝑖𝑛)

=

〈
𝔖

𝑡

©­­­­­­­­­«

𝑛∏
𝑗=1

(
𝑡𝑞+(𝜍−1)𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

−
𝑛∏
𝑗=1

(
𝑡𝑞−𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

𝑛∏
𝑗=1

(
𝑡𝑞+(𝜍−1)𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

+(𝜍−1)
𝑛∏
𝑗=1

(
𝑡𝑞−𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

ª®®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©­­­­­­­­­«
𝜍

𝑛∏
𝑗=1
(𝜁𝑖 𝑗)

𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

𝑞

𝑛∏
𝑗=1

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−𝜁 𝑞

𝑖 𝑗

))
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

+(𝜍−1)
𝑛∏
𝑗=1
(𝜁𝑖 𝑗)

𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

𝑞

ª®®®®®®®®®¬

1
𝑞

〉
, (12)

or

𝑟̃′𝑖 = L𝑞-ROFHPWG (𝑟̃𝑖1, 𝑟̃𝑖2, . . . , 𝑟̃𝑖𝑛)

=

〈
𝔖

𝑡

©­­­­­­­­­«
𝜍

𝑛∏
𝑗=1
(𝛾𝑖 𝑗)

𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

𝑞

𝑛∏
𝑗=1

(
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Step 6.Calculate the score values for each 𝑟̃𝑖 (or 𝑟̃′𝑖 ) (𝑖 = 1, 2, . . . , 𝑚) using Eq. (2).
Step 7. Rank the alternatives 𝐴𝑖 (𝑖 = 1, 2, . . . , 𝑚) based on the comparison rule
presented in Definition 4.
Based on the methodology developed in this paper, the following illustrative

example is considered and solved.

6. Illustrative example

In this section, a numerical example, previously studied by Arora and Garg
[50], has been illustrated from the field of global suppliers with L𝑞-ROF context.
Following notations are used to represent the MCGDM problem relating to

the selection of the best global suppliers by a manufacturing company to utilize
in their assembling process.
Suppose there are four alternatives 𝐴1, 𝐴2, 𝐴3 and 𝐴4 which are con-

sidered for evaluating over the five criteria {G1,G2,G3,G4,G5}. The priori-
tization relationship for the criterion is G1 � G2 � G3 � G4 � G5. The
different alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4) are evaluated by the four DMs, E (𝑙)

(𝑙 = 1, 2, 3, 4) with priority levels E (1) � E (2) � E (3) � E (4) on the ba-
sis of the criteria G𝑖 (𝑖 = 1, 2, 3, 4, 5). DMs E (𝑙) (𝑙 = 1, 2, 3, 4) provide
his/her decision preferences in terms of L𝑞-ROFNs using the linguistic term set:
𝔖 = {𝔖0 = extremely poor,𝔖1 = very poor,𝔖2 = poor,𝔖3 = slightly poor,𝔖4 =
fair, 𝔖5 = slightly good,𝔖6 = good,𝔖7 = very good,𝔖8 = extremely good}. In
Tables 1, 2, 3 and 4, the decision information provided by the four DMs, E (1) ,
E (2) , E (3) and E (4) are presented in terms of L𝑞-ROFNs, respectively.

Table 1: L𝑞-ROFDM X̃ (1) provided by the DM E (1)

G1 G2 G3 G4 G5
𝐴1 (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖4,𝔖3) (𝔖7,𝔖1) (𝔖5,𝔖2)
𝐴2 (𝔖6,𝔖2) (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖6,𝔖2) (𝔖7,𝔖1)
𝐴3 (𝔖6,𝔖1) (𝔖5,𝔖3) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖3,𝔖4)
𝐴4 (𝔖5,𝔖2) (𝔖7,𝔖1) (𝔖4,𝔖3) (𝔖6,𝔖1) (𝔖4,𝔖4)

The procedure of selecting the most desirable alternative(s) utilizing the
above-proposed operators are presented in the following steps.
Step 1. Since all the criteria are of the same type, the normalization process is
not needed for this problem, i.e., 𝑋 (𝑙) = 𝑅(𝑙) =

[
𝑟̃
(𝑙)
𝑖 𝑗

]
𝑚×𝑛
(𝑙 = 1, 2, 3, 4).
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Table 2: L𝑞-ROFDM X̃ (2) provided by the DM E (2)

G1 G2 G3 G4 G5
𝐴1 (𝔖7,𝔖1) (𝔖4,𝔖4) (𝔖6,𝔖2) (𝔖5,𝔖2) (𝔖3,𝔖5)
𝐴2 (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖4,𝔖3)
𝐴3 (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖7,𝔖1) (𝔖5,𝔖3) (𝔖4,𝔖4)
𝐴4 (𝔖6,𝔖2) (𝔖4,𝔖3) (𝔖5,𝔖2) (𝔖7,𝔖1) (𝔖5,𝔖3)

Table 3: L𝑞-ROFDM X̃ (3) provided by the DM E (3)

G1 G2 G3 G4 G5
𝐴1 (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖3,𝔖4) (𝔖7,𝔖1) (𝔖5,𝔖2)
𝐴2 (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖5,𝔖1)
𝐴3 (𝔖5,𝔖3) (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖4,𝔖3) (𝔖3,𝔖1)
𝐴4 (𝔖6,𝔖2) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖5,𝔖2) (𝔖4,𝔖4)

Table 4: L𝑞-ROFDM X̃ (4) provided by the DM E (4)

G1 G2 G3 G4 G5
𝐴1 (𝔖5,𝔖3) (𝔖4,𝔖4) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖4,𝔖2)
𝐴2 (𝔖6,𝔖1) (𝔖7,𝔖1) (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖6,𝔖1)
𝐴3 (𝔖5,𝔖2) (𝔖3,𝔖4) (𝔖6,𝔖2) (𝔖3,𝔖3) (𝔖5,𝔖2)
𝐴4 (𝔖4,𝔖3) (𝔖5,𝔖1) (𝔖4,𝔖2) (𝔖6,𝔖2) (𝔖5,𝔖2)

Step 2. Utilizing Eq. (8), the values of 𝑇𝑖 𝑗 are obtained as:

𝑇1𝑖 𝑗 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 , 𝑇2𝑖 𝑗 =


0.9413 0.8892 0.8124 0.9413 0.8501
0.8892 0.8501 0.8921 0.8892 0.9413
0.8921 0.8414 0.9413 0.8532 0.7741
0.8501 0.9413 0.8124 0.8921 0.7937

 ,

𝑇3𝑖 𝑗 =


0.8860 0.7058 0.7224 0.8001 0.6286
0.8370 0.7253 0.7958 0.7559 0.7647
0.7583 0.7506 0.8860 0.7179 0.6144
0.7559 0.7647 0.6906 0.8397 0.6678

 ,
𝑇4𝑖 𝑗 =


0.8860 0.7058 0.7224 0.8001 0.6286
0.8370 0.7253 0.7958 0.7559 0.7647
0.7583 0.7506 0.8860 0.7179 0.6144
0.7559 0.7647 0.6906 0.8397 0.6678

 .
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Step 3. Based on the DMs’ information provided in Tables 1, 2, 3 and 4, the
proposed L𝑞-ROFHPWA operator, presented in Eq. (9), is utilized to aggregate
them into a collective matrix. The result obtained is summarized in Table 5.

Table 5: Collective L𝑞-ROFDM 𝑅 based on L𝑞-ROFHPWA operator

G1 G2 G3 G4 G5
𝐴1 (𝔖6.4811,𝔖1.2739) (𝔖5.0036,𝔖2.7792) (𝔖5.3178,𝔖2.3785) (𝔖6.2793,𝔖1.2059) (𝔖4.4125,𝔖2.6195)
𝐴2 (𝔖6.5691,𝔖1.2187) (𝔖5.7933,𝔖1.4508) (𝔖6.2900,𝔖1.0000) (𝔖5.5805,𝔖2.0000) (𝔖5.8300,𝔖1.3641)
𝐴3 (𝔖5.3499,𝔖1.7823) (𝔖5.0564,𝔖2.1833) (𝔖6.6134,𝔖1.1640) (𝔖4.5227,𝔖2.1264) (𝔖3.7615,𝔖2.6698)
𝐴4 (𝔖5.4024,𝔖2.1750) (𝔖6.1455,𝔖1.3558) (𝔖4.5377,𝔖1.9576) (𝔖6.1452,𝔖1.3678) (𝔖4.4942,𝔖3.2912)

Step 4. Using Eq. (11), the values of 𝑇𝑖 𝑗 are calculated as:

𝑇𝑖 𝑗 =


1.0000 0.9141 0.7716 0.6627 0.5995
1.0000 0.9186 0.8105 0.7338 0.6395
1.0000 0.8636 0.7348 0.6767 0.5646
1.0000 0.8635 0.7755 0.6482 0.5820

 .
Step 5. The collective value 𝑟̃𝑖 of each alternative 𝐴𝑖 is obtained based on L𝑞-
ROFHPWA operator using Eq. (12).

𝑟̃1 = (𝔖5.6888, 𝔖1.9095) , 𝑟̃2 = (𝔖6.0830, 𝔖1.3555) ,
𝑟̃3 = (𝔖5.3168, 𝔖1.8840) , 𝑟̃4 = (𝔖5.4816, 𝔖1.8903) .

Step 6. The score values for each 𝑟̃𝑖 (𝑖 = 1, 2, 3, 4) are calculated based on
Eq. (2) as:

𝑆 (𝑟̃1) = 7.0107, 𝑆 (𝑟̃2) = 7.1615, 𝑆 (𝑟̃3) = 6.8951, 𝑆 (𝑟̃4) = 6.9450.

Step 7. The rank of the alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4) based on the comparison
rule presented in Definition 4 is found as 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3.
On the other hand, if the above MCGDM problem is solved with L𝑞-

ROFHPWG operator, the score values of four different alternatives are ob-
tained as:

𝑆
(
𝑟̃′1

)
= 6.8368, 𝑆

(
𝑟̃′2

)
= 7.0992, 𝑆

(
𝑟̃′3

)
= 6.7596, 𝑆

(
𝑟̃′4

)
= 6.8349.

Thus the ordering of the alternatives are found as 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3.

6.1. Influence of rung parameter q on decision making results

The proposed methodology allows DMs to flexibly change their range of
evaluation information with the use of rung parameter 𝑞. The parameter 𝑞 plays
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a significant role in the decision results. In solving the above numerical problem,
the parameter 𝑞 = 3 is considered. To investigate the impact of rung parameter
𝑞 on the decision result, the above problem is further solved based on different
values of the parameter 𝑞 from 1 to 10. For convenience, the Hamacher parameter
is kept fixed at 𝜍 = 3 in the computational process.

Table 6: Influence of rung parameter 𝑞 with L𝑞-ROFHPWA operator on ranking results

Parameter 𝑞 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝑞 = 1 5.878 6.3438 5.7277 5.7425 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 2 6.7813 7.0339 6.6403 6.703 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 3 7.0107 7.1615 6.8951 6.945 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 4 7.1366 7.2364 7.0445 7.0817 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 5 7.2323 7.3004 7.1590 7.1871 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 6 7.3109 7.3578 7.2523 7.274 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 7 7.3767 7.4091 7.3296 7.3466 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 8 7.4322 7.4546 7.3941 7.4077 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 9 7.4794 7.4949 7.4485 7.4594 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 10 7.5199 7.5307 7.4947 7.5035 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

The obtained score values for each alternative are listed in Tables 6 and
7 using L𝑞-ROFHPWA and L𝑞-ROFHPWG operators, respectively. From the
ranking results as viewed from Table 7, it is inferred that slight differences in
the ranking results using L𝑞-ROFHPWG operator are found when parameter 𝑞
changes.Whereas, based on using L𝑞-ROFHPWAoperator in Table 6, the ranking
of alternatives is consistent with the rung parameter 𝑞. However, in all the cases,
𝐴2 is the optimal choice. This indicates that the parameter 𝑞 has a steadiness in
the decision results in terms of generating the best choice.
Further, in Figs. 1 and 2, a clear view of the impact of rung parameters

utilizing L𝑞-ROFHPWA and L𝑞-ROFHPWG operators, respectively, have been
depicted. From Figs.1 and2, it is observed that when the parameter 𝑞 ∈ [1, 10]
changes, the score values for the alternatives changes accordingly. It reveals from
Fig. 1 that different alternatives do not change their ordered positions. Thus for
L𝑞-ROFHPWA operator, the ranking of alternatives is stable. On the other hand,
in Fig. 2, there is a change in the ordered position of the alternatives 𝐴1 and 𝐴4
is noticed. As a consequence, the ranking of alternatives slightly differs based on
the L𝑞-ROFHPWG operator.
Finally, it is important to note that DMs can change the value of 𝑞 according

to their preferences for expressing their evaluation values in a wider range, which
makes the proposed methodology a flexible method.
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Table 7: Influence of rung parameter 𝑞 with L𝑞-ROFHPWG operator on ranking results

Parameter 𝑞 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝑞 = 1 5.6188 6.2362 5.5312 5.5679 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 2 6.5615 6.9549 6.4661 6.5596 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 3 6.8368 7.0992 6.7596 6.8349 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 4 6.9933 7.1799 6.9371 6.9914 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 5 7.1117 7.2468 7.0731 7.1104 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 6 7.2096 7.3073 7.1840 7.2089 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 7 7.2923 7.3624 7.2757 7.2920 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 8 7.3625 7.4124 7.3519 7.3624 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 9 7.4222 7.4575 7.4155 7.4223 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝑞 = 10 7.4730 7.4979 7.4689 7.4731 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3
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Figure 1: Score values of alternative for
𝑞 ∈ [1, 10] based on L𝑞-ROFHPWA op-
erator (𝜍 = 3)
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Figure 2: Score values of alternative for
𝑞 ∈ [1, 10] based on L𝑞-ROFHPWG op-
erator (𝜍 = 3)

6.2. Influence of Hamacher parameter on decision making results

The proposed method carries the robustness of the Hamacher parameter 𝜍.
Varying the Hamacher parameter 𝜍 in (0, 10] the impact of the parameter on
decision results is investigated. For convenience, the rung parameter is kept fixed
at 𝑞 = 3 in the computational process.
In Tables 8 and 9, the achieved results based on L𝑞-ROFHPWA and L𝑞-

ROFHPWG operators are presented, respectively. The score of the alternatives
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varies accordingly with different parameters 𝜍 using L𝑞-ROFHPWA and L𝑞-
ROFHPWG operators.

Table 8: Ranking results for varying 𝜍 by using L𝑞-ROFHPWA operator

Parameter 𝜍 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝜍 = 1 7.0628 7.1870 6.9333 6.9859 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 2 7.0299 7.1705 6.9094 6.9598 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 3 7.0107 7.1615 6.8951 6.9450 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 4 6.9976 7.1558 6.8852 6.9352 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 5 6.9880 7.1518 6.8778 6.9282 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 6 6.9807 7.1488 6.8720 6.9229 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 7 6.9748 7.1465 6.8673 6.9187 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 8 6.9699 7.1446 6.8634 6.9153 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 9 6.9659 7.1431 6.8601 6.9125 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 10 6.9624 7.1418 6.8572 6.9101 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

Table 9: Ranking results for varying 𝜍 by using L𝑞-ROFHPWG operator

Parameter 𝜍 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝜍 = 1 6.7963 7.0769 6.7349 6.8109 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝜍 = 2 6.8232 7.0920 6.7516 6.8270 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝜍 = 3 6.8368 7.0992 6.7596 6.8349 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 4 6.8455 7.1036 6.7646 6.8399 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 5 6.8516 7.1065 6.7681 6.8433 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 6 6.8563 7.1086 6.7708 6.8459 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 7 6.8600 7.1102 6.7730 6.8480 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 8 6.8631 7.1115 6.7748 6.8497 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 9 6.8657 7.1125 6.7763 6.8511 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 10 6.8679 7.1133 6.7777 6.8523 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

To visualize in effect in a better way, Figs. 3 and 4 are provided based on
different values of 𝜍 ∈ (0, 10]. In light of Fig. 3, the presented results reveal that
no change in ranking order is found while using L𝑞-ROFHPWA operator. On
the other hand, from Fig. 4, it is perceived that 𝜍 ∈ (0, 2.6050) the ranking is
𝐴2 � 𝐴4 � 𝐴1 � 𝐴3 and for 𝜍 ∈ [2.605, 10] the ranking is 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3
based on L𝑞-ROFHPWG operator. But it is interesting to mention here that the
optimal choice remains the same as 𝐴2 for each case.
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Figure 3: Score values of alternative for
𝜍 ∈ (0, 10] based on L𝑞-ROFHPWA op-
erator (𝑞 = 3)

Figure 4: Score values of alternative for
𝜍 ∈ (0, 10] based on L𝑞-ROFHPWG op-
erator (𝑞 = 3)

Moreover, an optimistic or pessimistic view of DMs can be reflected through
the achieved outcomes. Because when the parameter 𝜍 becomes larger, the
fused results based on L𝑞-ROFHPWA operator become smaller, while using
L𝑞-ROFHPWG operator, the fused results become larger. Hence DMs can select
appropriate Hamacher parameter values according to their needs while making
decisions.

7. Comparative analysis

Arora and Garg [50] investigatedMCGDM problems under LIF environment.
They solved the problem presented in Section 6 using LIF prioritized WA op-
erator, and a similar ranking result is found in the present paper. This shows
the validity of the proposed method in dealing with MCGDM problems. How-
ever, the present method is more general and flexible than that of Arora and
Garg [50]. Since the proposed MCGDM method is based on L𝑞-ROF environ-
ment, it can capture more fuzzy assessment information provided by the DMs.
Also, Hamacher operations are considered in the present method that can easily
replace the traditional algebraic operations by taking exact parameter values. So,
the method proposed by Arora and Garg [50], which is basically developed on the
basis of algebraic operations, becomes a particular case of the proposed method.
To prove the effectiveness of the developed operators more significantly, an-

other comparative analysis by applying some existing operators, viz., LIFWA and
LIFWG [31], LIFEWA and LIFEWG [51], LIFHWA and LIFHWG [52], LPFWA
and LPFWG [32], LPFEWA and LPFEWG [53], LPFHWA and LPFHWG [54],
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and L𝑞-ROFWA and L𝑞-ROFWG [37] operators on the same numerical example
considering the equal importance of the DMs and as well as for the criteria. The
overall score values and the ranking of the alternatives by means of those existing
operators are collected in Table 10.

Table 10: Score values and ranking results compared with existing methods

Operators Score values Ranking

LIFWA [31] 𝑆(𝐴1) = 5.8554, 𝑆(𝐴2) = 6.3633,
𝑆(𝐴3) = 5.6240, 𝑆(𝐴4) = 5.7772

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFWG [31] 𝑆(𝐴1) = 5.3657, 𝑆(𝐴2) = 6.1800,
𝑆(𝐴3) = 5.2144, 𝑆(𝐴4) = 5.4596

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LIFEWA [51] 𝑆(𝐴1) = 5.8012, 𝑆(𝐴2) = 6.3463,
𝑆(𝐴3) = 5.5745, 𝑆(𝐴4) = 5.7396

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFEWG [51] 𝑆(𝐴1) = 5.4446, 𝑆(𝐴2) = 6.2069,
𝑆(𝐴3) = 5.2784, 𝑆(𝐴4) = 5.5066

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LIFHWA (𝜍 = 3) [52] 𝑆(𝐴1) = 5.7773, 𝑆(𝐴2) = 6.3394,
𝑆(𝐴3) = 5.5526, 𝑆(𝐴4) = 5.7237

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFHWG (𝜍 = 3) [52] 𝑆(𝐴1) = 5.4922, 𝑆(𝐴2) = 6.2248,
𝑆(𝐴3) = 5.3169, 𝑆(𝐴4) = 5.5362

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFWA [32] 𝑆(𝐴1) = 6.8143, 𝑆(𝐴2) = 7.0517,
𝑆(𝐴3) = 6.6335, 𝑆(𝐴4) = 6.7371

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFWG [32] 𝑆(𝐴1) = 6.4446, 𝑆(𝐴2) = 6.9138,
𝑆(𝐴3) = 6.3316, 𝑆(𝐴4) = 6.5013

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFEWA [53] 𝑆(𝐴1) = 6.7718, 𝑆(𝐴2) = 7.0345,
𝑆(𝐴3) = 6.5980, 𝑆(𝐴4) = 6.7062

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFEWG [53] 𝑆(𝐴1) = 6.4929, 𝑆(𝐴2) = 6.9336,
𝑆(𝐴3) = 6.3662, 𝑆(𝐴4) = 6.5289

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFHWA (𝜍 = 3) [54] 𝑆(𝐴1) = 6.7498, 𝑆(𝐴2) = 7.0262,
𝑆(𝐴3) = 6.5789, 𝑆(𝐴4) = 6.6909

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFHWG (𝜍 = 3) [54] 𝑆(𝐴1) = 6.5203, 𝑆(𝐴2) = 6.9446,
𝑆(𝐴3) = 6.3852, 𝑆(𝐴4) = 6.5448

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

L𝑞-ROFWA (𝑞 = 3) [37] 𝑆(𝐴1) = 7.0435, 𝑆(𝐴2) = 7.1812,
𝑆(𝐴3) = 6.9049, 𝑆(𝐴4) = 6.9754

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

L𝑞-ROFWG (𝑞 = 3) [37] 𝑆(𝐴1) = 6.7687, 𝑆(𝐴2) = 7.0681,
𝑆(𝐴3) = 6.6906, 𝑆(𝐴4) = 6.8007

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

L𝑞-ROFHPWA operator 𝑆(𝐴1) = 7.0107, 𝑆(𝐴2) = 7.1615,
𝑆(𝐴3) = 6.8951, 𝑆(𝐴4) = 6.9450

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

L𝑞-ROFHPWG operator 𝑆(𝐴1) = 6.8368, 𝑆(𝐴2) = 7.0992,
𝑆(𝐴3) = 6.7596, 𝑆(𝐴4) = 6.8349

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

Abbreviations: LIF WA (LIFWA), LIF WG (LIFWG), LIF Einstein WA (LIFEWA), LIF Einstein WG
(LIFEWG), LIF Hamacher WA (LIFHWA), LIF Hamacher WG (LIFHWG), LPF WA (LPFWA), LPF WG
(LPFWG), LPFEinsteinWA (LPFEWA) and LPFEinsteinWG (LPFEWG), LPFHamacherWA (LPFHWA),
LPF Hamacher WG (LPFHWG), L𝑞-ROF WA (L𝑞-ROFWA), L𝑞-ROF WA (L𝑞-ROFWG).
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From the above analysis, it is seen that all the operators have the same optimal
alternatives. Nevertheless, ranking results differ using averaging and geometric
operators for the existingmethods. However, in the case of the present method, the
ranking is consistent for both the L𝑞-ROFHPWA and L𝑞-ROFHPWG operators.
The possible reason for this is the fact that method proposed operators can
consider the priority over criteria, but all the existing methods [31,32,37,51–54]]
fail to incorporate this important characteristic. Hence the proposed method is
more reasonable and effective in dealing with real-life MCGDM problems.

8. Conclusion

This paper investigates MCGDM under L𝑞-ROF environment. For this pur-
pose, two novel L𝑞-ROFHPWA and L𝑞-ROFHPWG operators are proposed in
this paper. The proposed L𝑞-ROF operators combine Hamacher operations with
prioritized aggregation functions. For this, the proposed operators can consider
the prioritized relationship between the input arguments as well as they have
the ability to make the aggregation process flexible and general by incorporat-
ing Hamacher parameter. Further, the newly developed operators are utilized to
develop an MCGDM approach with L𝑞-ROF context. Subsequently, a numerical
example is provided to verify the practicality and effectiveness of the developed
approach. Figures and tables have also been delivered to describe the influences
of rung parameter 𝑞 and Hamacher parameter 𝜍 on the decision results in detail.
In addition, a comparative analysis is also presented to analyze the superiority
of the proposed method. In the future research, it would be meaningful to apply
the proposed method to other decision-making fields, viz., fuzzy cluster anal-
ysis, image pattern recognition, supplier selection, pattern recognition and so
forth.
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