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Coexisting of self-excited and hidden attractors
in a new 4D hyperchaotic Sprott-S system

with a single equilibrium point

Saad Fawzi AL-AZZAWI and Maryam A. AL-HAYALI

Coexisting self-excited and hidden attractors for the same set of parameters in dissipative
dynamical systems are more interesting, important, and difficult compared to other classes of
hidden attractors. By utilizing of nonlinear state feedback controller on the popular Sprott-
S system to construct a new, unusual 4D system with only one nontrivial equilibrium point
and two control parameters. These parameters affect system behavior and transformation from
hidden attractors to self-excited attractors or vice versa. As compared to traditional similar
kinds of systems with hidden attractors, this system is distinguished considering it has (𝑛−2)
positive Lyapunov exponents with maximal Lyapunov exponent. In addition, the coexistence
of multi-attractors and chaotic with 2-torus are found in the system through analytical results
and experimental simulations which include equilibrium points, stability, phase portraits, and
Lyapunov spectrum. Furthermore, the anti-synchronization realization of two identical new
systems is done relying on Lyapunov stability theory and nonlinear controllers strategy. lastly,
the numerical simulation confirmed the validity of the theoretical results.

Key words: 3D Sprott S system, New 4D Sprott S system, multiple attractors, anti-
synchronization

1. Introduction

In dissipative systems, the attractors play a very important role in the cat-
egorization of dynamic systems into two main types: self-excited and hidden
attractors. Most of the well-known conventional chaotic/hyperchaotic systems
have self-excited attractors starting from Lorenz, 3D Rössler, 4D Rössler, Chen
and Liu systems in 1963 1976,1979,1999, and 2004, respectivly [1–3]. In 2010,
Kuznetsov et al., introduce the first concept of hidden attractor, but this phe-
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nomenon did not receive great interest until the year 2011 when Leonov et al.
developed Chua’s circuit [4–6]. Hidden attractors for dynamic systems occur in
three categories; (i) just stable equilibrium points [7], (ii) without points [8–12],
(iii) Curve / line equilibria [13,14].As compared to self-excited attractors [15–17],
hidden attractors are more complex to detect due to the location of the point not
being essential as it is in the other category.
In literature, most of the current work has focused on investigating simple dy-

namical systems without equilibrium points or stable equilibrium points (system
with hidden attractors) [5–14]. Also, most of thementioned systemswere adopted
on the three conditions for Sprott in the year 2011 [18]. But, other conditions
ought to satisfy in proposed systems:
1. The system should have (𝑛−2) positive Lyapunov exponents.
2. The system should have a maximal Lyapunov exponent (MLE) compared
to the original system.
Many research ignored these two conditions, whereas others are concerned

with research systemswithmultiple/coexisting attractors between hidden and self-
excited attractors [6]. These reasons motivated us to find a new rare 4D system
with (𝑛−2) positive Lyapunov exponents (satisfied the two conditions mentioned
above) and have multiple attractors hidden and self-excited. The available 4D
dimensions (𝑛 = 4) systems with (𝑛−𝑖, 𝑖 = 1, 2) positive Lyapunov exponents
and different attractors are listed in Table 1. It is noted from Table 1 that very

Table 1: Categorization of different 4-D chaotic/hyperchaotic systems

No. System
behavior

No.
+𝑣𝑒LE𝑠

Nature of
equilibria

Attractors
behavior

Total
terms

Nonlinear
terms References

1 Chaotic 𝑛−3 stable point hidden 10 3 2020 [7]
2 Chaotic 𝑛−3 no equilibria hidden 9 2 2017 [8]
3 Hyperchaotic 𝑛−2 no equilibria hidden 7 2 2014 [9]
4 Chaotic 𝑛−3 no equilibria hidden 8 1 2018 [10]
5 Chaotic 𝑛−3 no equilibria hidden 8 1 2017 [11]
6 Hyperchaotic 𝑛−2 no equilibria hidden 9 5 2012 [12]
7 Chaotic 𝑛−3 curve of points hidden 8 1 2017 [13]
8 Chaotic 𝑛−3 infinite equilibria hidden 7 2 2020 [14]
9 Hyperchaotic 𝑛−2 unstable point self-excited 9 4 2012 [15]
10 Hyperchaotic 𝑛−2 three equilibria self-excited 11 3 2012 [16]
11 Hyperchaotic 𝑛−2 unstable point self-excited 9 2 2020 [17]
12 Chaotic 𝑛−3 no equilibria hidden 8 2 2021 [46]
13 Hyperchaotic 𝑛−2 stable/unstable multiple 9 2 this work
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few systems are interested in the above-mentioned two conditions as well as to
discover with coexisting of hidden and self-excited attractors.
Since Pecora and Carroll presented the first phenomenon in chaos synchro-

nization for the systems with self-excited attractors [19–21]] which witnessed
great attention from various areas such as engineering [22,24], chaos control [25],
chaos synchronization [26] and encryption [27–30]. Numerous phenomena such
as complete synchronization (CS) [1, 2, 31], anti-synchronization (AS) [32, 33],
hybrid synchronization (HS) [34, 35], projective synchronization (PS) [36–38]
were reported.
Nowadays, CS and AS is the most common phenomenon are used and they

are similar in that the master and slave systems converge to zero according to
the formula 𝑒𝑖 (𝑡) = 𝑦𝑖 (𝑡) − 𝑠𝑥𝑖 (𝑡), but different in 𝑠 scaling factor where 𝑠 = 1
and 𝑠 = −1 for CS and AS respectively [39, 40]. Thereafter a few works are
interesting to apply these phenomena on systems with hidden attractors. This is
another reason that motivated us to do this work.
The main contribution of this paper can be summarized in the following

points:
• A new 4D dissipative system is suggested from the well-known 3D Sprott-S
system.

• The proposed system has a single stable/unstable equilibrium point, it ex-
hibits hidden and self-excited attractors. So it can be considered one of the
unfamiliar systems. This point was fulfilled in Table 1.

• It consists of nine terms, including two of nonlinearity and two parameters.
• The system satisfies (𝑛−2) positive Lyapunov exponents with the largest
Lyapunov exponents.

• This system is used to realize anti-synchronization.

2. Dynamics and analysis of the new system

Sprott introduced a simple 3D (Sprott S) system [41] that consists of six
terms included only one quadratic nonlinear term 𝑧2 without parameters and
described by:

¤𝑥 = −𝑥 − 4𝑦,
¤𝑦 = 𝑥 + 𝑧2,

¤𝑧 = 1 + 𝑥,

(1)

where 𝑥, 𝑦, 𝑧 are state variables. This system possesses two nontrivial critical
points with one positive Lyapunov exponent 𝐿𝐸1 = 0.188 and Lyapunov di-
mension 𝐷𝐿𝐸 = 2.151. In 2021, based on Sprott S system and state feedback
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control strategy [42–45], a 4D system with (𝑛−3) positive Lyapunov exponent
and Lyapunov dimension 𝐷𝐿𝐸 = 3.11971 was suggested by Al-hayali and Al-
Azzawi [46], which is described as

¤𝑥 = −𝑥 − 4𝑦,
¤𝑦 = 𝑥 + 𝑧2 + 𝑎𝑢,

¤𝑧 = 1 + 𝑥,

¤𝑢 = −𝑏𝑦,

(2)

and the control parameters are (𝑎, 𝑏) = (0.01, 0.1). By introducing nonlinear
feedback control to the second equation of 3D Sprott-S system or if adding the
feedback term (−𝑥𝑧) to the fourth equation of a system (2), a new 4D system
hyperchaotic attractorwith (𝑛−2) positiveLyapunov exponent can be proposed as:

¤𝑥 = −𝑥 − 4𝑦,
¤𝑦 = 𝑥 + 𝑧2 + 𝑎𝑢,

¤𝑧 = 1 + 𝑥,

¤𝑢 = −𝑏𝑦 − 𝑥𝑧,

(3)

where 𝑥, 𝑦, 𝑧, 𝑢 are state variables and 𝑎 and 𝑏 are both control parameters.
Clearly, the new system consists of nine terms, including a single nontrivial
equilibrium point with two nonlinearities. This system exhibits a hyperchaotic
attractor when 𝑎 = 0.0005, 𝑏 = 0.1, and 𝑥(0) = (1, 1, 1, 1)𝑇 as shown in Fig. 1.
In addition, the proposed system satisfies one of the Sprott conditions 2011 “sys-
tem proposed must exhibit some previously unobserved” in creating new systems
and our system has rare behavior coexistence of hidden and self-excited attractors

Figure 1: Hyperchaotic attractors of the system (3) in space (a) and plane (b) are illustrated
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versus control parameter as illustrates in Fig. 2a–d under the control parameters
𝑏 = 50, 𝑎 = 0.7, 1, 1.5, 1.7 respectively and 𝑥(0) = (0.1, 0.1, 0.1, 0.1)𝑇 .

Figure 2: Multiple attractors of the 4D system (3) on the 𝑥-𝑦 plane with 𝑏 = 50 in:
(a) 𝑎 = 0.7, (b) 𝑎 = 1, (c) 𝑎 = 1.5, and (d) 𝑎 = 1.7

2.1. Equilibrium points and stability

Via solving ¤𝑥 = ¤𝑦 = ¤𝑧 = ¤𝑢 = 0, one getting a single nontrivial equilibrium
point

𝑃1 =


−1
0.25
0.25𝑏

(1 − 0.0625𝑏2)
𝑎


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and the Jacobian matrix of the new system at 𝑃1 and characteristic equation are
respectively as

𝐽 =



𝜕 ¤𝑥
𝜕𝑥

𝜕 ¤𝑥
𝜕𝑦

𝜕 ¤𝑥
𝜕𝑧

𝜕 ¤𝑥
𝜕𝑢

𝜕 ¤𝑦
𝜕𝑥

𝜕 ¤𝑦
𝜕𝑦

𝜕 ¤𝑦
𝜕𝑧

𝜕 ¤𝑦
𝜕𝑢

𝜕 ¤𝑧
𝜕𝑥

𝜕 ¤𝑧
𝜕𝑦

𝜕 ¤𝑧
𝜕𝑧

𝜕 ¤𝑧
𝜕𝑢

𝜕 ¤𝑢
𝜕𝑥

𝜕 ¤𝑢
𝜕𝑦

𝜕 ¤𝑢
𝜕𝑧

𝜕 ¤𝑢
𝜕𝑢


=


−1 −4 0 0
1 0 2𝑧 𝑎

1 0 0 0
−𝑧 −𝑏 −𝑥 0



⇒ 𝐽 (𝑃1) =


−1 −4 0 0
1 0 𝑏/2 𝑎

1 0 0 0
−𝑏/4 −𝑏 1 0

 , (4)

𝜆4 + 𝜆3 + (𝑎𝑏 + 4)𝜆2 + 2𝑏𝜆 + 4𝑎 = 0. (5)
To determine whether the Eq. (5) is stable, it should use the Routh-Hurwitz

criteria to obtain
• 𝐴1 > 0, 𝐴4 > 0,

• 𝐴1𝐴2 > 𝐴3,

• 𝐴1𝐴2𝐴3 > 𝐴23 + 𝐴21𝐴4,
where 𝐴1 = 1, 𝐴2 = 𝑎𝑏+4, 𝐴3 = 2𝑏 and 𝐴4 = 4𝑎. Therefore, the proposed system
possesses roots with the negative real part under the condition 𝑎 >

2(𝑏 − 2)
𝑏

and 𝑏 ≠ 0. This relationship between both control parameters 𝑎 and 𝑏 can be
summarized in Fig. 3 and Table 2 with fixed control parameters 𝑏 = 4 and 𝑏 = 2.
It is noted from Table 2 that the equilibrium point 𝑃1 is unstable under

the condition 𝑎 <
2(𝑏 − 2)

𝑏
because eigenvalues calculated via solving Eq. (5)

contain some with positive real parts. So, the system (2) belongs to self-excited

attractors. Whereas, it belongs to hidden attractors under 𝑎 >
2(𝑏 − 2)

𝑏
. Thus,

we conclude that this system has two types of attractors for the same equilibrium
point 𝑃1 based on the relationship between control parameters 𝑎 and 𝑏 as:

• Self-excited attractors when 𝑎 <
2(𝑏 − 2)

𝑏
.

• Hidden chaotic attractors when 𝑎 >
2(𝑏 − 2)

𝑏
.
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Figure 3: Relationship between both control parameters 𝑎 and 𝑏 in new system: (a) 𝑎 = 1,
(b) 𝑎 = 1.5 under 𝑏 = 4, (c) 𝑎 = −0.009, and (d) 𝑎 = 0.2 under 𝑏 = 2

Table 2: The relationship between both control parameters 𝑎 and 𝑏

Figure 𝑏 𝑎 Characteristic polynomial Roots Stability

Fig. 3(a)
4

1 𝜆4 + 𝜆3 + 8𝜆2 + 8𝜆 + 4 𝜆1,2 = −0.5329 ± 0.4966𝑖
𝜆3.4 = 0.0329 ± 2.7456𝑖

unstable

Fig. 3(b) 1.5 𝜆4 + 𝜆3 + 10𝜆2 + 8𝜆 + 6 𝜆1,2 = −0.4285 ± 0.6831𝑖
𝜆3.4 = −0.0715 ± 3.036𝑖 stable

Fig. 3(c)

2

−0.009 𝜆4 + 𝜆3 + 3.982𝜆2 + 4𝜆 − 0.036
𝜆1 = 0.0089
𝜆2 = −0.0107
𝜆3.4 = 0.009 ± 1.9982𝑖

unstable

Fig. 3(d) 0.2 𝜆4 + 𝜆3 + 4.4𝜆2 + 4𝜆 + 0.8
𝜆1 = −0.2855
𝜆2 = −0.6723
𝜆3.4 = −0.0211 ± 2.044𝑖

stable
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2.2. Lyapunov exponents and dissipativity

Lyapunov exponents (𝐿𝐸𝑆) are tools used to distinguish between attractors’
chaotic/hyperchaotic systems. There are many algorithms are available for the
computation of the 𝐿𝐸𝑆. Wolf Algorithm is one of the most common algorithms
used in calculating 𝐿𝐸𝑆. With control parameters 𝑎 = 0.0005, 𝑏 = 0.1 and
𝑥(0) = (1, 1, 1, 1)𝑇 , step (sampling time)= 0.5, observation time = 300, the 𝐿𝐸𝑆

of the proposed system are numerically found as:

𝐿𝐸1 = 0.2041,
𝐿𝐸2 = 0.0023,
𝐿𝐸3 = −0.0008,
𝐿𝐸4 = −1.2056,

∑︁
𝐿𝐸𝑆 = −1. (6)

The maximal Lyapunov exponent (MLE) of the 4D system (2) is 𝐿𝐸1 = 0.2041,
which is greater than the maximal Lyapunov of the original system (1) i.e.,
𝐿𝐸1 = 0.188. This indicates that the proposed system is highly efficient compared
to the original system (1). The corresponding Lyapunov spectrum is shown in
Fig. 4. Besides, theKaplan-Yorke dimension of the new system (2) is calculated as:

𝐷𝐿𝐸 = 𝑗 + 1��𝐿𝐸 𝑗+1
�� 𝑗∑︁
𝑖=1

𝐿𝐸𝑖 = 3 +
𝐿𝐸1 + 𝐿𝐸2 + 𝐿𝐸3

|𝐿𝐸4 |
= 3.1705

which will give a good picture of the complexity of the proposed system. It is
observed that from Eq. (6), the new system is dissipative due to

(∑︁
𝐿𝐸𝑆 = −1

)

Figure 4: Lyapunov exponents of the system (3) for 𝑎 = 0.0005, 𝑏 = 0.1
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is negative and the divergence of a matrix (4) is defined

∇𝑣 =
𝜕 ¤𝑥
𝜕𝑥

+ 𝜕 ¤𝑦
𝜕𝑦

+ 𝜕 ¤𝑧
𝜕𝑧

+ 𝜕 ¤𝑢
𝜕𝑢

= −1.

In other words, the trace of a matrix (4) as

tr (𝐽 (𝑃1)) =
4∑︁
𝑖=1

𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + 𝑎33 + 𝑎44 ⇒ tr (𝐽 (𝑃1)) = −1.

Clearly, if
∑︁

𝐿𝐸𝑆 = ∇𝑣 then our results are consistent with numerical simula-
tions (Wolf Algorithm).
Tables 3–5 give more details about computing 𝐿𝐸𝑆 with various values of

parameters and initial condition 𝑥(0) = (1, 1, 1, 1)𝑇 .

Table 3: 𝐿𝐸𝑆 of the new system for 𝑏 = 0.1 with varying the 𝑎 and 𝑥(0) = (1, 1, 1, 1)𝑇

No. 𝑎 𝐿𝐸1 𝐿𝐸2 𝐿𝐸3 𝐿𝐸4
Sign of
the 𝐿𝐸𝑆

Sum of
𝐿𝐸𝑆

Behavior

1 0.001 0.1547 0.0008 −0.0004 −1.1551 (+, 0, 0,−) −1 chaotic 2-torus
2 0.002 0.0971 0.0009 −0.0734 −1.0246 (+, 0,−,−) −0.9999 chaotic
3 0.0005 0.2041 0.0023 −0.0008 −1.2056 (+, +, 0,−) −1 hyperchaotic
4 0.0007 0.1300 0.0018 0.0001 −1.132 (+, +, 0,−) −1.0001 hyperchaotic
5 0.0009 0.1559 0.0003 −0.0008 −1.1553 (+, 0, 0,−) −0.9999 chaotic 2-torus

Table 4: 𝐿𝐸𝑆 of the new system for 𝑏 = 0.01 with varying the 𝑎 and 𝑥(0) = (1, 1, 1, 1)𝑇

No. 𝑎 𝐿𝐸1 𝐿𝐸2 𝐿𝐸3 𝐿𝐸4
Sign of
the 𝐿𝐸𝑆

Sum of
𝐿𝐸𝑆

Behavior

1 0.001 0.1008 0.0032 −0.0001 −1.1039 (+, +, 0,−) −1 hyperchaotic
2 0.0003 0.1983 0.0005 −0.0001 −1.1991 (+, 0, 0,−) −1.0001 chaotic 2-torus
3 0.0005 0.1538 −0.0001 −0.0007 −1.1529 (+, 0, 0,−) −1.0001 chaotic 2-torus
4 0.0007 0.1317 0.004 0.0005 −1.1363 (+, +, 0,−) −1.0001 hyperchaotic

It is observed from Tables 3–5, the sum of the 𝐿𝐸𝑆 is almost equal to the
divergence of the matrix (4). Also, it noticed that from Table 3 (No. 1, 5), Table 4
(No. 2, 3), Table 5 (No. 2, 3) that system (3) has two zero of 𝐿𝐸𝑆 i.e., (+, 0, 0,−)
this phenomenon is called chaotic with 2-torus and it is considered a rare case.
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Table 5: 𝐿𝐸𝑆 of the new system for 𝑎 = 0.001 with varying the 𝑏 and 𝑥(0) = (1, 1, 1, 1)𝑇

No. 𝑏 𝐿𝐸1 𝐿𝐸2 𝐿𝐸3 𝐿𝐸4
Sign of
the 𝐿𝐸𝑆

Sum of
𝐿𝐸𝑆

Behavior

1 0.5 0.1263 0.001 −0.0005 −1.1268 (+, +, 0,−) −0.9999 hyperchaotic
2 0.7 0.131 0.0001 −0.0003 −1.1309 (+, 0, 0,−) −1.0001 chaotic 2-torus
3 0.001 0.1558 0.0001 −0.0001 −1.1559 (+, 0, 0,−) −1.0001 chaotic 2-torus
4 0.01 0.1009 0.0032 −0.0001 −1.1039 (+, +, 0,−) −0.9999 hyperchaotic
5 0.03 0.1169 0.0004 −0.0024 −1.115 (+, 0,−,−) −1.0001 chaotic

3. Multistability and bifurcations with initial conditions

Using phase portrait, the coexistence ofmany attractors of the proposed system
is presented in Fig. 5, with the parameters 𝑎 = 0.5 and 𝑏 = 50 and different initial
conditions, where the red attractors are corresponding to the initial conditions (IC)
(0.1, 0.1, 0.1, 0.1), the blue attractor is corresponding to (−0.5,−0.3,−0.3,−0.3),
the green attractors is corresponding to (−0.3, 0.7, 0.5,−0.6), whereas the ma-
genta attractors are corresponding to (−0.5, 0.4, 0.4,−0.1). Figs. 6 and 7 show
the coexistence’s dynamical behavior of the new system. In addition, there are
different behaviors, although they belong to the same control parameters 𝑎 and
𝑏, which indicates the sensitivity of the initial conditions and called for this
phenomenon a bifurcation with initial conditions. So, there exist many differ-
ent self-coexisting attractors in the new system. For illustration, Fig. 8 exhibits
various attractors under the control parameters (𝑎, 𝑏) = (0.001, 0.01) and the
corresponding initial conditions are given in Table 6.

Figure 5: The attractors of a system (3) with different IC for 𝑎 = 0.5, 𝑏 = 50 in: (a) 𝑥-𝑦
plane, (b) 𝑧-𝑢 plane
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Figure 6: Coexistences of attractors of system (3) with 𝑎 = 1.5, 𝑏 = 70 and IC (1, 1, 1, 1)
for red (−3,−3,−3, 1) for blue

Figure 7: Coexistences of attractors of system (3) with different value of 𝑎, 𝑏 = 50 and
initial conditions (1, 1, 1, 1) for red (−3,−3,−3, 1) for blue in: (a) 𝑎 = 4, (b) 𝑎 = 1.3

Table 6: The corresponding initial condition of the behavior is shown in Fig. 8
at 𝑎 = 0.001, 𝑏 = 0.01

Figure Initial conditions 𝐿𝐸𝑖
Sign of
𝐿𝐸𝑆

Attractor

Fig. 8(a) (1, 1, 1, 1) (0.1008, 0.0032, 0.0001,−1.1039) (+, +, 0,−) hyperchaoticattractor

Fig. 8(b) (0.1, 0.1, 1, 1) (0.0907, 0.0007,−0.0023,−1.0892) (+, 0,−,−) chaotic
attractor

Fig. 8(c) (0.6, 0.6, 0.6, 0.65) (0.1265, 0.0006, 0.0004,−1.1275) (+, 0, 0,−)
chaotic
2-torus
attractor



48 S.F. AL-AZZAWI, M.A. AL-HAYALI

Figure 8: Self-excited attractors: (a) hyperchaotic attractors, (b) chaotic attractors,
(c) chaotic 2-torus attractors

4. Anti-synchronization

According to the anti-synchronization, a new system can be modeled to drive
and response systems and represented in Eq. (7) and Eq. (8), respectively.


¤𝑥1
¤𝑥2
¤𝑥3
¤𝑥4

 =

−1 −4 0 0
1 1 0 𝑎

1 0 0 0
0 −𝑏 0 0

︸            ︷︷            ︸
𝐴


𝑥1
𝑥2
𝑥3
𝑥4

 +

0 0 0
1 0 0
0 1 0
0 0 1




𝑥23
1

−𝑥1𝑥3

︸               ︷︷               ︸
𝑓 (𝑥)

, (7)
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¤𝑦1
¤𝑦2
¤𝑦3
¤𝑦4

 =

−1 −4 0 0
1 1 0 𝑎

1 0 0 0
0 −𝑏 0 0

︸            ︷︷            ︸
𝐵


𝑦1
𝑦2
𝑦3
𝑦4

 +

0 0 0
1 0 0
0 1 0
0 0 1




𝑦23
1

−𝑦1𝑦3

︸                ︷︷                ︸
𝑔(𝑦)

+


𝑢1
𝑢2
𝑢3
𝑢4

︸︷︷︸
𝑈

. (8)

It is clear that the matrix 𝐴 is equal to matrix 𝐵 due to the two systems being
identical and 𝑈 is the control to design. define the error dynamics for anti-
synchronization between the above systems as 𝑒𝑖 (𝑡) = 𝑦𝑖 (𝑡) − 𝑠𝑥𝑖 (𝑡), where
𝑠 = −1 is constant scaling factor and satisfied the condition (9)

lim
𝑡→∞

𝑒𝑖 (𝑡) = 0. (9)

Adding system (7) from the system (8) leads to an error dynamics system in (10)

¤𝑒1 = −𝑒1 − 4𝑒2 + 𝑢1 ,

¤𝑒2 = 𝑒1 + 𝑎𝑒4 + 𝑒23 − 2𝑥3𝑦3 + 𝑢2 ,

¤𝑒3 = 2 + 𝑒1 + 𝑢3 ,

¤𝑒4 = −𝑏𝑒2 − 𝑒1𝑒3 + 𝑥1𝑦3 + 𝑦1𝑥3 + 𝑢4 .

(10)

We design the following nonlinear controller:

𝑢1 = −𝑒3 − 36𝑒2 + 𝑒3𝑒4 ,

𝑢2 = 3𝑒1 − 𝑒2 + 2𝑥3𝑦3 ,
𝑢3 = −2 − 𝑒3 − 10𝑒2𝑒3 ,
𝑢4 = −𝑥1𝑦3 − 𝑥3𝑦1 − 𝑒4 .

(11)

Inserted controller (11) into (10) we get:

¤𝑒1 = −𝑒1 − 40𝑒2 − 𝑒3 + 𝑒3𝑒4 ,

¤𝑒2 = 4𝑒1 − 𝑒2 + 𝑎𝑒4 + 𝑒23 ,

¤𝑒3 = 𝑒1 − 𝑒3 − 10𝑒2𝑒3 ,
¤𝑒4 = −𝑏𝑒2 − 𝑒4 − 𝑒1𝑒3 .

(12)

To checkwhether the proposed control is suitable for the error system (10), we find
the characteristic equations and the corresponding eigenvalues for each equation
before and after adding the control i.e. for systems (9) and (12) respectively, and
Table 7 summarizes these results.
System (12) possesses eigenvalues with negative real parts. therefore, the

proposed controller (11) fulfilled the anti-synchronization between systems (7)
and (8).
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Table 7: The characteristic equation and roots for systems (10) and (12) with 𝑎 = 0.01
and 𝑏 = 0.1

Syst. characteristic equation 𝜆1, 𝜆2, 𝜆3, 𝜆4
Sign of
the real 𝜆𝑖

Stability

(10) 𝜆4 + 𝜆3 + (𝑎𝑏 + 4)𝜆2 + 𝑎𝑏𝜆 = 0
𝜆1 = 0
𝜆2 = −0.0002
𝜆3.4 = −0.4999±1.9367𝑖

(0,−,−,−) unstable

(12) 𝜆4+𝜆3+ (𝑎𝑏+23)𝜆2+ (2𝑎𝑏+38)𝜆
+2𝑎𝑏 + 18 = 0

𝜆1,2 = −1 ± 3.9660𝑖
𝜆3.4 = −1 ± 1.1276𝑖 (−,−,−,−) stable

According to another method, construct Lyapunov function as

𝑉 (𝑒𝑖) = 𝑒𝑇𝑖 𝑃𝑒𝑖 ⇒ 𝑉 (𝑒𝑖) =
[
𝑒1 𝑒2 𝑒3 𝑒4

] 
1
2 0 0 0
0 5 0 0
0 0 1

2 0
0 0 0 1

20

︸         ︷︷         ︸
𝑃


𝑒1
𝑒2
𝑒3
𝑒4

 (13)

and

¤𝑉 (𝑒𝑖) = 𝑒1 ¤𝑒1 + 𝑒2 ¤𝑒2 + 𝑒3 ¤𝑒3 + 𝑒4 ¤𝑒4 , (14)
¤𝑉 (𝑒) = 𝑒1 (−𝑒1 − 40𝑒2 − 𝑒3 + 𝑒3𝑒4) + 𝑒2

(
4𝑒1 − 𝑒2 + 𝑎𝑒4 + 𝑒23

)
+ 𝑒3 (𝑒1 − 𝑒3 − 10𝑒2𝑒3) + 𝑒4 (−𝑏𝑒2 − 𝑒4 − 𝑒1𝑒3) , (15)

¤𝑉 (𝑒𝑖) = −𝑒21 − 10𝑒
2
2 − 𝑒23 − 𝑒24

= −
[
𝑒1 𝑒2 𝑒3 𝑒4

] 
1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

︸         ︷︷         ︸
𝑄


𝑒1
𝑒2
𝑒3
𝑒4

 = −𝑒𝑇𝑖 𝑄𝑒𝑖 , (16)

where 𝑄 = diag(1, 10, 1, 1), yields to 𝑄 > 0. As a result, ¤𝑉 (𝑒𝑖) < 0 (negative
definite) on 𝑅4. The proposed controller (11) achieves the anti-synchronization.
Figure 9 illustrates numerically the anti-synchronization that takes place be-

tween (7) and (8) with the IC as (2, 7, 10,−5) and (10, 1, 3, 8) which confirms
the validity of the theoretical results.



COEXISTING OF SELF-EXCITED AND HIDDEN ATTRACTORS IN A NEW
4D HYPERCHAOTIC SPROTT-S SYSTEMWITH A SINGLE EQUILIBRIUM POINT 51

Figure 9: Anti-synchronization errors with controllers (11)

5. Conclusions

A novel 4D hyperchaotic system with (𝑛−2) +𝑣𝑒𝐿𝐸𝑠 is reported from the 4D
Sprott-S system.The new systemhas nine terms including single nonlinearitywith
two (bifurcation) parameters and coexistence of multi-attractors which means
it belongs to the rare system compared with other existing systems and has
maximal Lyapunov exponent. Further, several phenomena of this system have
been discovered such as chaotic and chaotic with 2-torus behaviors. Finally,
relying on the nonlinear control strategy and Lyapunov stability theory, anti-
synchronization for the proposed system is realized.
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