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Observer design estimating the propofol concentration
in PKPD model with feedback control

of anesthesia administration

Muhammad ILYAS, Awais KHAN, Muhammad Abbas KHAN, Wei XIE,
Raja Ali RIAZ and Yousaf KHAN

Propofol infusion in anesthesia administration requires continual adjustment in the manual
infusion system to regulate the hypnosis level. Hypnotic level is based on Bispectral Index
Monitor (BIS) showing the cortical activity of the brain scaled between 0 to 100. The new
challenging aspect of automation in anaesthesia is to estimate the concentration of hypnotic
drugs in different compartments of the body including primary, rapid peripheral (muscle), slow
peripheral (bones, fat) and effect site (brain) compartment based on Pharmacokinetics (PK) and
Pharmacodynamics (PD) model. This paper aimed to regulate the hypnosis level with estimating
the Propofol concentrations using a linear observer in feedback control strategy based on Integral
Super-Twisting Sliding Mode Controller (ISTSMC). The drug concentration in plasma of the
silico patients accurately estimated in nominal transient. The results show that tracking errors
between the actual output in form of BIS level and linearized output nearly approaches to
zero in the maintenance phase of anesthesia to ensure the controller response on sliding phase
with optimum performances by achieving desired hypnotic level 50 on BIS. The robustness of
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control strategy is further ensured by addingmeasurement noise of electromagnetic environment
of operation theatre distracting signal quality index of the output BIS level.

Key words: pharmacokinetic and pharmacodynamic models, bispectral index monitor,
observer design, sliding mode control

1. Introduction

Advancement in control engineering diverts the manual drug delivery system
concepts in clinical surgery. The surgical procedure can be carried out with little
effort in the current era. Such advancement is possible with research outcomes
in health care engineering. Initially, the surgical procedure needs fast execution
due to lack of anaesthetics and applied different schemes like application of cold,
nerve’s compression to keep the patient unconscious [1]. In 1840, Hickman in-
vented the inhalation gases, which enabled invasive surgeries. C.W.Long, in 1842,
used diethyl-ether to conduct surgical procedures that extend to term anesthesia,
meaning lack of sense [2]. Anesthetic drug infusion based on three significant
ingredients, including hypnotic, analgesic and areflexia, aimed to ensure lack
of sense, pain and movements, respectively. Moreover, anesthesia administration
consists of three main phases: induction, maintenance and emergence [3]. In the
transient phase hypnotic drugs are being administered to the patient to achieve
the desired unconscious level. The second phase is the maintenance phase to
conduct the surgical procedure with optimum delivery of drug infusion. As the
surgical procedure is completed, it directs to the emergence phase to stop the
drug infusion and skin closure procedure is initialized to bring the patients to
consciousness. The general surgery is performed during the maintenance phase
of anesthesia with hypnosis level between 40 and 60 on BIS [4–8].
Using general anesthesia propofol as hypnotic agent and fast acting opioids,

e.g. remifentanil is used as a pain killer. Both of these drugs have synergistic effects
on patients [9]. There are two main issues in manual drug delivery of anesthesia,
under-dosing and over-dosing of anesthetics. Under-dosing of anesthetics causes
awareness, which leads to vomiting and anxiety, and over-dosing of anesthesia
leads to cardiovascular collapse. Both of these states are unacceptable to clinical
professionals during surgery [10]. Careful management of drug induction is the
crucial factor in the successful conduction of surgical procedures. All these
limitations in manual drug delivery of anesthetics reflect the attention of the
scientific community to realize automation in anesthesia.
Targeted Controlled Infusion (TCI) is a computer-assisted open loop drug de-

livery system that administers the required anaesthetics level without considering
the feedback signal. Such a system is based on population-based pharmacoki-
netic and pharmacodynamic modeling. PK model shows the rate of metabolism
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of drugs within the human body and the PD model identifies the drugs on the
brain side referred to as an effect-site compartment. The effect of hypnotic drugs
is modeled through a nonlinear sigmoid model indicating the hypnosis level on
BIS is scaled between 100 fully awake states and 0 dead states. The general
surgery is performed between 40 and 60 on BIS [11, 12].
A closed-loop control system offers several advantages compared to TCI

systems, including automatic regulation of hypnosis level and drug infusion
rate by reducing the inter-patient and intra-patient variability and eliminating
the anesthesiologist intervention [12–14]. Primarily the closed-loop control of
anesthesia was introduced by Chao Dong in his doctoral study in 2003 [15].
C. Dong derived a three compartmental PK-PD model for hypothetical patients
and linearized it using linear regression. The limitation of Dong work due to
significant variation in hypnosis level during maintenance phase beyond the
acceptable level [15]. Soltesz et al., worked on the same phenomena to regulate the
hypnosis level on BIS using propofol and remifentanil as hypnotic and analgesic
components of anesthesia, respectively.
The major significance of his work is revealed in his doctoral research work

due to practical experiments to be carried out on 47 validated models attaining
the interpatient variability. The controller applied was based on multi-inputs,
including propofol and remifentanil [16–19]. Soltesz et., did not focus on han-
dling the intra-patient variability like blood pressure variation, bleeding, which
can affect the smooth conduction of surgery. Moreover, the control engineering
community has not addressed measuring the concentration of drugs in different
compartments of the body based on the PK-PD model due to the lack of such a
sensor.
The corresponding research work is based on observer design in a closed-

loop fashion with a ISTSMC to estimate the non measurable states in the form
of drug concentration in different body compartments. The drug concentration
in different compartments, including primary, rapid peripheral, slow peripheral
and effect-site compartments, are estimated based on Luenberger observer. The
feedback controller is designed using estimated states of the observer-based on
ISTSMC. The ISTSMC is applied due to fast transient response and minimal
steady state error and immune to measurement noise added to output BIS level
that occurs due interference signal of electromagnetic environment of operation
theatre distracting the signal quality index of electrode of BIS monitor fixed on
forehead of the patient.
The rest of the paper is organized as follows. Section 2 explains the three

compartment PK-PD model. Section 3 focuses on observer design to simulate
the controllability and observability of the proposed system whereas Section 4
consists of controller design. The results are explained and discussed in Section 5.
Finally, Section 6 comments on conclusion.
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2. Pharmacokinetic and pharmacodynamic modeling

The dynamics of infusion drugs in the patient body is classified into PK-PD
model [20–22]. The PK model shows how the drug is metabolized within the
human blood plasma [22]. The PD model exhibits the drug concentration at the
effect site like the brain [23–25]. The blood within the human body acts as a
carrier to transmit the drug to different body organs. The overall human body is
categorized into different compartments based on the drug flow rate, including
primary, rapid peripheral and slow peripheral compartments [1]. The primary
compartment (intravascular blood) with volume 𝑉1 is shown in the centre of
Figure 1. Moreover, the muscles are represented by rapid peripheral compart-
ment 𝑉2 and fates are represented by slow peripheral compartment 𝑉3. Both of
these compartments are connected to the primary compartment through weighted
rate constants 𝑘12, 𝑘21, 𝑘13 and 𝑘31. The flow of anesthetic agents amongst dif-
ferent compartments occurred exponentially [4]. The drug’s overall effect is
measured on the brain in terms of cortical activity measured on BIS scaled
between 100 to 0.

Figure 1: Block diagram of PK and PD models

The state equations for three compartmental model with additional effect site
compartment is described in equations (1)–(4) in [23–25] as:

¤𝑏1(𝑡) = −𝑘10𝑏1(𝑡) − 𝑘12𝑏1(𝑡) − 𝑘13𝑏1(𝑡) + 𝑘21𝑏2(𝑡) + 𝑘31𝑏3(𝑡) + 𝑢(𝑡), (1)
¤𝑏2(𝑡) = 𝑘12𝑏1(𝑡) − 𝑘21𝑏2(𝑡), (2)
¤𝑏3(𝑡) = 𝑘13𝑏1(𝑡) − 𝑘31𝑏3(𝑡). (3)
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PD model presents the drug concentration at the effect site (brain) given in
equation (4) as:

¤𝑏4(𝑡) = 𝑘1𝑒𝑏1(𝑡) − 𝑘𝑒0𝑏4(𝑡). (4)
The 𝑏1, 𝑏2, 𝑏3 and 𝑏4 that mentioned in equations (1)–(4) indicate the drug
concentration in primary, rapid peripheral, slow peripheral and effect site com-
partment respectively measured in mg and 𝑢 shows the drug infusion through
ISTSMC measured in mg/sec.
The output of infusion drug based on their effect at brain site mapped through

nonlinear sigmoid model is shown in equation (5) as:

𝐵𝐼𝑆(𝑡) = 𝐸0 − 𝐸max ×
𝑏4
𝛾

𝑏4 + 𝐶50𝛾
. (5)

In above stated Eq. (5) 𝐸0 indicates the fully awake state of the silico patient,
𝐸max shows the maximum effect achieved using hypnotic agent, 𝐶50 shows the
half of the maximum effect and 𝛾 shows the slope of the sigmoid curve.
The clinical parameters using patient attributes based Schneider PK-PD

model [24, 25] including the Lean Body Mass(LBM) of male is 1.1 · 𝑊 −
128𝑊2/𝐻2 and LBM of female is 1.07 ·𝑊 − 148𝑊2/𝐻2. Similarly the weighted
rated constant 𝑘10, 𝑘13, 𝑘21 and 𝑘31 are 𝐶𝑙1/𝑉1, 𝐶𝑙3/𝑉1, 𝐶𝑙2/𝑉2 and 𝐶𝑙3/𝑉3 re-
spectively. The volume of the compartment is 𝑉1, 𝑉2 and 𝑉3 is 4.27[𝑙], 18.9 −
0.391(𝐴𝑔𝑒−53) [𝑙] and 238[𝑙] respectively. The clearance (𝐶𝑙) predicts the abil-
ity of the body to nullify and remove the effect of the drugs by elimination through
kidneys. The clearance of different compartments in PK-PDmodel including𝐶𝑙1,
𝐶𝑙2 and 𝐶𝑙3 is 1.89 + 0.0456(𝑊 − 77)-0.0681(𝐿𝐵𝑀 − 59)+0.0264(𝐻 − 177),
1.29-0.024(𝐴𝑔𝑒 − 53) and 0.836, respectively.

3. Observer design

The core objective of observer design is the state estimation of three com-
partmental PK-PD models that predict the drug concentration in the plasma of
different compartments of the body [26]. As it is evident from literature that there
is no biomedical sensor to predict and measure the plasma drug concentration
after infusion of anesthetic agents to the human body. Equations (6) and (7) show
the state space representation of the PK-PD model. The output of the PK-PD is
non linear sigmoid model mentioned in equation (5) is linearized through optimal
linearization method. As the𝐶 matrix is changed and (𝐴−𝐿𝐶) becomes negative
definite through scheduling the gain 𝐿 of the observer.

¤𝑏 = 𝐴𝑏 + 𝐵𝑢, (6)
𝑦 = 𝐶𝑏, (7)
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where 𝑏 is the states of PK-PD model, 𝐴 is the input state matrix, 𝐶 is the output
state matrix. The estimated states of the observer are given as:

¤̂
𝑏 = 𝐴𝑏̂ + 𝐵𝑢 + 𝐿 (𝑦 − 𝐶𝑏̂), (8)

𝑦 = 𝐶𝑏̂. (9)

The above mathematical expression in equations (8), (9) shows the luenberger
observer with 𝐴𝑏̂+𝐵𝑢 is the replica of the plant dynamics and 𝐿 (𝑦−𝐶𝑏̂) estimate
the future states based on current estimation error. The 𝐿 shows the gain scheduled
and tuned iteratively. The equation (8) can be simplify as:

¤̂
𝑏 = 𝑏̂(𝐴 − 𝐿𝐶) + 𝐵𝑢 + 𝐿𝑦. (10)

The error function (𝐸) are defined as:

𝐸 = 𝑏 − 𝑏̂. (11)

By taking derivative of the above error function (𝐸) as:

¤𝐸 = ¤𝑏 − ¤̂
𝑏 . (12)

Putting the value of 𝑏̂ and ¤̂
𝑏 in error function in equation (12),

¤𝐸 = 𝐴𝑏 + 𝐵𝑢 −
(
𝐴𝑏̂ + 𝐵𝑢 + 𝐿 (𝑦 − 𝐶𝑏̂)

)
, (13)

¤𝐸 =
(
𝑏 − 𝑏̂

)
(𝐴 − 𝐿𝐶). (14)

3.1. Observer error (𝐸) convergence matrix

The gain 𝐿 of the observer is tuned using gain scheduling algorithems as
that matrix (𝐴 − 𝐿𝐶) has eigenvalues (𝜆) with negative values. The matrix
(𝐴 − 𝐿𝐶) < 0 will be negative definite as:

𝐴 =

©­­­«
−𝑘10 − 𝑘12 − 𝑘13 𝑘21 𝑘31 0

−𝑘12 −𝑘21 0 0
𝑘13 0 −𝑘31 0
𝑘1𝑒 0 0 −𝑘𝑒0

ª®®®¬ , (15)

𝐵 =
(
1 0 0 0

)
. (16)

The output equation for the PK-PD model as defined in equation (5) linearized
through optimal linearization and matrix 𝐶 is changed as by tuning the gain 𝐿
such as the (𝐴 − 𝐿𝐶) becomes negative definite.
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3.2. Simulation and results of observer design

Figure 2 shows the observability and controllability of the state matrix is
full rank as the order of the system is 4 × 4. Before controller design it is quite
important the check the observability and controllability of the state matrix that
either the proposed system is full rank or not. In this case Figure 2 shows that
state matrix is full rank.

Figure 2: Rank of observability and controllability matrix

Figure 3 shows the eigenvalues of the error convergence matrix. All four
eigenvalues (𝜆) decay from zero to negative values along the axis. It predicts that
is negative definite of the state matrix of PK-PD model.
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Figure 3: Eigenvalues of error convergence matrix

4. Integral super-twisting sliding mode control (ISTSMC) design

The nonlinear ISTSMC is based on a nonlinear sliding surface showing robust-
ness to the external disturbances including measurement noise, electrical signal
interference from electrical equipment in the operation theatre. The primary sig-
nificance of ISTSMC showing rapid transient response and less steady-state error
in the presence of disturbances [27–29].
The sliding manifold chosen as to achieve the required performance as:

𝜎 = ¤𝑒 + (𝜆1)𝑒 + (𝜆2)
∫

(𝑒)d𝑡, (17)

𝑒 = 𝐵𝐼𝑆des − 𝐵𝐼𝑆act , (18)

where 𝐵𝐼𝑆des = 50 is the desired hypnotic level on BIS required for conduction
surgical procedure and and 𝜆1 ∈ <+ is a design parameter. Ideally the sliding



OBSERVER DESIGN ESTIMATING THE PROPOFOL CONCENTRATION IN PKPD MODEL
WITH FEEDBACK CONTROL OF ANESTHESIA ADMINISTRATION 93

manifold shall be (𝜎 = 0) can be expressed as:

𝜎 = ¤𝑒 + (𝜆1)𝑒 + (𝜆2)
∫

(𝑒)d𝑡 = 0. (19)

By simplifying the equation (19) as 𝑒(𝑡) asymptotically converges to zero as:

𝑒(𝑡) = 𝑒(0)𝑡𝑒−𝜆1𝑡 . (20)

The equation (20) predicts that error function 𝑒(𝑡) shall be decaying exponentially
as 𝑡 > 0. The control law is designed by taking the derivative of equation (19) as:

¤𝜎 = ¥𝑒 + (𝜆1) ¤𝑒 + (𝜆2)𝑒, (21)

¤𝑒 = 0 − 𝐸max ×
d
d𝑡

(
𝑏4(𝑡)𝛾

𝑏4(𝑡) + 𝐶50𝛾
)
, (22)

¥𝑒 = 𝐸max𝑏4
𝛾 ¥𝑏4

(𝐾 + 𝑏4)2
− 2 × 𝐸max𝑏4

𝛾 ¤
𝑏4
2

(𝐾 + 𝑏4)3
+
2 × 𝐸peak𝛾𝑏4𝛾−1 ¤

𝑏4
2

(𝐾 + 𝑏4)2

− 𝐸max𝛾𝑏4
𝛾−1 ¥𝑏4

𝐾 + 𝑏4
− (𝛾 − 1) × 𝐸max𝛾𝑏4

𝛾−2 ¤
𝑏4
2

𝐾 + 𝑏4
, (23)

where 𝐾 = 𝐶
𝛾

50, By putting the value of ¥𝑒 from equation (23) and ¤𝑒 from
equation (22) in equation (21), the value of ¤𝜎 can be realized. To achieve finite
time convergence applying reachability law as:

¤𝜎 = −𝑘1 |𝜎 |
1
2 sign(𝜎) − 𝑘2

∫
sign(𝜎)d𝜏, (24)

where 𝑘1, 𝑘2 ∈ <+ are controller gain parameters. Now comparing the value of
¤𝜎 from equation (21) and equation (24) to find the controller input (𝑢) as:

− 𝑘1 |𝜎 |
1
2 sign(𝜎) − 𝑘2

∫
sign(𝜎)d𝜏 = ¥𝑒 + (𝜆1) ¤𝑒 + (𝜆2)𝑒. (25)

By simplifying the equation (25) the controller input (𝑢) derived as:

𝑢 =

[
2×𝐸max𝑏4𝛾 ¤𝑏24
(𝐾 + 𝑏4)3

−
2×𝐸max𝛾𝑏4𝛾−1 ¤𝑏24

(𝐾 + 𝑏4)2
+ (𝛾−1)×

𝐸max𝛾𝑏4
𝛾−2 ¤𝑏24

𝐾 + 𝑏4
− 𝜆1 ¤𝑒 − 𝜆2𝑒

]
× 𝑏4(𝐾 + 𝑏4)2

𝐸max𝑏
𝛾

4 (𝑏4(1 − 𝛾) − 𝐾𝛾) (−0.456 ¤𝑏4 + 0.1068)
+

(
(𝑘10 + 𝑘12 + 𝑘13)𝑏1 − 𝑘21𝑏2 − 𝑘31𝑏3

)
− 𝑘1 |𝜎 |

1
2 sign(𝜎) − 𝑘2

∫
sign(𝜎)d𝜏. (26)
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5. Results and simulations

Figure 4 shows the closed-loop system with ISTSMC and PK-PD model
in cascaded form and nonlinear sigmoid model feedback to observer after lin-
earization. The output from the PK-PD model is mapped on a nonlinear sigmoid
model showing the hypnosis level of the patient. The sigmoid model was fur-
ther linearized using optimal linearization algorithms and applied to Luenberger
observer as a feedback signal. The observer estimates the non-measurable states
of the patient PK-PD model and adds it to ISTSMC. The core functionality of
the controller is to maintain the desired level of hypnosis on BIS by providing
a varying level of drug infusion to the patient intravascular blood as a primary
compartment.

Figure 4: Block diagram of observer design for automatic control of drug infusion in
Propofol anesthesia administeration based on ISTSMC

Figure 5 shows the plasma drug concentration in various body compartments,
including primary compartment, rapid peripheral compartment, slow peripheral
compartment, and effect-site compartment (brain) of actual and estimated states
identified by the observer. Initially, the concentration of drug in plasma is maxi-
mum in the primary compartment after infusion through intravascular blood and
decay exponentially leads to a gradual increase in other compartments of the
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body due to distribution and metabolism. The estimated states of the observer
shown in Figure 5 accurately track the PK-PD model’s actual states.

Figure 5: Plasma drug concentration of estimated and actual states of PK-PD model

Figure 6 presents the desired hypnosis level on the BIS monitor for actual,
linearized and estimated output. The figure shows that the induction phase is
completed achieving the desired hypnotic level 50 in settling time < 70 seconds.
A clinical professional initializes the surgical procedure after 70 seconds in the
maintenance phase or steady-state phase of anesthesia. The estimated BIS level
accurately tracks the actual and linearized output of the system. The steady-state
error is initially maximum in the transient phase of drug infusion and reduces
significantly to zero nearly in the maintenance phase of anesthesia.
Figure 7 presents the drug infusion level 𝑢 to the patient body based on

ISTSMC applied with estimated state from observer design shown by Figure 4.
Figure 7 shows that drug infusion is initially maximum during induction phase of
anesthesia to bring the patient from state of consciousness to the hypnotic level.
The patient’s drug infusion level varies and oscillates to stabilize the hypnosis
level on BIS between 40–60.
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Figure 6: Hynosis level BIS monitor for linearized, estimated and actual output

Figure 7: Drug infusion level to the patient based on ISTSMC
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5.1. Measurement noise compensation in BIS signal

The BIS monitor extracts the cortical activity of the brain through electrodes
placed on the forehead of the patient, as shown in Figure 8. The electrode strip
further consists of four electrodes and is fixed on the forehead in major surgery
in the supine position [30]. The signal quality index may vary as the position of
the electrode varies. Moreover, surgical cautery and other electrical monitoring
may interfere with the signal quality index.

Figure 8: Open loop liproscopic surgery conducted in Hayatabad Medical Compplex
Peshawar, Pakistan

The measurement noise and interference are also caused by various reasons,
including the operation theatre’s electromagnetic environment due to multiple
equipment working simultaneously that distract the signal quality index of the
electrode of the BIS monitor. This paper has added Gaussian noise to the BIS
level, as shown in Figure 9. The gaussian has a variance of 0.1 and investigates
their effect at controller signal, BIS level, etc.
Figure 10 shows the controller input as a drug infusion based on ISTSMC

after adding noise signal due to the electromagnetic environment of the opera-
tion theatre. The drug infusion level is maximum during the transient phase or
induction phase to bring the patient hypnotic state 40–60 on BIS monitor and
then gradually decreases in maintenance phase or steady phase of surgical pro-
cedure. The only difference being observed is that the level of chattering slightly
increases compared to the controller in figure 7 without considering the noise
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Figure 9: Measurement noise in BIS level

Figure 10: Controller drug infusion after adding the noise signal in the BIS level
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and interference. However, the magnitude of the chattering level is tolerable for
infusion pumps.
Figure 11 shows the hypnosis level on BIS monitor after considering the

noise signal. During the induction phase, undershoot observed slighting exceed-
ing lower limit 40, which is tolerable from clinical view reflecting deep sedation
level still ensuring controller robustness to the disturbance and noise signal com-
pensation. The estimated state accurately tracks the actual output and linearized
output in anaesthesia administration induction andmaintenance. The desired hyp-
notic level ismaintained during the steady-state phase inwhich surgical procedure
is performed.

Figure 11: Hynosis level on BIS after adding noise signal

6. Conclusion

This paper proposes observer-based automatic control of drug infusion to
regulate the hypnosis level using ISTSMC strategy. The state of the patient
PK-PD model consists of plasma drug concentration in different compartments
of the body, not measurable parameters with the assistance of any sensor. The
linear observer was identified to estimate the actual states of the patient PK-PD
model. The ISTSMC administered the optimum level of drug infusion to the
patient model to regulate hypnosis levels between 40–60 on BIS. The tracking
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error between the actual BIS level as well as linearized and estimated BIS is
nearly approaching zero in the maintenance phase of anesthesia. This closed-
loop topology of automatic control of drug infusion leads to hardware realization
of automation in anesthesia.
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