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Bridge crane is exposed to dynamic loads during its non-stationary operations
(acceleration and braking). Analyzing these operations, one can determine unknown
impacts on the dynamic behavior of bridge crane. These impacts are taken into consid-
eration using selected coefficients inside the dynamic model. Dynamic modelling of
a bridge crane in vertical plane is performed in the operation of the hoist mechanism.
The dynamic model is obtained using data from a real bridge crane system. Two cases
have been analyzed: acceleration of a load freely suspended on the rope when it is
lifted and acceleration of a load during the lowering process. Physical quantities that
are most important for this research are the values of stress and deformation of main
girders. Size of deformation at the middle point of the main crane girder is monitored
and analyzed for the above-mentioned two cases. Using the values of maximum de-
formation, one also obtains maximum stress values in the supporting construction of
the crane.

1. Introduction

Modern cranes need to have very high technical properties and economic pa-
rameters. They must be designed to sustain frequent changes of working regimes
like any other machines which produce dynamic movement [1]. During this dy-
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namic working regimes, significant dynamic effects appears. Working time of a
crane consists of stationary and non-stationary periods of motion. Non-stationary
motion regime causes the occurrence of variable loads on the mechanisms and the
supporting crane construction. Dynamic analysis needs to be done during crane
design process with the aim of analyzing stress and deformation conditions of
crane mechanism elements and the supporting structures. Numerous theoretical
and experimental researches of dynamics behavior of bridge crane have shown that
critical dynamic states occur during load lifting or load lowering [2—4]. Dynamic
behavior of large scale machines is in the focus of research in the last decade [, 6].

Extensive research is carried out to develop strategies for vibration damp-
ing [7]. The influence of the restraints type and changing the loading force position
on the generated Huber-Misses stress in the gantry crane beam was estimated in
paper [8]. In papers [9] and [10], deflection values occurring in the main girder
of a portal crane at various payloads were investigated theoretically, numerically
and experimentally. The object of the study in paper [11] was the angle of devi-
ation of the crane from the perpendicular to the rails in a horizontal plane. The
aim of the work was to develop a mathematical model of the crane’s bridge beam
misalignment. The model has been created in the Matlab Simulink. Based on the
resulting model, one implemented a control system that compensates for the emerg-
ing misalignment by speeding up or slowing down the crane drives. The modeling
procedure for a flexible knuckle boom crane actuated by hydraulic cylinders and
modeled as a planar multibody system, is presented in paper [12]. Paper [13] con-
cerns the analysis of the load motion, taking into account wind pressure and the
deformation of the rope system. From the above-mentioned papers one can see that
this area of research is in the focus researchers’ interest today. The modeling of
crane element interconnections in a dynamic calculation is very complex, and it is
often not necessary, since not all the factors have the same influence on dynamic
loads. Consequently, during mathematical modeling, all the factors that are not
essential for the calculations can be ignored [14]. The most important parameters
are: the number of concentrated masses, their arrangement along the supporting
construction elements, the stiffness of supporting elements and structures and the
possibility of their change, the dependence of drive and braking force of the driv-
ing mechanisms on time, the speeds and motor revolution frequencies, dimming of
oscillation in crane structure and its elements, etc. In each particular case, some of
the above-mentioned parameters will have a major impact, and some of them can
be ignored.

Bridge cranes are characterized by a special arrangement of individual as-
semblies (characterized by their respective mass, stiffness and damping). From a
dynamic analysis point of view, it can be stated that a crane has an unlimited num-
ber of degrees of freedom. The crane mechanisms, as well as the elastic supporting
construction, make a complex oscillatory system subjected to oscillatory motion
in a vertical plane. Any change in system parameters directly affects dynamic be-
havior of the system. Most of the research in the last years have been focused
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on investigating the laws of driving forces change, the elasticity of supporting
construction of the crane in a vertical plane and the methods of its discretiza-
tion [15]. In addition, the problems of damping of elastic oscillation of the rope
and supporting structures and elements of the drive mechanism are investigated.
Two basic types of mathematical models are used to describe dynamic behavior
of bridge cranes: the discrete models, where a continuously distributed mass of
load-bearing structure is discretized into a certain number of concentrated masses,
and the discrete-continuous ones, where load-bearing structure is represented by
its own structural characteristics.

A dynamic model with three degrees of freedom describing dynamic behavior
of a bridge crane first appeared in [16]. After that it has been used by other authors
in their research, i.e., [17-21]. All of these researches have been based on a dynamic
model whose general form is shown in Fig. 2, which includes all relevant dynamic
parameters. The dynamic model in [19] was analyzed in the case of load lifting
from the substrate, while in [17] and [18] it was analyzed in the case of lowering
a load on an elastic support. However, in these two papers, the damping effects of
supporting structure and rope are neglected. The driving forces are expressed in the
function of time, according to a linear law. The dynamic model in [18] was analyzed
considering damping properties of the substrate. The same dynamic model is used
in this paper, however, some modifications have been made. The mentioned modifi-
cations are: the stiffness of lifting rope is considered as a constant value, additional
crane trolley modes of operation are taken in consideration, most unfavorable cases
are selected taking into account the dynamic loads in the supporting structure , and
damping effects in the lifting rope and the crane supporting structure are taken in
consideration. These modifications make the dynamic model more accurate. The
driving force is assumed as a quadratic function and the braking force as a constant
value. The mathematical model has been developed using the energy method.

2. Parameters of the dynamic model

The dynamic model is developed according to [19] with the above-mentioned
modifications. Dimensions and other parameters for the crane selected as the case
study are taken from [22] and [23] with an additional parameter of rope diameter,
which is 4 mm. The schematic of bridge crane system is shown in Fig. 1 and the
dynamic model in Fig. 2.

The analyzed dynamic model has three degrees of freedom, as follows: g
a generalized coordinate that describes oscillation of the reduced mass of the
supporting crane construction; ¢, a generalized coordinate that describes oscillation
of the load in rope direction; g3 a generalized coordinate describing displacement
of the reduced mass of the lift mechanism. The parameters of dynamic model from
Fig. 2 representing the magnitude of concentrated masses are: the discretized mass
of supporting structure mi, the load weight m; and the mass of lifting mechanisms
reduced to rope direction ms3.
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trolley with load

Fig. 1. Schematic representation of crane system
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Fig. 2. Dynamic model of bridge crane in acceleration period during load lifting

Consequently, the supporting structure of the bridge crane is represented by
a single concentrated mass which is reduced to the point of load suspension. The
mass of the trolley is also added to the mass of the supporting structure. The
value of the reduced mass of the supporting crane construction is accepted by
most authors as being equal to a half of the total mass of the crane carrier. This
method of mass reduction is based on experimental studies of dynamic behavior
of cranes. For bridge cranes, the first form of oscillation is the most important one.
The second form of oscillation is characterized by small amplitudes. The higher
forms of oscillation cannot be observed. The coordinate ¢, describes oscillation
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of the reduced mass of the supporting crane construction. The reduced load mass
in papers [22-24] is presented as a single concentrated mass whose size is equal
to the rated load capacity. The coordinate g, describes oscillation of the load in
rope direction. The lift mechanism in papers [22-25] is presented in the form
of a single concentrated mass reduced to a translational load displacement. The
coordinate g3 describes displacement of the reduced mass of the lift mechanism.
Considering the prevalence of the first oscillation forms for the bridge crane which
oscillates in vertical plane, the mass m, which is reduced to the hanging point, can
be determined from the equation:

mp; = 0.493mnk + Mol , (1)

where: myy is the total mass of the main carrier and the crane cabin, myg is the
mass of the crane trolley.

The mass (load) is reduced to rope direction and is represented as a concen-
trated mass my whose value is equal to the nominal load capacity. The load lifting
mechanism is presented with a concentrated mass ms reduced to the translational
displacement of load. Determination of the stiffness coefficient of the supporting
construction is directly related to the number and position of concentrated masses
for which the elastic structure is discretized. For this dynamic model, the stiff-
ness coeflicient of the supporting construction can be determined according to the
equation:

48E1
=5

2)

where: E[ is the bending stiffness of crane girder in vertical plane, L is the span of
bridge crane.

The value of load rope stiffness is one of fundamental dynamics parameters
when analyzing dynamics behavior of cranes, and according to the recommen-
dations of the literature [16, 19] the stiffness of ropes can be considered as a
constant value, especially for the case of determining the maximum dynamics of
crane. The value of rope stiffness for lifting can be determined according to the
equation [22, 23]:

E A,
L, ’

Cue = (3)
where: E, is the elasticity modulus of the rope, it is considered as a constant, A,
is the cross-sectional area of the rope and L,, is the length of rope at the beginning
of lifting.

The damping value is also a significant dynamic parameter for dynamic anal-
ysis of cranes. The intensity of attenuation can be determined from logarithmic
decimation of low-frequency oscillations of crane load due to the fact that oscilla-
tions at the second frequency are damped considerably faster than the oscillation
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at the first frequency. The oscillation coefficient of the oscillating supporting con-
struction can be determined according to the following equation:

by = miovVcey/m
7T b

4
where: my, c; is the reduced mass and stiffness of the main girder, respectively, ¢
is the logarithmic oscillation decay of crane bridge without load at the position of
trolley. The winch is placed in the middle of the bridge span.

The dynamics behavior of the crane is influenced by the dynamic behavior of
its driving mechanisms, which depends on the characteristics of engine and brakes
which are usually given in the form of moments or forces described as aperiodic
functions of time.

The driving force can be determined according to equation (5), and the braking
force according to equation (6) [22]]:

Fp=Q+de(1—;—22), &)
Fe = %k ©)
where:
tin = ZAMD% (7)
M= S 555 ®
My = Qg d mq;;‘:tl)d + 1.1—J1”962i5”;’7’", ©)

T, t is the acceleration and breaking time, respectively, D is the rope winding drum
diameter, Q is the load capacity of crane, m, is the load weight, vg;, is the lifting
speed, iy is the elevators’ transmission ratio for load lifting, nep, is the frequency
of rotation of the electric motor for lifting, J; is the moment of inertia of rotating
masses of the lifting mechanism, i,, is the gear ratio of the lift mechanism gearbox,
nm is the degree of utilization of the lift mechanism gearbox.

3. Mathematical model for acceleration in the case of load lifting

In the analyzed dynamic model from Fig. 2, the load at the start of lifting mech-
anism is at a certain height and is on standby. The supporting crane construction is
deformed and is in a position around which it will oscillate in the non-stationary
work regime.
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Also, the load lifting rope, at that initial moment, is deformed, or elongated by
the length of static deformation f;.

The generalized coordinates ¢; (i = 1, 2, 3) describe possible displacements
of the concentrated mass. The concentrated mass system acts as a force F), in the
direction of rope to lift the load and represents the driving force of the lifting
mechanism electric motor. Using the energy method (Lagrange equation) one can
describe dynamic behavior of a bridge crane in non-stationary work regime of
lifting mechanism. In a general form, it has the form of equation [22]:

d (0F OE 0 OE
a( ")— Lrfi S Lo, (10)

04i 0qi " 04i " dq;
where: Ey is the kinetic energy of the system as a function of generalized coor-
dinates and velocities, E, is the potential energy of the system as a function of
generalized coordinates, @ is the function of dissipation of the system as a function
of generalized velocities, g;, ¢; are generalized coordinates and speed, respectively,
and Q; is the non-potential force.

It is important to note that oscillations in this system have small amplitudes,
and can be analyzed by applying the theory of small oscillations. Therefore, kinetic
and potential energy of the system should be calculated with an accuracy to a small
second order [26]. Kinetic energy of the system can be determined according to
equation [22]:

3
1
Ex = EZmiviz. (11)

Velocities of the concentrated mass of the system are represented by the equation:

VI =d1,
V=41 +q¢ g3, (12)
V3i=q3—4qi.

Adding the value v; from equation (12) to equation (11) and performing ele-
mental transformations, one obtains final equation for kinetic energy of the given
system as:

(my + mp + m3) q% + mzqg +
Ex=5| (m+ms)d3+2maiga= |- (13)
2 (my +m3) q1g3 — 2magaq3

Potential energy of the system (14) consists of three components, potential
energy of the supporting structure (15), potential energy of the lifting rope (16)
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and potential energy of the load (17) [22].

— t 1
E,=EY + EX + E¥, (14)
1 1
Eyf = {q) lellg} = Serai, (15)
1
EII; = Ecue (q2 + fst)z, (16)
E;" =mog (y2 - H +1), (17)

where: [c] is the stiffness matrix of the supporting structure, {g} is the vector of
generalized coordinates, ¢y is the equivalent stiffness of ropes for lifting loads, H
is the lifting height, and [ is the initial rope length.

In order to determine potential load energy (17), we use the vertical crane
planar diagram shown in Fig. 3.

A S —

H

——

D =

Fig. 3. Scheme of bridge crane in vertical plane

The size y, is determined by equation (18), and the size BC with equation
(19) [22]:

y2=H-q -BC-q, (18)
BC=1-g¢;. (19)

When the values from equation (18) and (19) are substituted into equation
(17), the final equation for potential energy of load (20) is obtained. Using equation
(20), (15) and (16) one gets the final equation for potential energy of the whole
system (21).

Ey =myg (—q1 — g2+ q3), (20)

1 I
Ep = 50107 + 5w (63 +2fata + f3) +mg (~a @2+ q3). Q1)
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The dissipation function can be determined according to equation (22), in
which b, is defined by the rope damping coefficient.

R P Lo Lo b Of ¢
¢ == {q} [B]{C]}—z{éh ‘“}[0 bz}{q'z}

(b1q12 + bzqg) . (22)

N = N =

The generalized non-potential force Q3 = F), also acts on the system, and its
intensity is defined by equation (5).

Finally, in accordance with equation (10), one can formulate the differential
motion equation for the whole system of the dynamic model shown in Fig. 2 as
(23). This differential equation describes dynamic behavior of the bridge crane in
vertical plane during non-stationary work regime of the lifting mechanism.

(m1 +mo +m3) g1 + mago — (my +m3) Gz + big1 + c1q1 —mpg =0,

Moy + modo — mords + brgo + ¢ =0,
241 242 293 242 ueq?2 23)

i} i} 3 r
— (ma + m3) g1 — magp + (my + m3) Gz + mag = Q + Fain (1 - ﬁ)
The equation system (23) can be solved by numerical methods taking into
account the initial conditions, which are, for the case analyzed, represented by
equation (24):
q1(0) = qise; q2(0) = 0;
¢3(0)=0;  ¢(0) =0,

The system of differential equations (23) was solved using the software specially
developed by the authors of this paper. To solve the system of differential equations,
one used the Runge—Kutta fourth-order method (RK4). The Fortran programming
language was used. The obtained results have also been confirmed using the Wol-
fram Mathematica software package.

(24)

4. Mathematical model of bridge crane for braking mode
during lowering the load

The dynamic model which is considered for the case of non-stationary work
regime of lifting mechanism is shown in Fig. 4. Using the same methodology as
described in Section 3, the following equations are formed here: kinetic energy
of the system (25), potential energy of the system (26), as well as the function
of dispersion (22). The external force of the stimulus acting on the system is a
generalized non-potential force Q3 = —Fy. Its value is determined by equation (6).
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|m,

9

c == b,

1 m,

9
Fig. 4. Dynamic model of a bridge crane for load lowering process

) )
(my + my + m3) g7 + mag;

Ey = 31+ (my + m3) 43 +2magidn | (25)
=2 (my + m3) 4143 + 2maqoq;3
1 1
E, = Ecqu + 5 (g2 + )2 +mag (~q1 — ¢ — q3) (26)

In the considered case of non-stationary work regime of the load lifting mech-
anism, the differential equations are represented by equation (27):
(my +my + m3) gy + mago + (ma + m3) Gz + big1 + c1q1 —mag =0,
magy + mago + mags + bagn + cueq2 =0, (27)
(ma + m3) g1 + magp + (my + m3) Gz = mag — Fi .
The initial conditions necessary for solving the differential equation systems
(14) are given by equation (15):
¢1(0) = qisc; q2(0) =0; g3(0) = 0;
q1(0)=0;  q2(0) =0; ¢3(0) = vaiz .
Also, the system of differential equations (10), and the system (14) were solved
using the software specially developed by the authors of this paper. The initial values
of generalized coordinates g for acceleration and braking periods represent the

size of deformation of the supporting construction of the bridge crane due to its
own weight and nominal load.

(28)
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5. Results

The bridge crane parameters shown in Fig. 1a, which are necessary to solve the
differential equations (23) and (27), are listed in Table 1. The change in deformation
size of the main thrust girder center, and the change of generalized coordinates ¢,
in the acceleration case for load lifting process, are shown in Fig. 5, while the
change in the size g, for braking during the load lowering process is shown in
Fig. 6.

Table 1. Bridge crane parameters

m [kg] my [kg] m3 [kg]
Acceleration Braking
75 250
4150 2980
H [m] [ [m] 0 [kN] Fiin [kN]
2 1.5 2.5 1
c1 [kN/cm] cue [kKN/cm] by [kNs/cm] by [kNs/cm]
18.90 6.25 0.12 0.0375
Fi [kN] T [s] tx [s] Vdiz [m/s]
2.53 1.5 1 0.14
g1 [m]
0.004 |
0.003 |
0.002
0.001
,,,,, 1 t[s]
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Size of g; in the case of acceleration for load lifting

Based on the known maximum deformation values of the support structure
(Figs. 5 and 6), and using software packages for static and dynamic structural
analysis (the CATIA V5 software is used in this case), one can calculate maximum
stresses in the bearing structure of the crane can. In the case of acceleration during
load lifting the maximal stress is o, = 80.64 MPa. For braking, during load
lowering, the stress value is o = 60.48 MPa.
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gy [m]
0.0030

0.0025

0.0020

0.0015

0.0010
0.0005

0.0000 : t[s]
0.0 0.2 0.4 0.6 08 1.0

Fig. 6. Size of g in the case of braking for load lowering

6. Conclusion

In this research, we have applied a well-known dynamic model with some
additional corrections, in order to develop a more accurate model. The following
corrections are introduced: the stiffness of rope is assumed constant, additional
working conditions are taken into consideration, working conditions most prob-
lematic from the aspect of dynamic load are chosen, damping effects in the crane
construction and in the rope are taken in consideration, the load force is considered
in a form of quadratic equation and the braking force is assumed as a constant
value.

When designing a bridge crane, the most significant parameters which must
be analyzed are the value of deflection of support construction and the stress value
in the middle of the main bridge span. The maximum value of deflection for a
certain construction crane is defined and limited by both national and international
standards. It is therefore necessary to consider changing the value of ¢; during
the non-stationary work regime of the lifting mechanism. Figs. 5 and 6 show that
for the considered bridge crane, at the point of maximum deflection of the bridge
crane, more critical is the acceleration period during load lifting then the braking
period during load lowering. The maximum size of deformation of the supporting
construction (Figs. 5 and 6) was used to obtain maximum values of stress in the
supporting structure. This was done using software packages for static and dynamic
structural analysis. It can be noticed that the highest stress value in the crane’s main
girder appears in its middle point, which could be expected. The stress value in the
load acceleration period is o, = 80.64 MPa which is greater than the stress value
for the braking time during load lowering o = 60.48 MPa. The higher stress value
in the acceleration period is explained by the fact that deformation of the supporting
structure in the braking period is smaller in comparison to that in the acceleration
period. According to the calculations carried out using regulations and standards
BAS ISO 9374-5 and EN1993-1-1: 2005, the stress value in the analyzed section
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of the main crane is oo = 83.19 MPa. It is important to note that this stress value is
obtained by a calculation that takes into account the prescribed value of dynamic
coefficient ¢ = 1.15. By comparing the results obtained from this research and the
results obtained on the basis of the calculation using the dynamic coeflicient, one
can observe that the stress value in the acceleration period during load lifting is
lower by 3,07% than the value obtained by the application of BAS ISO 9374-5 and
EN1993-1-1: 2005 regulations. To generalize this notion it is necessary to carry
out a wider research on the family of bridge cranes, which can provide data for
further development in this area.
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