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Stochastic number of concrete families and the likelihood
of such a value

Józef Jasiczak1, Marcin Kanoniczak2, Łukasz Smaga3

Abstract:Modern construction standards, both from the ACI, EN, ISO, as well as EC group, introduced
numerous statistical procedures for the interpretation of concrete compressive strength results obtained
on an ongoing basis (in the course of structure implementation), the values of which are subject
to various impacts, e.g., arising from climatic conditions, manufacturing variability and component
property variability, which are also described by specific random variables. Such an approach is a
consequence of introducing the method of limit states in the calculations of building structures, which
takes into account a set of various factors influencing structural safety. The term “concrete family”
was also introduced, however, the principle of distributing the result or, even more so, the statistically
significant size of results within a family was not specified. Deficiencies in the procedures were partially
supplemented by the authors of the article, who published papers in the field of distributing results
of strength test time series using the Pearson, 𝑡-Student, and Mann–Whitney U tests. However, the
publications of the authors define neither the size of obtained subset and their distribution nor the
probability of their occurrence. This study fills this gap by showing the size of a statistically determined
concrete family, with a defined distribution of the probability of its isolation.
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1. Introduction

The subject of this article is included in the broadly understood statistical control
of concrete quality and is another study by the authors on this subject. The previous
articles [8–10] discussed: the description of the method, the selection of tests (ACME
2015), the example of extracting concrete families (C&C, 2014), the use of the proprietary
method to assess seasonality in the production of concrete mix (JCE & IT, 2017), and in
the next (ACE, 2021) the multiplicity of the set making up a concrete family. All articles
were inspired by situations from practice in which, after the introduction of the PN-EN
206-1 standard, there were problems with the definition of a concrete family defined in the
standard as “(...) a group of concretes with a defined and documented relationship between
the relevant properties (...)”.
An additional difficulty reported by concrete contractors was assigning the obtained

concrete properties to a specific period. An example is the construction of a motorway
pavement made of cement concrete, of a fixed class (C30 / 37, C35 / 45), divided into
separate fields with a side of 6 m. The fields are numbered, concreted on the following
days, and the contractor wants to know if the concrete has the required class. During the
construction of the concrete highway Swiecko – Nowy Tomysl, in the case of material
defects, not the entire section was replaced, but a specific field. A similar assessment was
used in the construction of a concrete terminal for customs clearance in Swiecko.
When carrying out opinions on the relationship between the strength and the dates

of laying concrete on the construction site, the authors initially recommended the use of
the Shewhart individuals control chart with the lower and upper tolerance limits. On the
card, the concrete strength was marked on the vertical axis, and the concreting dates on the
horizontal axis. Activities on the card were entered manually, but it turned out that with a
large number of results, the processes should be automated by creating special numerical
software. For this reason, the cyclical production process was treated as a time series being
the implementation of a stochastic process, the domain of which is precisely time. Concrete
strength is a random process. To divide the strength time series into groups with comparable
properties (according to the definition of the concrete family), the authors initially used
Pearson’s x2 statistics as a criterion for separation (but also for interval compliance) in
situations where tolerance limits were defined in advance.
Often, however, the obtained results were outside the limits of tolerance (the problem

is described in the author’s publication “The concept of ‘over-strength of concrete’ in the
tender procedure for concrete objects of communication infrastructure”, BTA, 1/2017 [12])
and for this reason, other tests were adopted (in the work 𝑡-Student and U-Mann–Whitney)
and the corresponding numerical procedure according to R Core Team: A language and
environment for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2015 [16].
Thanks to such a procedure, in this article, the boundaries of the separation and the test

results were determined using twomethods, the number of concrete families was calculated
and the probability of such a number was established.
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The authors of the study are aware of other possibilities of solving the problem, the
more so that in the new edition of PN-EN 206-1 [23], the possibility of using CUSUM
control cards was introduced (propagated in the works [4]). Some authors even suggest use
in control processes Fuzzy models or sets – mathematical means of representing vagueness
and imprecise information, which include randomly shaped concrete strength [3,5,14,17].
Also in these methods, a formal decision-making method in the form of, for example, a
truncated V-mask is established to determine whether a process is out of control.
In the control procedure authors of this article, a similar regulatory function is performed

by including the test results which differ from the rest of the group to the new concrete
family.

2. Scientific grounds for the division into families
of concrete

2.1. General assumptions

The European Standard PN-EN 206-1 [22] introduced the concept of a concrete family,
which is defined as a group of concrete, with a specified and documented relationship
between relevant properties, however without stating the stabilization of features over
any periods. Assigning concrete to a family is strictly related to the relationship between
strength and process conditions. The concept of a concrete family has been discussed in
source literature [2, 7, 13, 15, 19, 20].
Defining separate families of concrete is a division of a sequence of concrete compres-

sive strength results into groups of statistically stabilized strength parameters, over specified
periods of execution time. When continuously producing large quantities of concrete mix,
correctly estimating a concrete family is justified from the perspective of reliability of
buildings operated in the future [17, 18, 20, 21].
Therefore, the analysis concerns a specified number of concrete compressive strength

test results obtained by studying the strength of concrete test coupons sampled during
on-site concreting structural elements.
The results of concrete compressive strength tests are subject to variability control in

created subsets characterizing a specified concrete mix-manufacturing date and variability
test of continuous subsets making up a certain closed number of analysed results.
To determine the specific, maximum, and mean compressive strength, that is, the

parameters representing an entire set of the aforementioned results, it is necessary to
develop a population histogram for such a set. Population, mean strength, an arithmetic
mean of a distribution series were determined for each of the distinguished classes –
strength ranges. The standard deviation for the entire result set was calculated as per the
formula:

(2.1) 𝜎 =

√√
1

𝑛 − 1

𝑛∑︁
𝑖=1

𝑛𝑖
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where:
𝑛 – means the sum of the population in all classes,
𝑛𝑖 – the size of the i-th class calculated in the range: (𝑥𝑖; 𝑥𝑖𝑛〉,
𝑥𝑖 – mean compressive strength value of the 𝑖-th class and
𝑥 – arithmetic mean of the distribution series.
To compare the strength parameters of concrete in individual subsets, two results of

random samples are compared, assuming that two independent random samples 𝑋 and 𝑌
come from a normal distribution of unknown parameters, respectively: 𝑁 (𝜇𝑋 , 𝜎2𝑋 ) and
𝑁 (𝜇𝑌 , 𝜎2𝑌 ).
A sequence of 𝑛 numbered working plots, which characterize a specific number of pro-

duced concrete mix is tested. Each plot has an assigned sequence 𝑥𝑖 =
(
𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑛𝑖

)
,

𝑖 = 1, 2, . . . , 𝑛 of concrete compressive strength test results.
The following hypotheses on expected values were assumed for verification:

(2.2)

{
𝐻0 : 𝜇{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } = 𝜇{𝑥𝑚+𝑟+1 }

𝐻1 : 𝜇{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } ≠ 𝜇{𝑥𝑚+𝑟+1 }

where:
𝜇{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } – an assumed, existing expected value of probability distribution of the

combined sample {𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑟 },
𝑚 – numerical parameter determining the first subset of a sequence of compared subsets,

containing several individual concrete compressive strength test results,
𝑟 – numerical parameter determining the number of subsets outside of the first subset

within the analysed sequence.
The hypotheses (2.2) above is subject to verification, which involves analysing the

strength parameters of individual subsets in the following order [1, 11, 17]:
1. Checking whether it belongs to a concrete family of subsets 1 and 2 (i.e. 𝑋1 and 𝑋2) by
verifying the hypotheses (2.2) for 𝑚 = 1 and 𝑟 = 0:

(2.3)

{
𝐻0 : 𝜇{𝑥1 } = 𝜇{𝑥2 }

𝐻1 : 𝜇{𝑥1 } ≠ 𝜇{𝑥2 }

If the null hypothesis is not rejected, i.e., subset 1 is a concrete family with subset 2, move
to point 2. If the null hypothesis is rejected, i.e., subset 1 is not a concrete family with
subset 2, move to point 3.
2. Checking whether it belongs to a concrete family of subsets 1–2 and 3 (i.e. 𝑋1,2 and 𝑋3)
by verifying the hypotheses (2.2) for 𝑚 = 1 1 and 𝑟 = 1:

(2.4)

{
𝐻0 : 𝜇{𝑥1 ,𝑥2 } = 𝜇{𝑥3 }

𝐻1 : 𝜇{𝑥1 ,𝑥2 } ≠ 𝜇{𝑥3 }

If the null hypothesis is not rejected, i.e., subset 1–2 is a concrete family with subset 3,
continue the verification of the hypotheses (2.2) as per point 2 for 𝑚 = 1 and 𝑟 = 2. If the
null hypothesis is rejected, i.e., subset 1–2 is not a concrete family with subset 3, move to
point 3 for 𝑚 = 3 and 𝑟 = 0.
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3. Checking whether it belongs to a concrete family of subsets 2 and 3 (i.e. 𝑋2 and 𝑋3) by
verifying the hypotheses (2.2) for 𝑚 = 2 and 𝑟 = 0:

(2.5)
{

𝐻0 : 𝜇{𝑥2 } = 𝜇{𝑥3 }
𝐻1 : 𝜇{𝑥2 } ≠ 𝜇{𝑥3 }

If the null hypothesis is not rejected, i.e., subset 2 is a concrete family with subset 3, move
to point 2 and continue the calculation 𝑚 = 2 and 𝑟 = 1. If the null hypothesis is rejected,
i.e., subset 2 is not a concrete family with subset 3, continue the calculations as per point
3 for 𝑚 = 3 and 𝑟 = 0.
Rejecting the null hypothesis 𝐻0 will consistently mean adopting the assumption that

samples come from various families of concrete. Whereas not rejecting the null hypothesis
will consistently mean that the samples come from the same concrete family.
Two different statistical tests to compare the results of two random samples were used

to verify the aforementioned hypotheses for expected values (2.3) and its non-parametric
version. The analysis covered two independent random samples 𝑋 and 𝑌 (representing
accordingly two sets of results, each with a specified number of concrete compressive
strength test results), coming from a population with continuous distributions. In the first
calculation step, sample 𝑋 was the first subset of the group of all analysed subsets, and
sample 𝑌 was the second subset of the group of all analysed subsets. In the second
calculation step, and then, analogically in subsequent ones, sample 𝑋 was a set of results
representing subsets, which were used in the previous step to make up a concrete family,
and if such a family was not created – sample 𝑋 was a set of results representing sample
𝑌 in the previous calculation step. Sample 𝑌 was also another previously unused subset of
results.
The mean and variance of samples 𝑋 and 𝑌 were calculated, and the following hy-

potheses – null hypothesis: 𝐻0 : 𝜇𝑋 = 𝜇𝑌 and alternative: 𝐻1 : 𝜇𝑋 ≠ 𝜇𝑌 , were assumed.

2.2. Verification whether a concrete compressive strength test results
set belongs to a within a concrete family using the t-Student test

Studying concrete family classification using the 𝑡-Student test for two independent
samples (concrete strength analyses for each of the plot are conducted independently)
were conducted following several steps, using strength parameters determined based on
the aforementioned subsets and from an entire set of concrete compressive strength test
results.
The first step was to check whether the analysed data (results) come from a normal

distribution. This involved conducting calculations using the Shapiro–Wilk test [18]. Next,
samples 𝑋 and𝑌 were used to calculate themean values and variances, respectively.Another
operation was to verify the hypothesis on the equality of variances in two populations using
the significance test for two variances, i.e., the F test [18]. The last essential element of
the conducted analysis was to compare the results of two samples and check, whether they
came from populations with the same expected values, using the significance test for two
expected values, i.e., the 𝑡-Student test [18]. Two cases were considered. The first case,
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where samples 𝑋 and𝑌 are independent and come from a normal distribution, respectively:
𝑁 (𝜇𝑋 ; 𝜎2𝑋 ); 𝑁 (𝜇𝑌 ; 𝜎2𝑌 ) and there are equal variances for both samples (𝜎2𝑋 = 𝜎2

𝑌
) and a

second case where samples 𝑋 and𝑌 are independent and come from a normal distribution,
respectively: 𝑁 (𝜇𝑋 ; 𝜎2𝑋 ); 𝑁 (𝜇𝑌 ; 𝜎2𝑌 ) and the variances of both samples are not equal
(𝜎2

𝑋
≠ 𝜎2

𝑌
).

Not rejecting the null hypothesis𝐻0 : 𝜇𝑋 = 𝜇𝑌 with an alternative hypothesis𝐻1 : 𝜇𝑋 ≠

𝜇𝑌 , i.e. when: 𝑇 (𝑋,𝑌 ) < 𝑡 (1 − 𝛼/2, 𝑛+𝑚−2) for the first case or 𝑇 (𝑋,𝑌 ) < 𝑡 (1 − 𝛼/2, 𝛽)
for the second case, means adopting the hypothesis on the classification of a group of
results representing samples 𝑋 and 𝑌 within one concrete family.
Whereas, if the null hypothesis is rejected, i.e., if for the first case 𝑇 (𝑋,𝑌 ) > 𝑡 (1 −

𝛼/2, 𝑛+𝑚−2) or if: 𝑇 (𝑋,𝑌 ) > 𝑡 (1 − 𝛼/2, 𝛽) for the second case, the hypothesis on the
classification of a group of results representing samples X andYwithin one concrete family
is rejected.

2.3. Verification of the hypothesis on the classification of a set
of concrete compressive strength test results within a concrete

family using the Mann–Whitney U test

Studying the classification within a concrete family involves verifying hypotheses on
the equality of distribution cumulative functions for two samples:

(2.6)

{
𝐻0 : 𝐹{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } = 𝐹{𝑥𝑚+𝑟+1 }

𝐻1 : 𝐹{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } ≠ 𝐹{𝑥𝑚+𝑟+1 }

where: 𝐹{𝑥𝑚 ,𝑥𝑚+1 ,...,𝑥𝑚+𝑟 } –mean a probability distribution function of the combined sample{
𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑟

}
.

Hypotheses (2.6) are subject to the same verification as the hypotheses (2.2), however,
with the use of theMann–Whitney𝑈 test [18]. The null hypothesis𝐻0 assumes that samples
𝑋 and 𝑌 were collected from the same distribution, whereas the alternative hypothesis 𝐻1
assumes that samples 𝑋 and 𝑌 were not collected from the same distribution. Studying the
classification within a concrete family using the Mann–Whitney𝑈 test for two independent
samples involves the consideration of two sets, from which independent random samples
𝑛 and 𝑚 are collected. All observations are subject to ordering in ascending order. In the
event of the same observations in samples 𝑋 and 𝑌 , one should apply a correction, which
involves supplementing the value of the statistic 𝑈 with half of the number of pairs (𝑥, 𝑦)
such that 𝑥 = 𝑦.
Not rejecting the null hypothesis𝐻0: 𝐹𝑋 =𝐹𝑌 with an alternative hypothesis𝐻1: 𝐹𝑋≠𝐹𝑌 ,

i.e. 𝑈 (𝑋,𝑌 ) does not belong to the range 𝐶 = [0, 𝑢(𝑛, 𝑚, 𝛼/2)] ∪ [𝑢(𝑛, 𝑚, 1 − 𝛼/2),∞]
means adopting the hypothesis on the classification of a group of results representing sam-
ples 𝑋 and 𝑌 within one concrete family. Whereas, if the null hypothesis is rejected, i.e.
when:𝑈 (𝑋,𝑌 ) belongs to the range 𝐶 = [0, 𝑢(𝑛, 𝑚, 𝛼/2)] ∪ [𝑢(𝑛, 𝑚, 1 − 𝛼/2),∞] means
rejecting the hypothesis on the classification of a group of results representing samples 𝑋
and 𝑌 within one concrete family.
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3. Calculation examples

3.1. Analysing an annual set of concrete compressive strength
test results

A hydrotechnical structure consisting of several reinforced concrete tanks made of
C35/45 concrete was completedwithin the Poznań area in recent years. The contract obliges
the manufacturer of the concrete mix to maintain a constant concrete recipe throughout the
year. For this reason, the manufacturer adopted variable concrete recipes at different times
of the year to maintain constant concrete parameters (Table 1). The observations involved
tanks made of concrete over one year, from January to December. The control covered the
stabilization of the characteristics of both the mixture (described in this article) and the
technology of making the tanks themselves. Test samples 15 × 15 × 15 cm were collected
on each day of concreting and the concrete compressive strength was evaluated after 28
days of curing.

Table 1. Summer and winter mix recipes for maintaining constant strength of concrete
throughout the year

Parameters Summer season Winter season

Class of concrete C35/45 C35/45

Kind of cement CEM I 42.5 N CEM I 42.5 N

W/c ratio 0.44 0.44

Sand 0–2 mm 548 546

Gravel 2–8 mm 531 530

Gravel 8–16 mm 581 579

Fly ash 45 45

Plasticizer CER – 0.25% –

Superplasticizer O132 – 0.85% O146 – 0.85%

Air-entraining admixture AIR A10 – 0.15% AIR A10 – 0.15%

Retarding admixture TARD – 0.30% –

Accelerating admixture – X384 – 0.90%

28 day strength, MPa 52.1 52.7

Strength time series (a total of 134 ranges representing concreting dates within the
year) were used to determine the fundamental strength parameters for the year-long set
of concrete compressive strength test results. The concrete families were also determined.
A collective population histogram (Fig. 1) was also developed to confirm that concrete
achieved the designed class. This enabled achieving parameters representing the entire set
of data (719 individual results of concrete compressive strength tests), without relation to
the time of concrete mix production.
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Fig. 1. Population histogram for an annual set of concrete compressive strength test results

The entire set of results exhibits an average compressive strength at a level of 53.1 MPa,
a standard deviation of 3.6 MPa, and specific strength 𝑓𝑐𝑘 = 47.2 MPa, higher than the
initially assumed 𝑓𝑐𝑘 = 45.0 MPa, but belonging to the same C35/45 concrete design
class. The obtained large data set allowed for the identification of concrete families and the
determination of their number. By analyzing the strength test results appearing successively
during the year, it is possible to confirm their high variability but only selected tests can
show the distinctiveness resulting from belonging to different concrete families.

3.2. Division of concrete compressive strength test result sequence
into concrete families

The authors verified the assumed hypotheses (2.2) on the classification of concrete
compressive strength test result set within a concrete family using the 𝑡-Student andMann–
Whitney U tests, as per the calculation procedure discussed in point 2.
The outcome of the first test was a division of the entire result set into 68 concrete

families, whereas the second test divided the entire result set into 71 concrete families.
Publication [4] summarizes the basic data on the test result sequence, their correspond-

ing standard deviations, and ranges with statistically stabilized parameters determined
through the verification of statistical hypotheses using the 𝑡-Student and Mann–Whitney U
test.
The results of verification of the aforementioned hypotheses for the beginning of a test

result sequence are given in Table 2. The outcome of the verification calculations is the
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histograms for 1, 2, 3, . . . , 𝑛-element subsets, corresponding to the established concrete
families is shown in Fig. 2.

(a) (b)
Fig. 2. Numbers of subsets forming concrete families according to: a) 𝑡-Student test,

b) Mann–Whitney U test

3.3. Number of subsets making up a concrete family

This chapter discusses the distribution of the number of subsets making up a concrete
family for the data considered in Section 2. The descriptive statistics methods [14], which
present an empirical distribution of this number were used and two theoretical distributions
modelling this distribution were suggested for this purpose.
The empirical distribution was described by descriptive statistics (mean, median, and

standard deviation), empirical probabilities (percent) of the occurrence of individual num-
bers of subsets making up a concrete family, and bar charts. The number of subsets making
up a concrete family was theoretically described with the use of two discrete distributions
since this number can be a natural number, i.e. take values within the set {1, 2, . . .}.
Two distributions, Poisson distribution, and binomial distribution were matched out of the
known ones. However, in both these distributions, the lowest value was zero, which does
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not appear as a value of the number of subsets making up a concrete family. This is why
the modifications of these two distributions were considered. Namely, they were shifted
by one, and then the lowest value of the new distributions will be equal to one. A detailed
description of these statistical models is presented below.
Let 𝑋1 and 𝑋2 be random variables with Poisson 𝜋(𝜆) and binomial 𝑏(𝑚, 𝑝) distribu-

tions, respectively, where𝜆 > 0 and 𝑝 ∈ (0, 1) are unknown parameters and𝑚 ∈ {0, 1, . . .}
is fixed ( [14], pp. 149–152). In the binomial distribution, we adopt the number 𝑚 = 133
as the number of experiments, since our data set considered 134 observation days. We take
into account two random variables 𝐿1 = 𝑋1 + 1 and 𝐿2 = 𝑋2 + 1, which will model the
number of subsets making up a concrete family. The first one adopts values that are natural
numbers (1, 2, . . .), and the second one adopts 1, 2, . . . , 𝑚 + 1. This is reasonable since
the number of subsets making up a concrete family cannot be higher than 𝑚 + 1 = 134,
and moreover, its high value is unlikely. Theoretical distribution models for the number of
subsets making up a concrete family based on the distributions of random variables 𝐿1 and
𝐿2 will be called Models 1 and 2, respectively.
Distributions of random variables 𝐿1 and 𝐿2 are described by the following probability

functions

(3.1)
𝑃(𝐿1 = 𝑙) = 𝜆𝑙−1𝑒−𝜆

(𝑙 − 1)! , for 𝑙 = 1, 2, . . .

𝑃(𝐿2 = 𝑙) =
(
𝑚

𝑙 − 1

)
𝑝𝑙−1 (1 − 𝑝)𝑚−𝑙+1, for 𝑙 = 1, 2, . . . , 𝑚 + 1

Expected values, medians, and standard deviations of random variables 𝐿1 and 𝐿2 are
as follows:

(3.2)
𝐸 (𝐿1) = 𝜆 + 1, 𝑀𝑒 (𝐿1) ≈

⌊
𝜆 + 1
3
− 0.02

𝜆

⌋
+ 1, 𝑆𝑑 (𝐿1) =

√
𝜆

𝐸 (𝐿2) = 𝑚𝑝 + 1, 𝑀𝑒 (𝐿2) = b𝑚𝑝c + 1 ∨ d𝑚𝑝e + 1, 𝑆𝑑 (𝐿2) =
√︁
𝑚𝑝(1 − 𝑝)

The values depend on unknown parameters 𝜆 and 𝑝, which are estimated using the
maximum likelihood method (Górecki, 2011, p. 195). Let 𝐿 = (𝐿1, 𝐿2, . . . , 𝐿𝑛)𝑇 be a
simple sample from the population for a random variable 𝐿, which is the number of subsets
making up a concrete family. Estimators of parameters 𝜆 and 𝑝 are as follows:

𝜆̂ = 𝐿 − 1, 𝑝 =
𝐿 − 1
𝑚

where

𝐿 = 𝑛−1
𝑛∑︁
𝑖=1

𝐿𝑖
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is the sample mean. Therefore, in the maximum likelihood method, the estimators for
expected values, medians, and standard deviations in Models 1 and 2 are as follows:

(3.3)

𝐸 ( 𝐿̂1) = 𝐿, 𝑀𝑒 ( 𝐿̂1) =
⌊
𝐿 − 2
3
− 0.02

𝐿 − 1

⌋
+ 1, 𝑆𝑑 ( 𝐿̂1) =

√︁
𝐿 − 1

𝐸 ( 𝐿̂2) = 𝐿, 𝑀𝑒 ( 𝐿̂2) = b𝐿c ∨ d𝐿e, 𝑆𝑑 ( 𝐿̂2) =

√√√(
𝐿 − 1

) (
1 − 𝐿−1

𝑚

)
respectively.
The distribution of the number of subsets making up a concrete family was estimated

using the data discussed in chapter 2, and an empirical distribution and the theoretical
distribution of Models 1 and 2 in a tabular and graphic manner.

Table 3. Summary of the number of subsets obtained based on the 𝑡-Student test, using an empirical
distribution and two theoretical distributions (Models 1 and 2).

The meaning of the rows is as follows: Estimator – values of estimators for the parameters of
theoretical distributions; P-value – p-values of the Pearson’s chi-square test for the conformity of the
theoretical distribution; Mean, Median and Standard deviation – values of estimators for the expected
values, medians, and standard deviations; 1, 2, 3, 4, 6 – estimated probabilities for the occurrence of

subset number equal to 1, 2, 3, 4, 6

Description Empirical Model 1 Model 2

Estimator N/A 0.9705882 0.0072977

P-value N/A 0.9584091 0.9562437

Mean 1.9705882 1.9705882 1.9705882

Median 2.0000000 2.0000000 2.0000000

Standard deviation 1.0362186 0.9851844 0.9815830

1 0.3970588 0.3788601 0.3775142

2 0.3382353 0.3677172 0.3691044

3 0.1911765 0.1784510 0.1790843

4 0.0588235 0.0577341 0.0574873

6 0.0147059 0.0027194 0.0026050

Namely, Tables 3 and 4 state the values of estimators for the expected value, median
and standard deviation of the number of subsets making up a concrete family, and the
estimations of probabilities for the occurrence of the numbers of subsets obtained within
the collected data.
These tables also state the values of estimators for the parameters of the theoretical

distributions of Models 1 and 2 and the 𝑝-value of the Pearson’s chi-square test [11, 14]
with a given theoretical distribution, which, in all cases, are significantly higher than the
significance level 𝛼 = 0.05. Therefore, these values indicate a very good match of both
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Table 4. Summary of the number of subsets obtained based on the Mann–Whitney U test, using an
empirical distribution and two theoretical distributions (Models 1 and 2).

The meaning of the rows is as follows: Estimator – values of estimators for the parameters of
theoretical distributions; P-value – p-values of the Pearson’s chi-square test for conformity of the
theoretical distribution; Mean, Median and Standard deviation – values of estimators for the expected
values, medians, and standard deviations; 1, 2, 3, 4, 5 – estimated probabilities for the occurrence of

subset number equal to 1, 2, 3, 4, 5

Description Empirical Model 1 Model 2

Estimator N/A 0.8873239 0.0066716

P-value N/A 0.7514698 0.7368091

Mean 1.8873239 1.8873239 1.8873239

Median 2.0000000 2.0000000 2.0000000

Standard deviation 0.9935405 0.9419787 0.9388312

1 0.4366197 0.4117562 0.4105338

2 0.3380282 0.3653611 0.3667231

3 0.1408451 0.1620968 0.1625623

4 0.0704225 0.0479441 0.0476769

5 0.0140845 0.0106355 0.0104071

theoretical models with the data. This is also confirmed by the bar charts (Fig. 3 and 4) for
the number of subsets making up a concrete family.

Fig. 3. Bar charts covering the number of subsets obtained based on the 𝑡-Student test, using
an empirical distribution and two theoretical distributions (Models 1 and 2)

The obtained numerical values, as well as the bar charts, indicate that a low number of
subsets making up a concrete family, i.e. 1, 2, and 3 is the most probable, and a comment
to these findings has been added in the conclusions.



40 J. JASICZAK, M. KANONICZAK, Ł. SMAGA

Fig. 4. Bar charts covering the number of subsets obtained based on the Mann–Whitney U test, using
an empirical distribution and two theoretical distributions (Models 1 and 2)

4. Final analysis and conclusions

4.1. Final analysis

The outcome of verifying the assumed hypothesis (2.2) on the classification of a
concrete compressive strength test result set within a concrete family using the 𝑡-Student
and Mann–Whitney U tests, as per the calculation procedure presented in point 2, is a
division of the entire result set into 68 concrete families in the case of the first test and
71 families in the case of the second test. This comment will concern two issues, i.e.
shaping of the concrete class value for individual families and the frequency of incidence
of range numbers within these families from 1, . . . , 𝑛, and the probable number of sample
sets within a single-family.
Regarding the distribution of 719 test results and 134 individual ranges resulting in 68

concrete families (71 in the case of the second test), it can be noticed that as many as 64% of
the families were classified in the higher classes, C40/50 or even C45/55, and only 36% in
the assumed C35/45 class. In the case of the second test, the numbers are 66.7% and 33.3%,
respectively. The aforementioned results indicate the existence of strength instability within
the entire result set. There are local overestimations within the time intervals, significantly
exceeding the design concrete class. This is a safe side error but it comes with increased
expenditure associatedwith producing concrete within a higher strength range, unnecessary
from the point of view of structural safety. The commonly applied passive control can ensure
structural safety but in an economically inefficient manner.
By treating the obtained yearly sequence of concrete compressive strength test results

as a stochastic process, one can obtain a locally unstable system, and the outcome is a
frequent (every 1, 2, or 3 production days) change in the assignment to specific families,
hence, a too low number of result ranges assigned to a single-family (for the 𝑡-Student test
division results: almost 40% of single-range families, 34% of two-range families, 19% of
three-range families, and multi-range families are only 7%; whereas for theMann–Whitney
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U test: single range families make up almost 44%, two-range families 34%, three-range
families 14% and multi-range families only 8%). Since one range represents 5-8 individual
strength test results, two ranges 10-16 and three ranges 18-21, estimating the characteristics
of a family must follow two formulas:

size < 15: 𝑓𝑐𝑚 ≥ 𝑓𝑐𝑘 + 4 and 𝑓𝑐𝑖 ≥ 𝑓𝑐𝑘 − 4, MPa
size ≥ 15: 𝑓𝑐𝑚 ≥ 𝑓𝑐𝑘 + 1.48𝑠𝑅 and 𝑓𝑐𝑖 ≥ 𝑓𝑐𝑘 − 4 MPa

where:
𝑓𝑐𝑚 – average from 𝑛 strength test results for 𝑛 series of samples,
𝑓𝑐𝑘 – specific compressive strength (concrete class),
𝑓𝑐𝑖 – single strength test result out of 𝑛 series of samples,
𝑠𝑅 – standard deviation for concrete family.
The above confirms the thesis on the need to apply the suggested distribution methods

in practice, even though approx. 40% of the estimation are based on a so-called small
sample (𝑛 < 15, which in turn can lead to underestimating value 𝑓𝑐𝑘 [11].
The considerations regarding a small number of result ranges assigned to a single

concrete family, summed up in conclusion 4.4 have been described with and confirmed by
two statistical models. Models 1 and 2 were based on Poisson and binomial distributions
shifted by one, respectively, since the number of ranges can be at least one. The parameters
of these models were estimated using the maximum likelihood method. Furthermore, the
adequacy of Models 1 and 2 was justified not only using descriptive statistics models
but also their statistical significance was demonstrated through the Pearson’s chi-square
conformity test. Models 1 and 2 theoretically confirm that, for the discussed data regarding
concrete compressive strength and their division using the 𝑡-Student and Mann–Whitney
U tests, the number of result ranges assigned to one concrete family is minor and is mainly
1, 2, and 3, in proportions given previously.

5. Conclusions
The entire concrete mix production process requires continuous monitoring. The com-

pressive strength of concrete is a fundamental parameter subject to inspection. This strength
is tested based on test coupons systematically sampled, specified quantities of the mix, at a
specified time of the process. The consequential result set is then evaluated. A yearly set of
concrete compressive strength test results can be evaluated globally, in terms of the strength
parameters representing all results from a given set. This exhibits an average compressive
strength at a level of 53.1 MPa, the standard deviation of 3.6 MPa, and specific strength
𝑓𝑐𝑘 = 47.2 MPa, higher than the initially assumed 𝑓𝑐𝑘 = 45.0 MPa, but belonging to the
same C35/45 concrete design class. However, the analysis of all results in a set does not
enable detecting a lowered or overvalued concrete strength, which can occur at certain
production process time intervals.
The efficiency of a strength evaluation system can be significantly improved by thor-

oughly considering concrete families, and implementing active control assessment based on
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the verification of the statistical hypotheses described in the paper. Analysing the strength
parameters of concrete manufactured at a given time of the production process, repre-
sented by a group of results characterizing the statistical invariability of the parameters,
namely, belonging to a single concrete family, enables detecting inadequate strength of
a produced element (group of elements). This is fully justified from the perspective of
structural reliability and the economic optimization of concrete mix production.
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Stochastyczna liczba wyników badań tworzących rodzinę betonu
i prawdopodobieństwo wystąpienia takich wartości

Słowa kluczowe: wytrzymałość betonu na ściskanie, ciągła kontrola procesu betonowania, rodzina
betonu, metody statystyczne

Streszczenie:

Współczesne normy budowlane zarówno z grupy EN, ISO jak i EC wprowadziły wiele procedur
statystycznych do interpretacji uzyskiwanych na bieżąco (w trakcie realizacji obiektu)wynikówbadań
wytrzymałości betonu na ściskanie, której wartości podlegają różnym przypadkowym wpływom, na
przykład wynikającym z warunków klimatycznych, zmienności produkcji zmienności właściwości
składników, które również opisują określone zmienne losowe.
Podejście takie jest konsekwencją wprowadzenia do obliczeń konstrukcji budowlanych metody

stanów granicznych uwzględniającej zbiór różnych czynników wpływających na bezpieczeństwo
konstrukcji. Z tego powodu wdrożono w ostatnich latach wiele procedur kontrolujących i regulu-
jących dotrzymanie przez producenta betonu granicznych parametrów mieszanki, poczynając od
statystycznej, globalnej oceny wytrzymałości, poprzez procedury przedziałowe (karty kontrolne
Shewarta), po skomplikowane analizy stochastyczne, zawierające drobnoprzedziałowe oceny ciągów
wyników badań o ujednoliconej, statystycznie istotnej, wartości parametrów podstawowych wytrzy-
małości. Szczególnie dużo uwagi poświęca się, zarównow praktyce budowlanej jak i w rozważaniach
teoretycznych, zagwarantowaniu przez producenta mieszanki wytrzymałości betonu z 95% prawdo-
podobieństwem jej wystąpienia.
W normie europejskiej PN-EN 206-1 wprowadzono dodatkowo termin rodzina betonów (ang.

Family of concrete concept), którą określono jako “(...) grupę betonów o ustalonej i udokumentowanej
zależności pomiędzy odpowiednimi właściwościami”, bez podania jednak oznaczeń ilościowych
odnośnie wielkości tej grupy i stabilizacji cech (na przykład wytrzymałości betonu na ściskanie)
w jakichkolwiek przedziałach czasowych. Przywytwarzaniu w sposób ciągły dużych ilości mieszanki
betonowej, poprawne oszacowanie rodziny betonów jest zasadne z punktu widzenia niezawodności
eksploatowanych później konstrukcji budowlanych, o czym świadczy bogata literatura zacytowana
w artykule.
Przyporządkowanie betonu do rodziny jest ściśle związane z relacją pomiędzy wytrzymało-

ścią a uwarunkowaniami technologicznymi. Wyznaczenie oddzielnych zbiorów (rodzin betonów)

http://www.R-project.org/
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jest podziałem ciągu wyników badań wytrzymałości betonu na ściskanie na grupy o statystycz-
nie ustabilizowanych parametrach wytrzymałościowych w określonych przedziałach czasowych ich
wykonania.
Przedmiotem analiz zamieszczonych w niniejszej pracy jest więc określona, szczególnie duża

liczba wyników badań wytrzymałości betonu na ściskanie zebranych w ciągu jednego roku podczas
betonowania kilku obiektów hydrotechnicznych o takiej samej klasie wytrzymałościowej C35/45
i stałej recepturze z drobnymi modyfikacjami sezonowymi (lato, zima).
W części teoretycznej pracy podano podstawy weryfikacji hipotez o wyodrębnieniu szeregów

czasowych wytrzymałości o statystycznej zwartości, tworzących tzw. rodziny betonu. Rozdziału
wyników badań szeregu czasowego wytrzymałości dokonano stosując testy Pearsona, 𝑡-Studenta
i Manna–Whitneya. Na wybranym przykładzie określono liczby uzyskanych podzbiorów oraz praw-
dopodobieństwa wystąpienia takich liczności. Jest to istotne wzbogacenie teorii jakości betonu o licz-
ność statystycznie wydzielonej rodziny betonu z określeniem rozkładu prawdopodobieństwa jej wy-
odrębnienia.

Received: 10.02.2021, Revised: 24.06.2021


	Józef Jasiczak, Marcin Kanoniczak, Łukasz SmagaStochastic number of concrete families and the likelihood of such a value
	Introduction
	Scientific grounds for the division into families of concrete
	General assumptions
	Verification whether a concrete compressive strength test results set belongs to a within a concrete family using the t-Student test      
	Verification of the hypothesis on the classification of a set of concrete compressive strength test results within a concrete family using the Mann–Whitney U test

	Calculation examples
	Analysing an annual set of concrete compressive strength test results
	Division of concrete compressive strength test result sequence into concrete families
	Number of subsets making up a concrete family

	Final analysis and conclusions
	Final analysis

	Conclusions


