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Abstract: Magnetic hysteresis occurs in most electrical engineering devices once soft
ferromagnetic materials are exposed to relatively high temperatures. According to sev-
eral scientific studies, magnetic properties are strongly influenced by temperature. The
development of models that can accurately describe the thermal effect on ferromagnetic
materials is still an issue that inspires researchers. In this paper, the effect of temperature
on magnetic hysteresis for ferromagnetic materials is investigated using a self-developed
numerical method based on the Preisach distribution function identification. It employs a
parameter depending on both temperature and the Curie temperature. This approach is of
the macroscopic phenomenological type, where the variation of the magnetization (in direct
connection with the Preisach triangle) is related to the observed macroscopic hysteretic be-
havior. The isotropic character of the material medium is predominant. The technique relies
on a few experimental data extracted from the first magnetization curve provided by met-
allurgists. The ultimate goal is to provide a simple and robust magnetic behavior modeling
tool for designers of electrical devices. Temperature is introduced at the stage of identifying
the distribution function of the Preisach model. This method is validated by the agreement
between the experimental data and the simulation results. The developed method is very
accurate and efficient in modeling the hysteresis of ferromagnetic materials in engineer-
ing particularly for systems with ferromagnetic components and electromagnetic-thermal
coupling.
Key words: magnetic hysteresis, Preisach distribution function, Preisach model, soft ferro-
magnetic materials, temperature effect
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1. Introduction

Several scientific studies have showcased the very close dependence of the properties of ferro-
magnetic materials on temperature. In order to predict their behavior once integrated into electrical
devices, the development of temperature-dependent hysteresis models remains an important issue
for researchers. The two well-known models Jiles–Atherthon [1–3] and Preisach [4–15] have been
widely used in the analytical modeling of magnetic hysteresis and in the calculation of magnetic
losses in electromagnetic systems [6]. In the analytical modeling of hysteresis using the Preisach
model, most authors have determined a shape for the Preisach distribution function with which
they have associated one or more temperature dependent parameters [8, 9, 16]. The influence of
temperature has frequently been disregarded or eliminated in the numerical approach employing
the Preisach model. Among the few contributions that have attempted to take temperature into
account in the hysteresis models, we cite:

The authors of [5] have combined a Preisach operator with a temperature-dependent weight
function. Its parameters have been determined by taking into account the properties of hystere-
sis curves of ferromagnetic samples. In a more recent work [7], the parameters of the Vector
Play static hysteresis model have been modified so as to predict the thermal behavior. In [8, 9]
and [16], a critical exponent has been introduced both in the coercive field and in the saturation
magnetization, to simulate hysteresis loops at different temperatures using the Preisach model.
In [14], the authors have measured the major hysteresis loops of soft ferrite core samples at
different temperatures and have concluded that the saturation points are temperature-dependent
in a nonlinear manner. Furthermore, the results have revealed that in the operating temperature
range, typically 20◦C–100◦C, the variation can be considered linear with an extremely low error.
They have proposed a new method based on this approximation to obtain limiting hysteresis
loops. The authors of [15] have developed a model based on two temperature-dependent param-
eters: a behavioral coefficient and a static function which have determined at a temperature value
that corresponds to minimum loss. To describe the influence of temperature on the magnetic
characteristics of ferrite samples, each parameter has been studied separately.

This work is distinguished by the introduction of the temperature effect at the stage of
the distribution function identification which is the essence of the Preisach model formulation
[4, 10, 13]. It should be noted that a self-developed numerical method of Preisach distribution
function identification [12] is used.

2. Classical static Preisach model

According to the Preisach model [10], the magnetic field 𝐻 (𝑡) and magnetization 𝑀 (𝑡) are
related by:

𝑀 (𝑡) =
∬
𝛼≥𝛽

𝜈(𝛼, 𝛽), 𝑅𝛼,𝛽

[
𝐻 (𝑡)

]
d𝛼d𝛽, (1)

where 𝜈(𝛼, 𝛽) is the Preisach density function:

𝜈(𝛼, 𝛽) ≥ 0. (2)
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At any instant 𝑡 (Fig. 1), e.g. (1) can be written [10, 12]:

𝑀 (𝑡) =
∬

𝑆+ (𝑡)

𝜈(𝛼, 𝛽) d𝛼d𝛽 −
∬

𝑆− (𝑡)

𝜈(𝛼, 𝛽) d𝛼d𝛽. (3)

The identification of the distribution function is a crucial step in modelling hysteresis with
the Preisach model. In the specialized literature, there are two approaches to identify the Preisach
distribution function: the analytical approach and the numerical one. Briefly, we will explain the
link between the (𝐻, 𝑀) curve and the Preisach triangle [10, 12, 13].

Increasing the excitation from (−𝐻𝑠) to (𝐻1), we obtain the part of the magnetization curve
that corresponds to (𝑀 (−𝐻𝑠), 𝑀 (𝐻1)) with 𝑀 (𝐻1) = 𝑀𝛼1 (Fig. 1(a)). When the excitation is
decreased to the value (𝐻2 = 𝛽1), we obtain the part of the magnetization curve corresponding
to the value (𝑀𝛼1𝛽1) (Fig. 1(b)). The triangle cell 𝑇 (𝛼1, 𝛽1) appears (Fig. 1(b)), it corresponds
to the variation in the magnetization between the two different states (𝛼1 = 𝐻1, 𝑀𝛼1) and
(𝛽1 = 𝐻2, 𝑀𝛼1𝛽1) and given by [10, 12]:

Δ𝑀 =
(
𝑀𝛼1 − 𝑀𝛼1𝛽1

)
= 2

∬
𝑇 (𝛼1,𝛽1)

𝜈(𝛼, 𝛽)d𝛼d𝛽. (4)

(a) (b)

Fig. 1. An increase and a decrease of the magnetic field in the (𝐻, 𝑀)-plane as well as their geometrical
representations in the Preisach plane (respectively, Fig. 1(a) and Fig. 1(b)), the variation of the magnetization

is represented by the triangle 𝑇 (𝛼1, 𝛽1), Fig. 1(b)

Equation (4) constitutes a bijective relationship between the discretization of the Preisach
triangle (the right-hand side of e.g. (4)) and magnetization variation (the left-hand side of e.g.
(4)). Also, it should be noted that each cell of the discretized Preisach triangle provides information
about numerical value of the Preisach density function [12].
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3. Numerical Preisach density function identification including
temperature effects

Considering the non-linearity of the magnetic hysteresis cycle and its established dependence
on temperature [4, 9, 10]. When T increases to the Curie temperature Tc, 𝑀𝑠 decreases to zero
and the ferromagnetic material changes to paramagnetic [8]. In publications dealing with the
analytical modeling of the magnetic hysteresis using the Preisach model, authors selected a
shape for the distribution function and also a temperature-dependent parameter which was a
continuous function of temperature 𝑇 [3,8,9] and [16]. In this study and in order to determine an
optimal temperature-dependent parameter, several numerical simulations with different shapes
of this parameter were carried out. Finally, we opted for two of them noted 𝛽(𝑇) and 𝜃 (𝑇), taken
respectively from [8] and [16], whose results are in agreement with available experimental data
(Fig. 2).
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Fig. 2. Effects of the two temperature-dependent parameters 𝛽(𝑇) and 𝜃 (𝑇) [8, 16]
on the saturation magnetization (Ms) compared to experimental data [16]

Figure 2 shows a comparison of Ms(𝑇) given by the two temperature-dependent parameters
𝛽(𝑇) and 𝜃 (𝑇) for different temperatures with experimental data [16]. It appears that parameter
𝜃 (𝑇) gives better results. This explains our choice, the parameter 𝜃 (𝑇) given by:

𝜃 (𝑇) =
(
1 − exp

(
(𝑇 − 𝑇𝑐)

𝜏

))
. (5)

First, we will recall the main steps of the numerical identification technique. In the identifica-
tion process, the following assumptions were considered:

i – Uniformity of the density function per cell of the discretized Preisach triangle.
ii – Symmetry of the density function with respect to the line (𝛼 = −𝛽) in the Preisach

triangle.
For the development of our temperature-dependent numerical identification method, we con-

sider (𝑝) experimental points [(𝐻𝑖 , 𝑀𝑖), 𝑖 = 1, 𝑝] extracted from a given experimental first
magnetization curve with a constant spacing Δ𝐻 e.g. (6) as well as their symmetrical with respect
to (𝐻, 𝑀)-plane origin [12].

Δ𝐻 = 𝐻𝑖+1 − 𝐻𝑖 . (6)
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The magnetization is given as a function of temperature by:

𝑀𝑇
𝑖 = 𝜃 (𝑇) · 𝑀𝑖 , 𝑖 = 1, 𝑝. (7)

We create (𝑝2) “created points” noted (𝐻∗
𝑖 𝑗

, 𝑀∗𝑇
𝑖 𝑗

) which we arrange in the (𝐻, 𝑀)-plane by
considering: { −𝐻𝑠 < 𝐻∗

𝑖 𝑗 < +𝐻𝑠

−𝑀𝑇
𝑠 < 𝑀∗𝑇

𝑖 𝑗 < 𝑀𝑇
fmc (𝐻)

. (8)

𝑀𝑇
fmc (𝐻) is the experimental first magnetization curve affected by temperature 𝑇 , e.g. (7),

and its symmetrical part with respect to the (𝐻, 𝑀)-plane origin. 𝐻𝑠 is the value of the excitation
corresponding to the saturation magnetization 𝑀𝑇

𝑠 affected by temperature 𝑇 .
Created points are arranged in the (𝐻, 𝑀)-plane following the procedure [12, 13]:
a. Horizontal positioning of created points:
For a 𝑘-th experimental point (𝐻𝑘 , 𝑀

𝑇
𝑘
), we create [

(
𝐻∗

𝑘 𝑗
, 𝑀∗𝑇

𝑘 𝑗

)
, 𝑗 = 1, 2𝑘 − 1] points that

we arrange in the (𝐻, 𝑀)-plane limited by the lines (𝐻 = 𝐻𝑘 ) and (𝐻 = −𝐻𝑘 ) with constant
spacing Δ𝐻∗, e.g. (9): {−𝐻𝑘 < 𝐻∗

𝑘 𝑗 < +𝐻𝑘

Δ𝐻∗ = 𝐻∗
𝑘 𝑗+1 − 𝐻∗

𝑘 𝑗

. (9)

b. Vertical positioning of created points:
Magnetization value 𝑀∗𝑇

𝑘 𝑗
is determined by considering a quantity noted 𝛿𝑀𝑇

𝑘
defined below

e.g. (11) and which represents the magnetization variation between two successive experimental
points. Factor 𝜆 [12] enables vertical positioning of the created point (𝐻∗

𝑘 𝑗
𝑀∗𝑇

𝑘 𝑗
). After arranging

all points in the (𝐻, 𝑀)-plane using (4) and considering the assumptions (i) and (ii), only 𝑝(𝑝+1)
cells in the discretized Preisach triangle are finally considered. For more precision, we develop
the procedure by considering a single experimental point (Fig. 3):

Fig. 3. An experimental curve of first magnetization and
its symmetrical with respect to the origin. The single
experimental point (𝐻1, 𝑀

𝑇
1 ) considered, its symmetric

(−𝐻1 − 𝑀𝑇
1 ) and the created point (𝐻∗

11𝑀
∗𝑇
11 ) in the

plane (𝐻, 𝑀)



302 L. Chelghoum Arch. Elect. Eng.

The figure above (Fig. 3) is a schematic representation of the method for a single experimental
point extracted from an experimental first magnetization curve. The scheme shows the first
magnetization curve (solid line) as well as its symmetrical part with respect to the origin (dashed
line). It also shows the link between the variations of the magnetization (Δ𝑀 (1)

(1) , Δ𝑀
(1)
(2) ) and the

construction of the Preisach discretized triangle (cells: 𝐶(1,1) , 𝐶(1,2) ).
For one experimental point (𝐻1, 𝑀

𝑇
1 ) and its symmetrical (−𝐻1,−𝑀𝑇

1 ) and in order to
identify the unknown content of the cell 𝐶(1,1) , we use a created point (𝐻∗

11, 𝑀
∗𝑇
11 ) arranged

vertically and defined by (Fig. 3): {
−𝑀𝑇

1 < 𝑀∗𝑇
11 < 𝑀𝑇

1

𝐻∗
11 = 0

. (10)

𝑀∗𝑇
11 is determined using the quantity 𝛿𝑀𝑇

1 , e.g. (11), and the factor 𝜆 which is used for the
positioning of the created point (𝐻∗

11, 𝑀
∗𝑇
11 ) with respect to the considered experimental point

(−𝐻1,−𝑀𝑇
1 ) and the origin of the plane (𝐻, 𝑀) noted (𝐻0, 𝑀

𝑇
0 ), (Fig. 3):{

𝛿𝑀𝑇
1 = −𝑀𝑇

1 − (−𝑀𝑇
0 )

𝑀∗𝑇
11 = 𝑀𝑇

0 − 𝜆𝛿𝑀𝑇
1

. (11)

As the magnetization variation between −𝑀𝑇
1 and 𝑀∗𝑇

11 involves only the cell 𝐶(1,1) (Fig. 3)
and by using e.g. (4), we obtain:


Δ𝑀1

1 = 𝑀∗𝑇
11 − (−𝑀𝑇

1 )

Δ𝑀1
1 = 2

∬
𝐶(1,1)

𝜈(𝛼, 𝛽) d𝛼d𝛽 = 2𝜈11
. (12)

The value of the distribution function corresponding to the cell 𝐶(1,2) (Fig. 3) can be deter-
mined by: 

Δ𝑀1
2 = (+𝑀𝑇

1 ) − 𝑀∗𝑇
11

Δ𝑀1
2 = 2

∬
𝐶(1,1)+𝐶(1,2)

𝜈(𝛼, 𝛽) d𝛼d𝛽 = 2(𝜈11 + 𝜈12)

Δ𝑀1
2 = 2𝜈12 + Δ𝑀1

1

. (13)

The numerical solution of the previous system of equations, e.g. (13), gives the discrete values
𝜈11 and 𝜈12. With the same technique, we can generalize by considering the 𝑘-th experimental
point of a cloud of p points: 𝛿𝑀𝑇

𝑘
represents the magnetization variations between two successive

experimental points, e.g. (14):
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

𝛿𝑀𝑇
𝑘 = −𝑀𝑇

𝑘 − (−𝑀𝑇
𝑘−1)

𝑀∗𝑇
𝑘1 = −𝑀𝑇

𝑘−1 − 𝜆𝛿𝑀𝑇
𝑘−1

𝑀∗𝑇
𝑘2 = −𝑀∗𝑇

𝑘−1 𝑗 − 𝜆𝛿𝑀𝑇
𝑘−1

𝑀∗𝑇
𝑘3 = −𝑀∗𝑇

𝑘−1 𝑗 − 𝜆𝛿𝑀𝑇
𝑘−1 𝑗 = 1: 2𝑘−3

. . . . . . . . .

𝑀∗𝑇
𝑘2𝑘−2 = −𝑀∗𝑇

𝑘−1 𝑗 − 𝜆𝛿𝑀𝑇
𝑘−1

𝑀∗𝑇
𝑘2𝑘−1 = +𝑀𝑇

𝑘−1 − 𝜆𝛿𝑀𝑇
𝑘−1

. (14)

Using e.g. (4), we obtain an algebraic system of equations e.g. (15) whose unknowns are the
discrete values of the density function 𝜈𝑖 𝑗 :

Δ𝑀
(𝑘)
(1) = 𝑀∗𝑇

𝑘1 − (−𝑀𝑇
𝑘 ) = 2𝑣𝑘𝑘

Δ𝑀
(𝑘)
(2) = 𝑀∗𝑇

𝑘2 − 𝑀∗𝑇
𝑘1 = 2𝑣𝑘𝑘+1 + Δ𝑀

(𝑘−1)
(1)

Δ𝑀
(𝑘)
(3) = 𝑀∗𝑇

𝑘3 − 𝑀∗𝑇
𝑘2 = 2𝑣𝑘𝑘+2 + Δ𝑀

(𝑘−1)
(2)

. . . . . . . . .

Δ𝑀
(𝑘)
(2−1) = 𝑀∗𝑇

𝑘 𝑗 − 𝑀∗𝑇
𝑘 𝑗−1 = 2𝑣𝑘ℎ−1 + Δ𝑀

(𝑘−1)
(𝑘+1) 𝑗 = 1: 2𝑘−3, ℎ = 𝑘 : 3𝑘−1

Δ𝑀
(𝑘)
(2𝑘) = (𝑀𝑇

𝑘 ) − 𝑀∗𝑇
3 𝑗 = 2𝑣𝑘ℎ + 2

3𝑘−2∑︁
𝑛=3

𝑣𝑘𝑛

. (15)

It should be noted that for (𝑝) experimental points, we obtain a system of 𝑝(𝑝 + 1) algebraic
equations and 𝑝(2𝑝 + 1) cells of the dicretized Preisach triangle.

4. Numerical results

We validated our numerical method by comparing experimental hysteresis cycles at various
temperatures [18, 19] with others obtained numerically.

The figures above (Fig. 4(a) and Fig. 4(b)) show comparisons between simulated and experi-
mental hysteresis cycles for ferromagnetic materials 3F45 [18] and Permalloy FeNi 78% [19] at
different temperatures.

In the figure (Fig. 4(a)) which shows the variation of the hysteresis cycle with increasing
temperature for 3F45 ferrite, the sudden drop in the coercive field is explained by:

3F45 ferrite has a low coercive field and a low Curie temperature, at temperature values close
to the Curie temperature (300◦C), the material tends to lose its magnetic properties rapidly in
a small temperature range. This explains the sudden drop in the coercive field observed in the
representation (Fig. 4(a)). In addition, a significant decrease of the saturation induction field is
also observed. This phenomenon continues until the curve flattens out completely and the coercive
field disappears. These remarks are in perfect agreement with the experimental observations.

Permalloy 78 (FeNi 78%) (Fig. 4(b)) has a very high permeability and a Curie temperature
(between 360◦C and 460◦C). These characteristics mean that Permalloy 78 takes a long time to



304 L. Chelghoum Arch. Elect. Eng.

-400 -300 -200 -100 0 100 200 300 400

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Magnetic Field (A/m)

Fl
ux

 D
en

si
ty

 (T
)

T=120°C

T=200°C

T=25°C

(a)

-30 -20 -10 0 10 20 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Magnetic Field (A/m)

Fl
ux

 D
en

si
ty

 (T
)

T=25°C
T=120°C

T=200°C

(b)

Fig. 4. Hysteresis cycles at different temperatures. Full lines with markers – measured
values, dotted lines – simulated values generated by the proposed method: 3F45 ferro-

magnetic material (a); FeNi 78% ferromagnetic material (b)

lose its magnetization, which explains why the coercive field decreases but very slowly. In the
literature [18], loss of 0.01 (A/m) per 100◦C [18]. Also, it is observed that the hysteresis cycles
tend to “redress” with the increasing of temperature. The coercive field as well as the saturation
magnetization slowly decreases with increasing temperature.

The Figures below show the numerical Preisach distribution functions obtained for the 3F45
material (Fig. 5 and Fig. 6) and FeNi 78% material (Fig. 7 and Fig. 8) at temperatures 25◦C,
120◦C and 200◦C.

It can be observed that the intensity of the distribution function decreases significantly with
the increase of temperature. For 3F45 material (Fig. 5 and Fig. 6), this intensity decreases from
the value 0.07 to the value 0.04 and for FeNi 78% (Fig. 7 and Fig. 8) it decreases from value 0.2
to value 0.12.

As the Curie temperature is approached, the Preisach distribution functions begin to disappear
with the magnetic properties of the material and the hysteresis cycles become flatter.

Subsequently, the developed method was used to characterize the influence of temperature on
hysterical behavior of selected ferromagnetic materials at different temperatures. The materials
considered are FeSiHiB (GO) (Tc = 750◦C), FeSi 6.5% (Tc = 690◦C) and FeSi NO (Tc = 735◦C).
Their magnetic properties were taken from [17, 20]. We have chosen these three iron-silicon al-
loys because they belong to the same class. The grain structures vary due to the different manu-
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Fig. 5. Numerical Preisach distribution function generated by the numerical method
for 3F45 [18] material: at 25◦C (a); at 120◦C (b)
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Fig. 6. Numerical Preisach distribution function generated by the numerical method
for 3F45 [18] material at 200◦C

facturing processes and the heat treatments. Non-grain oriented (NO) FeSi sheets are produced
by hot rolling and cold rolling followed by annealing. Grain oriented (GO) sheets are hot rolled
once and cold rolled twice and annealed. They have a well-known Goss texture which privileges
the rolling direction as the axis of easy magnetization. The NO sheets are substantially isotropic
in the plane, and the GO sheets are anisotropic in the rolling axis. The assumption of isotropy is
reasonable for both FeSi 6.5% and FeSi GO materials and it is less so for FeSi NO material.
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Fig. 7. Numerical Preisach distribution function generated by the numerical method
for FeNi 78% [19] material: at 25◦C (a); at 120◦C (b)
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Fig. 8. Numerical Preisach distribution function generated by the numerical method
for FeNi 78% [19] material at 200◦C

The above curves (Fig. 9(a) and Fig. 9(b)) show the effect of temperature on the hysteresis
cycles of materials FeSiHiB and FeSi 6.5%. It can be seen that the initial shape of these cycles
is relatively straight, indicating that these materials have a high permeability. As the tempera-
ture increases, the induction and coercive field gradually decrease and disappear as the Curie
temperature is reached.



Vol. 71 (2022) Numerical identification of Preisach distribution function including temperature effects 307

-200 -150 -100 -50 0 50 100 150 200-2

-1

0

1

2

Magnetic Field (A/m)

Fl
ux

 D
en

si
ty

 (T
)

T=25°C

25 °C
250 °C
450 °C
550 °C
650 °C

(a)

-250 -200 -150 -100 -50 0 50 100 150 200 250-1.5

-1

-0.5

0

0.5

1

1.5

Magnetic Field (A/m)

Fl
ux

 D
en

si
ty

 (T
)

25 °C
150 °C
250 °C
350 °C
450 °C
500 °C

T=25°C

(b)

Fig. 9. Variation of simulated hysteresis cycle with temperature: FeSiHiB material (a);
FeSi 6.5% material (b)

The curve (Fig. 10) shows a very meaningful decrease in the induction of saturation and
in the coercive field with temperature increase. Hysteresis losses are affected because they are
proportional to the cycle area. All these observations are in agreement with results published
in the specialized literature. Overall, numerical simulations reproduce perfectly all the physical
phenomena experimentally observed and related to magnetic hysteresis.
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Fig. 10. Variation of simulated hysteresis cycle with temperature for material FeSi NO
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5. Conclusions

In this work, we present a numerical method for identifying the Preisach distribution function
by considering the effect of temperature and using a self-developed numerical method. The pro-
posed approach is of the macroscopic phenomenological type: relationship between the variation
of magnetization and the observed global hysteretic behavior. The study focuses on isotropic
ferromagnetic materials, but it has the potential to be extended to other types of magnetic mate-
rials with anisotropy considerations in the future. The implementation of the developed method
requires only a few experimental data points extracted from the first magnetization curve provided
by metallurgists. It’s a robust tool for simulating hysteresis including the effect of temperature
and is intended for use by electrical equipment designers.
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