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Adaptive observer design for systems with incremental
quadratic constraints and nonlinear outputs –
application to chaos synchronization

Lazaros MOYSIS, Meenakshi TRIPATHI, Mahendra Kumar GUPTA,
Muhammad MARWAN and Christos VOLOS

This work addresses the problem of adaptive observer design for nonlinear systems sat-
isfying incremental quadratic constraints. The output of the system includes nonlinear terms,
which puts an additional strain on the design and feasibility of the observer, which is guaranteed
under the satisfaction of an LMI, and a set of algebraic constraints. A particular case where the
output nonlinearity matches the unknown parameter coefficient is also discussed. The result is
illustrated through a numerical example for the chaos synchronization of the Rössler system.
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1. Introduction

The problem of state estimation for dynamical systems is among the most
well established problems in control theory, since it serves as the basis for feed-
back control, stabilization, and synchronization, in linear and nonlinear systems.
A standard approach in state estimation is observer design [1]. The observer of a
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system is a secondary, ‘slave’ system, that can estimate the internal states of the
original ‘master’ system, by taking measurements of the master system’s input
and output. The observer approach is often opted for state estimation, since its
feasibility depends on the solution of a Linear Matrix Inequality (LMI), often in
combination with some rank or algebraic conditions on the master system matri-
ces [2, 3]. Since tools to solve LMIs are integrated into most programming envi-
ronments, likeMATLABor Scilab, the observermatrices can easily be computed.
Often in the problem of state estimation, one additional issue that may occur is

that although the system’s structure may be known, some of the involved param-
eters may be unidentified. Thus, in addition to the system states, its parameters
have to be identified as well. In this case, the observer is termed as adaptive
observer [4], and the internal states and the unknown parameters are estimated
simultaneously. The problem was addressed initially for linear systems [5], and
later the design was expanded to the general nonlinear case.
Initial works on adaptive observers for nonlinear systems were restricted to

Lipschitz systems [6–13] with several applications. Chaotic secure communi-
cations are established using robust adaptive sliding mode observer [7] and a
relaxed notion of persistency of excitation [8]. References [9, 10] applied the
observer to chaotic synchronization. Authors in [11] applied their work to a
single-link manipulator with a revolute joints actuator. In [12], one-sided Lip-
schitz systems are considered with an application to a Vertical Take-Off and
Landing (VTOL) aircraft system. An adaptive observer was designed for fault
estimation [13]. An interesting modulation approach for masking a chaotic sig-
nal was combined with adaptive observer design and the application to chaotic
secure communications [14]. Adaptive works on nonlinear systems for nonlin-
earities other than Lipschitz are very limited. An important type of nonlinearity
that has recently gained attention for observer design is Incrementally Quadratic
Constraints (𝛿QC) [15, 16]. These works have been applied to chaos synchro-
nization [15] and structural control for a wind turbine [16]. It is a notable fact
that Lipschitz, one-sided Lipschitz, and various other types of nonlinearities are
a particular case of incrementally quadratic constraints, see [17] for more details.
Moreover, it is worth noting some interesting works, where various types

of systems are studied. In [18], a stochastic adaptive sliding mode observer is
designed and applied to chaotic secure communications. In [19], a Luenberger
observer was realized in a microcontroller for a multistable Kapitaniak chaotic
system with known parameters. Also, [20, 21] deal with the discrete time case.
One common assumption by most works is to consider the system’s output as

a linear combination of the states. Yet, many works point out that it is possible
for nonlinear terms to appear in the output equations [22–28]. Motivated by the
above, our work extends the results of [15] to the case where nonlinear terms
appear in the output, coupled with the linear ones. To the best of our knowledge,
these types of systems have not been studied in the existing literature. This is a
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stricter case compared to having the output being decoupled into a purely linear
one and a purely nonlinear one, which is a special case of the one considered
here. The feasibility of the observer depends on the solution of an LMI, and a set
of algebraic conditions, which are required to discard undesired cross error terms
that appear in the derivative of the candidate Lyapunov function. These conditions
are then relaxed, by exploring a special case where the output nonlinearity is equal
to the nonlinear term inside the state equation. This case may be limiting, but
it can be of particular interest in applications related to secure communications,
where the designer chooses the output. It could also help to simplify the output
feedback control problem, which can be investigated in the future. Finally, the
design is illustrated through a numerical example of chaos synchronization for
the Rössler system.
The rest of the paper is structured as follows: In Section 2, the problem is

formulated along with system description and basic assumptions. In Section 3,
the main result on observer design is presented. In Section 4, the observer design
procedure is illustrated through a numerical example. Finally, Section 5 concludes
the work with a discussion on future goals.
We use the following notations. 0 and 𝐼 stand for appropriate dimensional zero

and identity matrices, respectively. R𝑚×𝑛 represents the 𝑚 × 𝑛 real matrix set. 𝐴𝑇

denotes the transpose of a matrix 𝐴. 𝐴 > 0 denotes positive definite matrix. The
symbol ★ inside a symmetric matrix environment corresponds to a symmetric
entry. When used inside an equation, it corresponds to symmetric terms in it, for
example, 𝐴 + 𝐵 + (𝐴 + 𝐵)𝑇 := 𝐴 + 𝐵 +★.

2. Problem formulation

The system under study will be of the form

¤𝑥 = 𝐴𝑥 + 𝐵1Φ1(𝐻1𝑥, 𝑡) + 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃, (1a)
𝑦 = 𝐶𝑥 + 𝐷Φ3(𝐻2𝑥, 𝑡)𝜃, (1b)

where 𝑥 ∈R𝑛 the state, 𝑦 ∈R𝑝 the output, and 𝜃 ∈R𝑞 a vector of unknown sys-
tem parameters, assumed to be piece-wise constant. The vector valued functions
Φ1 ∈R𝑟, Φ2 ∈R𝑞×𝑞 represent state nonlinearities and Φ3 ∈R𝑞×𝑞 represents out-
put nonlinearity. The system matrices 𝐴 ∈R𝑛×𝑛, 𝐵1 ∈R𝑛×𝑟, 𝐵2 ∈R𝑛×𝑞, 𝐻1 ∈R𝑠×𝑛,
𝐻2 ∈R𝜏×𝑛, 𝐶 ∈R𝑝×𝑛, 𝐷 ∈R𝑝×𝑞 are known and constant. For simplicity, denote

𝐵Φ(𝑞1, 𝜃, 𝑡) = 𝐵1Φ1(𝑞1, 𝑡) + 𝐵2Φ2(𝑞1, 𝑡)𝜃, 𝑞1 = 𝐻1𝑥 ,

=
(
𝐵1 𝐵2

)︸    ︷︷    ︸
𝐵

(
Φ1(𝑞1, 𝑡)
Φ2(𝑞1, 𝑡)𝜃

)
︸         ︷︷         ︸

Φ(𝑞1,𝜃,𝑡)

(2)
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Ψ(𝑞2, 𝜃, 𝑡) = Φ3(𝑞2, 𝑡)𝜃, 𝑞2 = 𝐻2𝑥 . (3)

For the system nonlinearities, we assume that they satisfy incremental
quadratic constraints, which are defined below.

Definition 1 [28] A symmetric matrix M is an incremental multiplier matrix
(IMM) for Φ(𝑞1, 𝜃, 𝑡) if it satisfies the following incremental quadratic constraint
(𝛿QC) with respect to its first argument, for all 𝑞1, 𝜃, 𝑡:(

Δ𝑞1
ΔΦ

)𝑇
M

(
Δ𝑞1
ΔΦ

)
­ 0, (4)

where Δ𝑞1 = 𝑞1,1 − 𝑞1,2 and ΔΦ = Φ(𝑞1,1, 𝜃, 𝑡) − Φ(𝑞1,2, 𝜃, 𝑡). Note also that
for a given M, any positive scaling 𝑘M, for scalar 𝑘 > 0 also satisfies the
condition (4).

Thus, the assumption on Φ,Ψ is the following:

Assumption 1 The state and output nonlinearitiesΦ,Ψ satisfy the 𝛿QC condition
(4), with symmetric matrices M, Z, given by

M =

(
M11 M12
M𝑇
12 M22

)
, Z =

(
Z11 Z12
Z𝑇
12 Z22

)
. (5)

In addition, for the feasibility of observer design, the following assumptions on
the system matrices are taken.

Assumption 2 There exist matrices 𝑃 > 0, Y, 𝐿 such that

𝐵2 = 𝐿𝐷, (6)
𝐵𝑇
2𝑃 = Y𝐶, (7)
0 = Y𝐷. (8)

Equation (6) is solvable if and only if

rank𝐷 = rank
(
𝐷

𝐵2

)
. (9)

From (6), we can compute the matrix 𝐿 as

𝐿 = 𝐵2𝐷
+ + 𝑍𝐿 (𝐼 − 𝐷𝐷+), (10)

where 𝑍𝐿 is an arbitrary matrix of appropriate dimension and 𝐷+ is any general-
ized inverse of D satisfying 𝐷𝐷+𝐷 = 𝐷. In addition, a general solution of (8) is
given by

Y = 𝑍Y (𝐼 − 𝐷𝐷+), (11)
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where 𝑍Y is an arbitrary matrix. Substituting (11) in (7) gives

𝐵𝑇
2𝑃 = 𝑍Y (𝐼 − 𝐷𝐷+)𝐶. (12)

From the above condition (12), the parameter 𝑍Y is computed as

𝑍Y = 𝐵𝑇
2𝑃𝔇

+ + 𝑍𝑧𝑦 (𝐼 −𝔇𝔇+), (13)

where 𝑍𝑧𝑦 is an arbitrary matrix and 𝔇 = (𝐼 − 𝐷𝐷+)𝐶.
The above conditions will be of use in the determination of the observer

system matrices in the next section. At the end of the section, a remark will be
added as to the order of which the involved matrices should be computed.

3. Observer design

3.1. General case

In this section, an observer is designed for system (1). The observer has the
following form

¤̂𝑥 = 𝐴𝑥 + 𝐵1Φ1(𝐻1𝑥, 𝑡) + 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃 − 𝐿 (𝑦 − 𝑦̂), (14a)
𝑦̂ = 𝐶𝑥 + 𝐷Φ3(𝐻2𝑥, 𝑡)𝜃 , (14b)

where 𝑥 is the estimate of 𝑥, 𝑦̂ is the output of the observer, and 𝜃 is the estimate
of the unknown parameter 𝜃. The observer matrices must be determined appro-
priately, to assure the successful estimation of the system dynamics, that is, to
obtain ‖𝑥 − 𝑥‖ → 0 and ‖𝜃 − 𝜃‖ → 0 as 𝑡 → ∞. The design of the observer is
provided in the following main Theorem.

Theorem 1 Under Assumptions 1 and 2, system (14) is an observer for system (1),
if the following linear matrix inequality is solvable for 𝑃 > 0, and scalar 𝛽 > 0

Ω := ©­«
𝑊1 + 𝛽𝐼 𝑃𝐵 + 𝐻𝑇

1M12 𝑃𝐿𝐷 + 𝐻𝑇
2Z12

𝐵𝑇𝑃 +M𝑇
12𝐻1 M22 0

𝐷𝑇𝐿𝑇𝑃 + Z𝑇
12𝐻2 0 Z22

ª®¬ ¬ 0, (15)

where 𝑊1 = 𝑃(𝐴 + 𝐿𝐶) + (𝐴 + 𝐿𝐶)𝑇𝑃 + 𝐻1
𝑇M11𝐻1 + 𝐻2

𝑇Z11𝐻2, under the
adaptive estimation law

¤̂𝜃 =
(
Γ−1 Γ−1) (

Φ2(𝐻1𝑥, 𝑡)𝑇
Φ3(𝐻2𝑥, 𝑡)𝑇

)
Y(𝑦 − 𝑦̂), (16)

where Γ > 0 is the adaptive control parameter, that can affect the estimation
convergence rate.
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Proof. First, define the following error terms

𝑒𝑥 = 𝑥 − 𝑥 , (17)
Δ𝑞1 = 𝐻1𝑥 − 𝐻1𝑥 = 𝐻1𝑒𝑥 , (18)
Δ𝑞2 = 𝐻2𝑥 − 𝐻2𝑥 = 𝐻2𝑒𝑥 , (19)
Δ𝑦 = 𝑦 − 𝑦̂ , (20)
ΔΦ = Φ(𝑞1, 𝜃, 𝑡) −Φ(𝑞1, 𝜃, 𝑡), (21)
ΔΨ = Ψ(𝑞2, 𝜃, 𝑡) −Ψ(𝑞2, 𝜃, 𝑡), (22)

𝑒𝜃 = 𝜃 − 𝜃 . (23)

Since the nonlinearity Φ(𝑞1, 𝜃, 𝑡) satisfies (4), it holds that(
Δ𝑞1
ΔΦ

)𝑇
M

(
Δ𝑞1
ΔΦ

)
­ 0⇒

(
𝑒𝑥
ΔΦ

)𝑇 (
𝐻1

𝑇M11𝐻1 ★

M𝑇
12𝐻1 M22

) (
𝑒𝑥
ΔΦ

)
­ 0. (24)

Similarly, for the nonlinearity Ψ(𝑞2, 𝜃, 𝑡) it holds that(
𝑒𝑥
ΔΨ

)𝑇 (
𝐻2

𝑇Z11𝐻2 ★

Z𝑇
12𝐻2 Z22

) (
𝑒𝑥
ΔΨ

)
­ 0. (25)

First, consider the output error term

Δ𝑦 = 𝑦 − 𝑦̂

= 𝐶𝑥 + 𝐷Φ3(𝐻2𝑥, 𝑡)𝜃 − 𝐶𝑥 − 𝐷Φ3(𝐻2𝑥, 𝑡)𝜃
= 𝐶𝑒𝑥 + 𝐷

(
Φ3(𝐻2𝑥, 𝑡)𝜃 −Φ3(𝐻2𝑥, 𝑡)𝜃 +Φ3(𝐻2𝑥, 𝑡)𝜃 −Φ3(𝐻2𝑥, 𝑡)𝜃

)
= 𝐶𝑒𝑥 + 𝐷 (ΔΨ +Φ3(𝐻2𝑥, 𝑡)𝑒𝜃) . (26)

Taking the derivative of 𝑒𝑥 , considering (26), the error dynamics are

¤𝑒𝑥 = ¤𝑥 − ¤̂𝑥
= 𝐴𝑥 + 𝐵1Φ1(𝐻1𝑥, 𝑡) + 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃
− 𝐴𝑥 − 𝐵1Φ1(𝐻1𝑥, 𝑡) − 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃 + 𝐿𝐶𝑒𝑥 + 𝐿𝐷 (ΔΨ +Φ3(𝐻2𝑥, 𝑡)𝑒𝜃)

= (𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵1Φ1(𝐻1𝑥, 𝑡) + 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃 − 𝐵1Φ1(𝐻1𝑥, 𝑡)
− 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃 + 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃 − 𝐵2Φ2(𝐻1𝑥, 𝑡)𝜃
+ 𝐿𝐷 (ΔΨ +Φ3(𝐻2𝑥, 𝑡)𝑒𝜃)

= (𝐴+𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ+𝐿𝐷ΔΨ + (𝐵2Φ2(𝐻1𝑥, 𝑡) + 𝐿𝐷Φ3(𝐻2𝑥, 𝑡)) 𝑒𝜃 . (27)

Now, consider the following candidate Lyapunov function𝑉 (𝑡) = 𝑒𝑇𝑥 𝑃𝑒𝑥 +𝑒𝑇𝜃Γ𝑒𝜃 .



ADAPTIVE OBSERVER DESIGN FOR SYSTEMS WITH INCREMENTAL QUADRATIC
CONSTRAINTS AND NONLINEAR OUTPUTS 111

Differentiating this function, taking into account (16), (26), (27), and also the fact
that ¤𝜃 = 0⇒ ¤𝑒𝜃 = − ¤̂𝜃 yields

¤𝑉 = ¤𝑒𝑇𝑥 𝑃𝑒𝑥 + 𝑒𝑇𝑥 𝑃 ¤𝑒𝑥 + ¤𝑒𝑇𝜃Γ𝑒𝜃 + 𝑒𝑇𝜃Γ ¤𝑒𝜃

=

(
(𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ +

(
𝐵2 𝐿𝐷

) (
Φ2(𝐻1𝑥, 𝑡)
Φ3(𝐻2𝑥, 𝑡)

)
𝑒𝜃

)𝑇
𝑃𝑒𝑥

+ 𝑒𝑇𝑥 𝑃

(
(𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ +

(
𝐵2 𝐿𝐷

) (
Φ2(𝐻1𝑥, 𝑡)
Φ3(𝐻2𝑥, 𝑡)

)
𝑒𝜃

)
−

( (
Γ−1 Γ−1) (

Φ2(𝐻1𝑥, 𝑡)𝑇
Φ3(𝐻2𝑥, 𝑡)𝑇

)
Y (𝐶𝑒𝑥 + 𝐷 (ΔΨ +Φ3(𝐻2𝑥, 𝑡)𝑒𝜃))

)𝑇
Γ𝑒𝜃

− 𝑒𝑇𝜃Γ

( (
Γ−1 Γ−1) (

Φ2(𝐻1𝑥, 𝑡)𝑇
Φ3(𝐻2𝑥, 𝑡)𝑇

)
Y (𝐶𝑒𝑥 + 𝐷 (ΔΨ +Φ3(𝐻2𝑥, 𝑡)𝑒𝜃))

)
.

Under the conditions given in Assumption 2, first using Y𝐷 = 0 we obtain

¤𝑉 =

(
(𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ +

(
𝐵2 𝐿𝐷

) (
Φ2(𝐻1𝑥, 𝑡)
Φ3(𝐻2𝑥, 𝑡)

)
𝑒𝜃

)𝑇
𝑃𝑒𝑥

− 𝑒𝑇𝜃Γ

( (
Γ−1 Γ−1) (

Φ2(𝐻1𝑥, 𝑡)𝑇
Φ3(𝐻2𝑥, 𝑡)𝑇

)
Y𝐶𝑒𝑥

)
+★.

Furthermore, using 𝐵2 = 𝐿𝐷 gives

¤𝑉 = ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ + 𝐵2 (Φ2(𝐻1𝑥, 𝑡) +Φ3(𝐻2𝑥, 𝑡)) 𝑒𝜃)𝑇 𝑃𝑒𝑥
− 𝑒𝑇𝜃

(
(Φ2(𝐻1𝑥, 𝑡) +Φ3(𝐻2𝑥, 𝑡))𝑇 Y𝐶𝑒𝑥

)
+★

and using 𝐵𝑇
2𝑃 = Y𝐶 the derivative ¤𝑉 is simplified to

¤𝑉 = ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ)𝑇 𝑃𝑒𝑥 + 𝑒𝑇𝑥 𝑃 ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ)

=
©­«
𝑒𝑥
ΔΦ

ΔΨ

ª®¬
𝑇 ©­«

𝑃(𝐴 + 𝐿𝐶) + (𝐴 + 𝐿𝐶)𝑇𝑃 𝑃𝐵 𝑃𝐿𝐷

𝐵𝑇𝑃 0 0
𝐷𝑇𝐿𝑇𝑃 0 0

ª®¬ ©­«
𝑒𝑥
ΔΦ

ΔΨ

ª®¬ . (28)

Finally, taking into account (24), (25), the above yields

¤𝑉 ¬ ©­«
𝑒𝑥
ΔΦ

ΔΨ

ª®¬
𝑇 ©­«

𝑊1 ★ ★

𝐵𝑇𝑃 +M𝑇
12𝐻1 M22 ★

𝐷𝑇𝐿𝑇𝑃 + Z𝑇
12𝐻2 0 Z22

ª®¬ ©­«
𝑒𝑥
ΔΦ

ΔΨ

ª®¬
¬ Ω − 𝛽𝑒𝑇𝑥 𝑒𝑥 . (29)
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Thus, under the condition that Ω ¬ 0, it holds that
¤𝑉 ¬ −𝛽𝑒𝑇𝑥 𝑒𝑥 ⇒ (30)

𝑉 −𝑉 (0) ¬ −𝛽
∫ 𝑡

0
𝑒𝑥 (𝑠)𝑇𝑒𝑥 (𝑠)𝑑𝑠 ⇒ (31)

𝑉 + 𝛽

𝑡∫
0

𝑒𝑥 (𝑠)𝑇𝑒𝑥 (𝑠)d𝑠 ¬ 𝑉 (0), (32)

since 𝑉 is positive definite, we obtain

𝛽

𝑡∫
0

𝑒𝑥 (𝑠)𝑇𝑒𝑥 (𝑠)d𝑠 ¬ 𝑉 (0). (33)

The above means that the integral
∫ 𝑡

0 𝑒𝑥 (𝑠)𝑇𝑒𝑥 (𝑠)d𝑠 exists and is bounded. Since
𝑒𝑥 (𝑠)𝑇𝑒𝑥 (𝑠) ­ 0 is a positive function with a bounded integral, it holds that
lim
𝑡→∞

𝑒𝑥 (𝑡) = 0. 2

Now, the design procedure is summarized in the form of following algorithm.

Algorithm 1 Computational steps to design observer (14) for system (1).

1. Solve (10) to determine matrix 𝐿.
2. Solve the LMI (15) to determine 𝑃.
3. Solve (13) to find 𝑍Y , and replace in (11) to find a suitable Y.

3.2. Special case of output nonlinearity

In this subsection, we consider a particular case where the output nonlinearity
has the same structure as the unknown parameter coefficient, that is

Φ2(𝐻1𝑥, 𝑡) = Φ3(𝐻2𝑥, 𝑡), 𝐻1 = 𝐻2 . (34)

This case is considered since it leads to the relaxation of the algebraic conditions
(6), (7), and the simplification of the LMI (15). In this case, Assumption 2 is now
converted to the following condition.
Assumption 3 There exist matrices 𝑃 > 0, Y, 𝐿 such that

(𝐵2 + 𝐿𝐷)𝑇𝑃 = 2Y𝐶 , (35)
0 = Y𝐷. (36)
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The solution of (36) is given by (11). Replacing in (35), results in

𝑃𝐵2 + 𝑃𝐿𝐷 = (2𝑍Y (𝐼 − 𝐷𝐷+)𝐶)𝑇︸                    ︷︷                    ︸
F

⇒

𝑃𝐿𝐷 = F − 𝑃𝐵2 ⇒
𝐿 = 𝑃−1F𝐷+ − 𝐵2𝐷

+. (37)

For the special case considered, the following result on observer design is pro-
vided.

Theorem 2 Under Assumptions 1, 3, system (14) is an observer of system (1)
with condition (34), if the following linear matrix inequality is solvable for 𝑃 > 0,
and scalar 𝛽 > 0

Ω̂ :=
©­­«

𝑊̂1 + 𝛽𝐼 ★ ★

𝐵𝑇𝑃 +M𝑇
12𝐻1 M22 ★

𝑊𝑇
2 0 Z22

ª®®¬ ¬ 0, (38)

where

𝑊̂1 = 𝑃(𝐴 − 𝐵2𝐷
+𝐶) + (𝐴 − 𝐵2𝐷

+𝐶)𝑇𝑃 + F𝐷+𝐶 + (F𝐷+𝐶)𝑇

+ 𝐻1
𝑇M11𝐻1 + 𝐻1

𝑇Z11𝐻1
𝑊2 = F𝐷+𝐷 − 𝑃𝐵2𝐷

+𝐷 + 𝐻𝑇
1Z12

under the adaptive estimation law
¤̂𝜃 = 2Γ−1Φ2(𝐻1𝑥, 𝑡)𝑇Y(𝑦 − 𝑦̂), (39)

where Γ > 0 is a control parameter.
Proof. Following a procedure similar to the proof of Theorem 1, from equation
(27) along with the assumption Φ1 = Φ2, the error dynamics is reduced to

¤𝑒𝑥 = (𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ + (𝐵2 + 𝐿𝐷)Φ2(𝐻1𝑥, 𝑡)𝑒𝜃 . (40)

Then, considering again the candidate Lyapunov function𝑉 (𝑡) = 𝑒𝑇𝑥 𝑃𝑒𝑥 + 𝑒𝑇𝜃Γ𝑒𝜃 ,
and differentiating yields

¤𝑉 = ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ + (𝐵2 + 𝐿𝐷)Φ2(𝐻1𝑥, 𝑡)𝑒𝜃)𝑇 𝑃𝑒𝑥
+ 𝑒𝑇𝑥 𝑃 ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ + (𝐵2 + 𝐿𝐷)Φ2(𝐻1𝑥, 𝑡)𝑒𝜃)

−
(
2Γ−1Φ2(𝐻1𝑥, 𝑡)𝑇Y (𝐶𝑒𝑥 + 𝐷 (ΔΨ +Φ2(𝐻1𝑥, 𝑡)𝑒𝜃))

)𝑇
Γ𝑒𝜃

− 𝑒𝑇𝜃Γ

(
2Γ−1Φ2(𝐻1𝑥, 𝑡)𝑇Y (𝐶𝑒𝑥 + 𝐷 (ΔΨ +Φ2(𝐻1𝑥, 𝑡)𝑒𝜃))

)
.
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Considering conditions (35), (36), of Assumption 3 the derivative ¤𝑉 above is
simplified to

¤𝑉 = ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ)𝑇 𝑃𝑒𝑥 + 𝑒𝑇𝑥 𝑃 ((𝐴 + 𝐿𝐶)𝑒𝑥 + 𝐵ΔΦ + 𝐿𝐷ΔΨ)

and considering 𝐿 as in (37), and Ω̂ ¬ 0, the error dynamics can be shown to
converge to zero following the same procedure in the proof of Theorem 1. 2

The design procedure is summarized in the following algorithm.

Algorithm 2 Computational steps to design observer (14) for system (1), under (34)

1. Solve (11) to determine matrix Y.
2. Solve the LMI (38) to determine 𝑃.
3. Determine 𝐿 from (37).

The following Corollary gives a simplification of the LMI (38).

Corollary 1 Considering

𝐵ΔΦ + 𝐿𝐷ΔΨ = 𝐵1ΔΦ1 + (𝐵2 + 𝐿𝐷)ΔΦ2 , (41)

whereΔΦ1 = Φ1(𝑞1, 𝑡)−Φ1(𝑞1, 𝑡),ΔΦ2 = Φ2(𝑞1, 𝑡)𝜃−Φ2(𝑞1, 𝑡)𝜃. The derivative
¤𝑉 in the proof of Theorem (2) can be written as

¤𝑉 =
©­«
𝑒𝑥
ΔΦ1
ΔΦ2

ª®¬
𝑇 ©­«

𝑃(𝐴 + 𝐿𝐶) + (𝐴 + 𝐿𝐶)𝑇𝑃 𝑃𝐵1 𝑃(𝐵2 + 𝐿𝐷)
𝐵𝑇
1𝑃 0 0

(𝐵𝑇
2 + 𝐷𝑇𝐿𝑇 )𝑃 0 0

ª®¬ ©­«
𝑒𝑥
ΔΦ1
ΔΦ2

ª®¬ . (42)

Further decomposing the matrix M as

M =
©­«
M11 M121 M122
M𝑇
121 M221 M222

M𝑇
122 M𝑇

222 M223

ª®¬ (43)

condition (24) is written as

(
Δ𝑞1
ΔΦ

)𝑇
M

(
Δ𝑞1
ΔΦ

)
­ 0⇒ ©­«

𝑒𝑥

ΔΦ1
ΔΦ2

ª®¬
𝑇 ©­­«

𝐻1
𝑇M11𝐻1 ★ ★

M𝑇
121𝐻1 M221 ★

M𝑇
122𝐻1 M𝑇

222 M223

ª®®¬
©­«
𝑒𝑥

ΔΦ1
ΔΦ2

ª®¬ . (44)
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So, the LMI (38) can be simplified to

Ω̂ :=
©­­«

𝑊̂1 + 𝛽𝐼 ★ ★

𝐵𝑇
1𝑃 +M𝑇

121𝐻1 M221 ★

𝑊𝑇
2 M𝑇

222 M223

ª®®¬ ¬ 0, (45)

where

𝑊̂1 = 𝑃(𝐴 − 𝐵2𝐷
+𝐶) + (𝐴 − 𝐵2𝐷

+𝐶)𝑇𝑃 + F𝐷+𝐶 + (F𝐷+𝐶)𝑇 + 𝐻1
𝑇M11𝐻1 ,

𝑊2 = 𝑃𝐵2(𝐼 − 𝐷+𝐷) + F𝐷+𝐷 + 𝐻𝑇
1M122 .

Notice that with this simplification, the output nonlinearity is integrated in the
term of ΔΦ, so the IMM matrix Z is discarded in the resulting LMI.

4. Numerical example

In this section, the problem of chaos synchronization will be expounded
through the proposed observer design. Consider the well known Rössler system
[8, 10, 15, 29]:

¤𝑥1 = −𝑥2 − 𝑥3 , (46a)
¤𝑥2 = 𝑥1 + 𝜃𝑥2 , (46b)
¤𝑥3 = 𝑏 + 𝑥3𝑥1 − 𝛾𝑥3 , (46c)

where, 𝑏 = 2, 𝛾 = 4 are system parameters, and 𝜃 ∈ [0.4, 0.5] is the unknown
parameter. The system can be rewritten in the form of (1) as( ¤𝑥1

¤𝑥2
¤𝑥3

)
=

(0 −1 −1
1 0 0
0 0 −4

) (
𝑥1
𝑥2
𝑥3

)
+

(0
0
1

)
(2 + 𝑥3𝑥1) +

(0
1
0

)
𝑥2𝜃 , (47)

where

𝐴 =

(0 −1 −1
1 0 0
0 0 −4

)
, 𝐵1 =

(0
0
1

)
, Φ1(𝐻1𝑥, 𝑡) = 2 + 𝑥3𝑥1, 𝐻1 = 𝐼3 ,

𝐵2 =

(0
1
0

)
, Φ2(𝐻1𝑥, 𝑡) = 𝑥2, 𝐵 =

(0 0
0 1
1 0

)
, Φ(𝑞1, 𝜃, 𝑡) =

(
2 + 𝑥3𝑥1
𝑥2𝜃

)
Also, let the output be

𝑦 = 𝐶𝑥 + 𝐷𝑥2𝜃 (48)
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so
Φ3(𝐻2𝑥, 𝑡) = Φ2(𝐻1𝑥, 𝑡) = 𝑥2 , 𝐻2 = 𝐻1 . (49)

Assume that the initial conditions of the master system (46) are
(𝑥1(0), 𝑥2(0), 𝑥3(0)) = (1, 1, 1). To determine the IMM for the nonlinearity Φ,
since the parameter 𝜃 is unknown, but in the interval 𝜃 ∈ [0.4, 0.5], we take
max(𝜃) = 0.5 and follow the procedure in [27]. The resulting matrix is

𝑘M = 𝑘

©­­­­«
50.9051 0 0 −1.6744 0
0 47.8576 0 0 0.3247
0 0 50.8846 0 0

−1.6744 0 0 −51.1882 0
0 0.3247 0 0 −45.313

ª®®®®¬
. (50)

Here, the scaling factor is chosen as 𝑘 = 0.1. This choice was made after some
trial and error, to guarantee the satisfaction of the LMI (45). The output matrices
are taken as

𝐶 =

(
12 1 3
7 2 2

)
, 𝐷 =

(
2
3

)
. (51)

The scalar parameter in the LMI is taken as 𝛽 = 0.2. The matrix Y is

Y =
(
−0.2308 0.1538

)
(52)

and after the LMI is solved, the observer matrix is computed as

𝑃 =

(91.5116 70.1739 20.9021
70.1739 54.1125 16.0674
20.9021 16.0674 32.5555

)
, 𝐿 =

(−1.0828 −1.6242
1.2513 1.8770
−0.0020 −0.0029

)
. (53)

The adaptive control parameter is taken as Γ = 1, and the initial conditions for the
observer and the parameter estimation are (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−5,−5,−5)
and 𝜃 (0) = 0 respectively, while the real parameter value is 𝜃 = 0.4. The system is
simulated in MATLAB 2018, using ode45, with a relative and absolute tolerance
set to 10−5. The simulation result is shown in Fig. 1. The observer system requires
around 5 seconds to synchronize with the master system.
As an additional simulation, since the initial assumption was that the unknown

parameter is piecewise constant, a simulation is performed for the case where
𝜃 = 0.45+0.05sign(cos(0.5𝑡)). So the parameter 𝜃 is a pulse signal that oscillates
between the values 0.4 and 0.5. The simulation is shown in Fig. 2. Again, the
observer system requires around 5 seconds to synchronize to the master system.
Also, as the parameter goes through step changes, it is estimated correctly, with
a small overshoot.
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Figure 1: Simulation of the observer design for the Rössler system (46), for 𝜃 = 0.4

Figure 2: Simulation of the observer design for the Rössler system (46), for
𝜃 = 0.45 + 0.05sign(cos(0.5𝑡)).

5. Conclusions

This work studied the problem of adaptive observer design, for systems with
nonlinearities satisfying incremental quadratic constraints. A restricting case was
considered, where the output of the system includes nonlinear combinations of
the states and unknown parameter. The observer design is feasible under the
feasibility of a linear matrix inequality, and a set of algebraic conditions on the
system matrices. Numerical simulations were performed to address the problem
of chaos synchronization.
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Future works will consider different types of nonlinearities that cannot be
described by incremental quadratic constraints. The problem of observer output
feedback can also be addressed. Moreover, systems with hidden attractors can be
studied, which constitute a trending topic of research for nonlinear analysis [30].
Additionally, the adjustment of the proposed observer to the case of discrete time
systems is of interest, since continuous systems will often be discretized first,
before applying control to them. Finally, the extension to the general case of
descriptor systems is of interest [31], since they can be used to model a wider
family of dynamical systems that are described by algebraic and differential
equations.
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