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Abstract. Quick development of computer techniques and increasing computational power allow for building high-fidelity models of various
complex objects and processes using historical data. One of the processes of this kind is an air traffic, and there is a growing need for traffic
mathematical models as air traffic is increasing and becoming more complex to manage. This study concerned the modelling of a part of the
arrival process. The first part of the research was air separation modelling by using continuous probability distributions. Fisher information
matrix was used for the best fit selection. The second part of the research consisted of applying regression models that best match the parameters
of representative distributions. Over a dozen airports were analyzed in the study and that allowed to build a generalized model for aircraft air
separation in function of traffic intensity. Results showed that building a generalized model which comprises traffic from various airports is
possible. Moreover, aircraft air separation can be expressed by easy to use mathematical functions. Models of this kind can be used for various
applications, e.g.: air separation management between aircraft, airports arrival capacity management, and higher-level air traffic simulation or
optimization tasks.
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1. INTRODUCTION
According to EUROCONTROL’s Performance Review Report
[1] which assessed European’s ATM performance in 2019 and
concerned the operational en-route Air Navigation Services
(ANS) performance in the EUROCONTROL area, en-route Air
Traffic Flow Management (ATFM) delays in 2019 reached 17.2
million minutes causing that 2018 and 2019 were the years with
the highest amount of en-route delays since 2010. It was re-
ported that an average en-route delay above one minute per
flight occurred on 206 days in 2019, which is equivalent to 56 %
of the days. In 2019 en-route delays accounted for 9.9 % of all
delayed flights. Air Traffic Control (ATC) capacity accounted
for 43.9 %, which is equal to 17.2 million of total delay min-
utes; ATC staffing accounted for 24.3 %, which is equal to 4.2
million of total delay minutes; ATC disruptions or industrial ac-
tions accounted for 7.2 %, which is equal to 1.2 million of total
delay minutes; weather accounted for 21.2 %, which is equal
to 3.6 million of total delay minutes. Summary is presented in
Table 1.

In [2] it was stressed that advances in computing and related
techniques allow for creating revolutionary breakthroughs in
many aspects of everyday life and will data drive many sci-
entific disciplines. One of the scientific disciplines where sig-
nificant advances are possible is air traffic management (ATM)
research, where the application of data science and prediction
techniques [3] to large sets of data allows for extracting in-
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Table 1
En-route ATFM delays in 2019 by attributed delay category

Delay cause Delayed Flight delay Total delay
flights in minutes minutes share

ATC Capacity 5.2 % 13.3 7.6 M 43.9 %

ATC Staffings 2.4 % 16.2 4.2 M 24.3 %

ATC Disruptions 0.4 % 27.3 1.2 M 7.2 %

Weather 1.6 % 20.9 3.6 M 21.2 %

Other 0.4 % 15.0 0.6 M 3.5 %

Total 9.9 % 15.8 17.2 M 100 %

formation by processing sets of historical air traffic data and
even making air traffic predictions in real-time, which has been
not possible or hard to do in the past. This kind of approach
was adopted in [4] where equivalent sound level mathematical
model was obtained by processing measurement data using data
science techniques.

Given the above factors, the idea of developing a general-
ized model for a part of the arrival process arose. Generalized
model, which comprises traffic from various airports and allows
to express aircraft air separation by a set of easy to use mathe-
matical functions, could be useful in many ATM aspects, e.g.:
air separation management between aircraft, airport arrival ca-
pacity management, higher-level air traffic simulation and op-
timization tasks, thus, can contribute to reduced ATC-caused
delays. Until recently, the creation of ATM models was not an
important element of research, as previously noted, due to the
lack of motivation in the form of easily manageable air traf-
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fic and computational constraints. However, in recent years, the
need for those models started to become higher, e.g., due to
ATC Model-Driven Approach proposals [5]. Moreover, studies
in which such models based on real air traffic data have begun
to appear. In [6] dynamic models to describe some behaviors in-
cluding aircraft following, holding, and maneuvering were es-
tablished. In [7] density-speed-based modified cell transmission
model was created to simulate the spatio-temporal evolution of
traffic flow and airspace congestion in the arrival network. In
addition, a number of theoretical approaches to model, assess,
and optimize air traffic were described in [8] and [9]. Combina-
tion of mathematical modelling, optimization, and real air traf-
fic data can bring significant advances to ATM. In [10] model
of airport process and optimization was used for the purpose of
efficiency of traffic management processes on the apron evalua-
tion. In [11] mathematical modelling and optimization was used
for a purpose of planning and management of aircraft mainte-
nance using a genetic algorithm. Due to many aspects which
need to be considered in ATM research and modelling, every
research focuses only on selected aspects of air traffic mod-
elling and only collective research efforts may allow to cover
a sufficient range of models to allow effective airspace traffic
modelling. What impacts ATM research activities is an access
to historical air traffic data. Some researchers are using small
subsets of real air traffic data or artificial data. Choosing a good
source of data and data processing is an important step in the
research, but it requires to solve a number of additional issues
and requires additional resources [12].

This study aims to create a generalized aircraft air separation
model by using continuous probability distributions and non-
linear regression fitting techniques. Models of this kind can be
used to generate data samples, compare air traffic data, and val-
idate similar models. Modelling of aircraft air separation by us-
ing continuous probability distributions was performed in [13]
for a single airport and found efficient. Moreover, in the men-
tioned case, only a small number of sample days was analyzed.
In this study, a variety of airports and a significant amount of
data were taken into account, largely expanding previous out-
comes. Moreover, by using nonlinear regression, a generalized
aircraft air separation model was created using the output data
from distribution fitting, which is the main novelty of the fol-
lowing paper.

The structure of the paper is as follows. The paper starts
with a brief introduction, which is followed by the methodol-
ogy overview in Section 2 and air traffic data description in Sec-
tion 3. The mathematical principles underlying the aircraft air
separation identification for a single airport and a selected day
are shown in Section 4. The extension of those results to the
full data set for various airports (generalized model) are shown
in Section 5. The paper finishes with a short summary of the
conclusions presented in Secction 6.

2. METHODOLOGY
The aim of this research was to derive a generalized arriving air-
craft air separation model in a form of probability density func-
tion (PDF), which describes the distribution of air separation

between aircraft in a function of arrival number 𝑝(𝑡𝑠 , 𝑥), where
𝑡𝑠 is time separation and 𝑥 is the number of arrivals. A high-
level overview of the whole air separation model identification
process developed within this study is presented in Fig. 1.
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Fig. 1. Overview of the air separations model identification process

Input to the identification process is the separations data for
each day from a set of airports. Then for each airport, separa-
tions data for each day or arrivals is being fitted to a set of prob-
ability density functions using maximum likelihood estimation
(MLE). Estimated parameters and correctness of fit values are
stored. Once all PDFs for all days and all airports have been
identified, PDF type with the best correctness of fit is selected
and nonlinear regression (NLR) is performed to obtain the re-
gression of the estimated PDF parameters values in function of
air traffic intensity (number of arrivals). Performing NLR for
the parameters obtained for a single airport results in a single
airport model. Finally, grouping parameters from all airports for
the selected PDF and performing NLR results in the identifica-
tion of the generalized model, which is the goal of this study.

3. AIR TRAFFIC DATA
Data demand repository 2 (DDR2) [14] database was used as a
source of the historical air traffic data. DDR2 data has a number
of advantages: the data is provided by EUROCONTROL, so it
is trustworthy and complete; data is available in easy to store
and process AIRAC datasets and can be extracted and partially
preprocessed by EUROCONTROL’s software Network Strat-
egy Tool (NEST) software which also gives confidence to ob-
tained datasets; data contains several fields which allow to eas-
ily chose desired airports, waypoints or other data of interest
what minimizes introduction of error. NEST was used to con-
vert data from compressed binary AIRAC files to separate so6
text files. M3 trajectories data set was used, which corresponds
to the last filled flight plan updated with radar data. For each
day, it resulted in a file which contained trajectory data in the
form of flight segments for each flight which occurred during
that day. Each flight segment entry consisted of the data pre-
sented in Table 2.
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Table 2
so6 file flight segment data entry structure

Field Type Size Comment

segment identifier char 8–10 <start> _ <end>

origin of flight char 4 ICAO code

destination of flight char 4 ICAO code

aircraft type char 4 ICAO code

time at segment start num 6 HHMMSS

time at segment end num 6 HHMMSS

flight level at segment start num 1–3 –

flight level at segment end num 1–3 –

status char 1 climb/descent/cruise

callsign char var –

date at segment start num 6 YYMMDD

date at segment end num 6 YYMMDD

latitude at segment start float var in minute decimals

longitude at segment start float var in minute decimals

latitude at segment end float var in minute decimals

longitude at segment end float var in minute decimals

flight identifier num 9 unique for every flight

sequence var –

segment length float var in nautical miles

segment parity num 1 –

In this study, several hundred days of arrival to each of the
airports presented in Table 3 were selected, what results in over
a million of flights. Data was collected from before the SARS-
CoV-2 coronavirus pandemic. The airports were selected in a
way that they cover a variety of runway configurations, i.e.,
one, two, or three runways and parallel or intersecting runways.
They also cover the complete range of arriving traffic intensi-
ties, from low through medium to high traffic cases. The ma-

Table 3
Airports used in the study

ICAO Code Airport

EBBR Brussels Airport

EGCC Manchester Airport

EGSS London Stansted Airport

EKCH Copenhagen Airport, Kastrup

ENGM Oslo Airport

EPWA Warsaw Chopin Airport

LEBL Barcelona–El Prat Airport

LEPA Palma de Mallorca Airport

LFPO Paris Orly Airport

LIRF Rome–Fiumicino International Airport

LSZH Zurich Airport

jority of the selected airports belong to the list of thirty busi-
est airports in Europe. For each case, the necessary airport data
was obtained from appropriate Aeronautical Information Pub-
lication (AIP) providers, depending on the airport’s controlling
authority. This data included:
• Runway detailed layout and possible landing directions;
• Intermediate fixes (IFs) names and thresholds in nautical

miles for every runway direction (IF is a waypoint where
usually instrument landing system procedure begins) and
are usually located around 10–12 NM from the runway
threshold;

• Standard arrival procedures and possible airport landing
configurations.

A number of data pre-processing steps were performed to
ensure data completeness and correctness as well as a format
adequate for further processing. M3 trajectories are updated
with radar data if the radar data deviates from the last filled
flight plan by any of the thresholds: 5 min, 7 FL or 20 NM.
Analysis was performed, which has shown that radar data was
present in nearly all cases, which is the real air traffic data.
The data was filtered, so only arrivals to selected airports re-
mained. Flight segments were replaced by the trajectory way-
points by merging the segment end point with the next seg-
ment start point. The check for duplicated entries was made
as in some cases a day with different start and land dates ap-
peared in the files for both days. Subsequently, arrivals were
sorted by a criterion such that a given flight belongs to a given
day if the arrival date equals this day. Afterwards, to avoid a
significant number of outliers, arrivals occurring during night
hours were removed, but only for periods where the arrival den-
sity was smaller than seven flights per hour. M3 data is pro-
vided with insufficient resolution. However, an approximation
method has been used to obtain intermediate points between
trajectory points in the area of interest. Especially for the case
considered within the study, the aircraft should have constant
speed, a linear approximation could be applied, what does not
impact the accuracy significantly. Finally, separations between
arriving aircraft were determined for each day for each airport.
Currently distance-based separations are used in arrivals oper-
ations. However, many novel traffic synchronization concepts,
e.g. [15–17], recognize time-based separations and 4D trajec-
tories as future means of arrival trajectories management, thus,
time separations will be considered in this study. Time separa-
tion 𝑡𝑠 between two consecutive arriving aircrafts belonging to
set of arrivals A at given fix in the airspace was defined as:

𝑡
𝑖, 𝑗
𝑠𝑋 = 𝑇

𝑗

𝑋
−𝑇 𝑖

𝑋 , (1)

where:
• 𝑖 ∈ A and 𝑖 = 1, . . . , 𝑛𝐴−1 is a preceding aircraft index;
• 𝑗 ∈ A and 𝑗 = 𝑖 +1 is a following aircraft index;
• 𝑛𝐴 is the number of arriving aircraft in given day, i.e. cardi-

nality of set A: 𝑛𝐴 = |A|;
• 𝑇 is a time of a day of arrival at given airspace fix expressed

in elapsed seconds from midnight;
• 𝑋 is selected fix in the airspace for which time separations

are calculated.
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In the study, longitudinal separations were considered and the
intermediate fix was selected as a waypoint for which separa-
tions are calculated. For each day included in the study, a sep-
aration for each pair of preceding and following aircraft (𝑖, 𝑗)
was calculated, what resulted in a vectors of length 𝑛𝐴−1 con-

sisting of the time separation values tsX =

[
𝑡
1,2
𝑠𝑋 , . . . , 𝑡

𝑛𝐴−1,𝑛𝐴
𝑠𝑋

]𝑇
.

4. PROBABILITY DISTRIBUTION IDENTIFICATION
4.1. Maximum likelihood estimation
Fitting probability distributions to separations vector ts is a task
of unknown parameters identification. Separations vector ts can
be denoted as observed values vector z. Assuming that aircraft
separations have a distribution 𝑝(z|𝚯), where 𝚯 is parameters
vector, obtaining optimal estimates requires the maximization
of the conditional probability density function [18]:

𝚯̂ = argmax(𝑝(z|𝚯)). (2)

In practice, maximum likelihood estimation (MLE) [19] is an
efficient method for identification problems [20] and maximiza-
tion task can be reformulated to the minimization of a negative
log-likelihood function 𝐿 (𝚯|z):

𝚯̂ = argmin(− ln𝐿 (𝚯|z)). (3)

Multidimensional normal distribution is defined as:

𝑝(z1, . . . ,z𝑁 ) = 1(√︁
(2𝜋)𝑛

√︁
|R|

)𝑁 ∗

exp

(
−1

2

𝑁∑︁
𝑘=1

[z𝑘 −y𝑘 ]𝑇 R−1 [z𝑘 −y𝑘 ]
)
,

(4)

where:
• 𝑛 is a number of dimensions;
• 𝑁 is a number of observed vectors (measurements);
• y is a model output vector.

The error covariance matrix R can be estimated as:

R =
1
𝑁

𝑁∑︁
𝑘=1

[z𝑘 −y𝑘 ] [z𝑘 −y𝑘 ]𝑇 ; (5)

where z has length 𝑛𝑍 = 𝑛𝐴−1. After assuming residuals inde-
pendence, the following cost function is obtained:

𝐽 (𝚯) =
𝑛𝑍∑︁
𝑘=1

(𝑧𝑘 − 𝑦𝑘 )2 , (6)

where 𝑦𝑘 is model output value corresponding to observed
value 𝑧𝑘 .

Fitting probability distributions using MLE was performed
as described in [13] where several dozens of various continuous
probability distributions were used to find the best fit distribu-
tion, and for each of them probability density function parame-
ters were estimated.

4.2. Relative standard errors
Relative standard error (RSE) [21] smallest mean value was
used as a criterion for selecting the distribution type which fits
best to the arrival traffic data most often. One of the advantages
of this criterion is being resistant to the number of distribution
parameters: e.g., the sum of squared errors criteria can be ad-
vantageous for distributions with larger number of parameters
as they usually better fit the data (due to greater flexibility), but
sometimes it may lead to overfitting and not be a good candidate
for generalized model. RSE were derived from observed Fisher
information matrix. Observed Fisher information matrix [18]
was evaluated using maximum likelihood estimates (𝚯 = 𝚯̂):

F =
𝜕2𝐽

𝜕𝚯2 ≈
𝑛𝑍∑︁
𝑘=1

[
𝜕𝑦𝑘

𝜕𝚯

]𝑇
R−1

[
𝜕𝑦𝑘

𝜕𝚯

]
, (7)

where:
• 𝐽 is a cost function;
• 𝑛𝑍 is a number of measurements;
• 𝑦 is a model output;
• R is estimated as below:

R =
1
𝑛𝑍

𝑛𝑍∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ] [𝑧𝑘 − 𝑦𝑘 ]𝑇 . (8)

Model output partial derivatives can be calculated using the for-
ward difference scheme:[

𝜕𝑦𝑘

𝜕𝚯

]
𝑗

≈
𝑦𝑘 (𝚯+ΔΘ 𝑗e 𝑗 ) − 𝑦𝑘

ΔΘ 𝑗

, (9)

where:
• 𝑗 = 1, . . . , 𝑛Θ and 𝑛Θ is a number of estimated parameters;
• e 𝑗 is a column vector with 1 in the jth row and 0 in remaining

rows;
• ΔΘ 𝑗 is perturbation in jth component of 𝚯 and ΔΘ 𝑗 =

10−4Θ 𝑗 in this study.
After obtaining observed Fisher information matrix, it can be

inverted to obtain the asymptotic covariance matrix estimator
𝜎2 (𝚯̂𝑀𝐿):

𝜎2 (𝚯̂𝑀𝐿) =
[
F(𝚯̂𝑀𝐿)

]−1
. (10)

Relative standard errors are finally calculated:

𝜺(𝚯̂𝑀𝐿) =
√︂
𝑑𝑖𝑎𝑔

(
𝜎2 (𝚯̂𝑀𝐿)

)
�𝚯∗100%, (11)

where � means for element-wise division.

4.3. Results
After solving MLE problems for each day and applying RSE
criteria to obtained results, Cauchy distribution turned out to be
the best fit distribution, constituting the best fit for 77–90% of
days for each airport being the subject of this study.
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For Cauchy distribution 𝚯 = [𝑥0, 𝛾] and the probability den-
sity function (PDF) is defined as follows [22]:

𝑝(𝑥, 𝑥0, 𝛾) =
1

𝜋𝛾

(
1+ (𝑥− 𝑥0)2

𝛾2

) , (12)

where:
• 𝑥0 is the location parameter and specifies peak location,

where maximum value of probability density function is lo-
cated;

• 𝛾 is the scale parameter and specifies half-width at half-
maximum, that determines the slope inclination of the prob-
ability density function shape.

That characteristic makes Cauchy distribution even more
suitable for expressing aircraft air separation distribution, as it
contains a high peak and a long tail that is typical for separation
distribution.

It should be noted that Cauchy distribution does not have a
theoretical definition of mathematical expectation (also known
as expected value). Mathematical expectation defines a central
(or average) value. For separations distributions it is not a good
metric, due to the usually high peak and long tail of the distribu-
tion. Instead, Cauchy’s distribution location and scale parame-
ters are good metrics, as they determine the maximum value
and slope inclination, respectively. Mathematical expectation
has certain applications, which are not the case in the research
done within the article. Lack of definition of mathematical ex-
pectation for Cauchy distribution does not impact creating and
using of the model.

Example results of fitting distribution to arrival separation
data are presented in Fig. 2. Horizontal axis presents the time
separation in seconds, the vertical axis presents the normal-
ized number of aircraft, blue histogram bars (bin width was set
to 40 s) present the distribution of real data, and the red line
presents Cauchy distribution fit to the data. On this day 417
arrivals took place, and 𝚯̂ = [113.13,27.05]. In Fig. 2 it can
be also observed that some aircrafts have very small separation.
This is usually related to the data measurement noise, data inac-
curacies, and approximations described in Section 3. Additional
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Fig. 2. Example results of fitting distribution to separations data,
Cauchy distribution

factor is the histogram bin width set to 40 s, where the data is
usually closer to 40 s than 0 s. Violation of ICAO separations is
a rare case, however it may be present within the data as well.

For each airport, 𝐴 results of fitting 𝚯̂ = [𝑥0, 𝛾] were grouped
into observed distribution parameters values zA,M vectors (𝑀 =

{1,2}) which contained all 𝑛𝑃 values of the given parameter for
the given airport:

z𝐴,𝑀 =

[
𝑧
𝐴,𝑀

1 , 𝑧
𝐴,𝑀

2 , . . . , 𝑧𝐴,𝑀𝑛𝑃

]
. (13)

Also vectors x𝐴 can be defined:

x𝐴 =
[
𝑥𝐴1 , 𝑥

𝐴
2 , . . . , 𝑥

𝐴
𝑛𝑃

]
. (14)

which contain the number of flights corresponding to each entry
in z𝐴,𝑀 vectors.

In Fig. 3 and Fig. 4 the grouped probability density func-
tion parameters for LEPA airport are shown. Horizontal axis
presents the number of arrivals in a given day and the verti-
cal axis presents location and scale parameters values, respec-
tively. It can be observed that for both parameters their values
decrease with increasing number of arrivals, also the slope be-
comes smaller with the increasing number of arrivals. It means
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that Cauchy’s distribution peak moves left (towards 0 s) and
becomes higher and tighter. Another observation is that in both
cases the parameters values variation becomes smaller with in-
creasing number of arrivals. This is a reasonable behaviour,
as with increasing number of arriving aircraft the airspace be-
comes more constrained and there is less space for variation.

5. AIR TRAFFIC IDENTIFICATION
5.1. Nonlinear regression
Nonlinear regression was performed by using the non-
linear least squares (NLS) method. It allowed to fit
𝜷=[𝛽1, 𝛽2, . . . , 𝛽𝑛𝐵 ] coefficients of nonlinear functions which
were chosen as candidates for aircraft separations model. Es-
timated functions coefficients 𝜷̂ were obtained by solving the
following minimization problem:

𝜷̂ = argmin
𝑛∑︁

𝑘=1
[𝑧𝑘 − 𝑓 (𝑥𝑘 , 𝜷)] ,

𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝑛) .
(15)

Levenberg-Marquardt algorithm [23] was used to solve the op-
timization task.

In theory, infinite numbers of function linear combinations
can be utilized for the task of finding the best match to data.
However, in practice, a set of common simple functions is usu-
ally used, what makes the model convenient for further use. The
following functions were considered as the candidate regression
model 𝑓 (𝑥, 𝜷):
• Exponential: 𝛽1𝑒

𝛽2𝑥 ;
• First order polynomial: 𝛽1𝑥 + 𝛽2;
• Logarithmic: 𝛽1 ln𝑥 + 𝛽2;
• Power: 𝛽1𝑥

𝛽2 ;
• Second order polynomial: 𝛽1𝑥

2 + 𝛽2𝑥 + 𝛽3;

• Reciprocal:
𝛽1

(𝑥 + 𝛽2)
+ 𝛽3.

Basing on the characteristics of the data, whose sample is
presented in Fig. 3 and Fig. 4, first-order polynomial was re-
jected as the parameter value change becomes smaller with
increasing arrival number, which means that the first deriva-
tive should monotonically increase. Moreover, the second-order
polynomial was rejected due to the fact that the function
changes monotonicity after reaching its minimum. Basing on
the knowledge of physical phenomena, only monotonically de-
creasing functions can properly represent the distribution pa-
rameters regression in this case. Remaining of the listed func-
tions remained good candidates for the regression model.

Before proceeding with the regression fit, days with less than
80 arrivals were removed as they usually stood for unusual
events, like holidays or closed airport and contained outliers.
Afterwards, to obtain the generalized model, the results for all
airports were concatenated into z𝑀 and x vectors of length 𝑛𝐺:

z𝑀 =
[
𝑧1,𝑀 , 𝑧2,𝑀 , . . . , 𝑧𝑛Airports ,𝑀

]
, (16)

x =
[
𝑥1, 𝑥2, . . . , 𝑥𝑛Airports

]
. (17)

Predicted model distribution parameters y𝑀 were obtained by
passing x and 𝜷̂ to candidate functions:

y𝑀 = [𝑦𝑀1 , 𝑦𝑀2 , . . . , 𝑦𝑀𝑛𝐺 ] . (18)

𝑦𝑀𝑘 = 𝑓

(
𝑥𝑘 , 𝜷̂

)
, 𝑘 = 1, . . . , 𝑛𝐺 . (19)

5.2. Coefficient of determination
Coefficient of determination 𝑅2 [24], which measures how well
model replicates observation, was used as a first factor to assess
correctness of fit for each parameter 𝑀 of the distribution:

𝑅2 = 1− 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
, (20)

where:
• 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares:

𝑆𝑆𝑡𝑜𝑡 =

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑧]2 ; (21)

• 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals:

𝑆𝑆𝑟𝑒𝑠 =

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ]2 ; (22)

• 𝑧 is mean of observed parameter values z:

𝑧 =
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

𝑧𝑘 . (23)

5.3. Theil’s inequality coefficient
Theil’s inequality coefficient (TIC) 𝑈 [25] was used as a sec-
ond factor to assess correctness of fit for each parameter 𝑀 of
distribution:

𝑈 =

√√
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ]2√√
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 ]2 +

√√
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑦𝑘 ]2

. (24)

TIC was also decomposed into separate factors which ac-
count for bias (𝑈𝑀 ), variance (𝑈𝑆) and covariance (𝑈𝐶 ) [18]:

𝑈𝑀 =
(𝑧− 𝑦̄)2

1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ]2
, (25)

𝑈𝑆 =

(
𝜎𝑧 −𝜎𝑦

)2

1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ]2
, (26)

𝑈𝐶 =
2 (1− 𝜌)𝜎𝑧𝜎𝑦

1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑦𝑘 ]2
, (27)

where:

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140694, 2022



Air traffic separations generalized model identification

• 𝑧 is defined in equation (23);
• 𝑦̄ is mean of model predicted parameter values y:

𝑦̄ =
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

𝑦𝑘 . (28)

• 𝜎𝑧 is standard deviation of observed parameter values z:

𝜎𝑧 =

√√
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑧]2 ; (29)

• 𝜎𝑦 is standard deviation of model predicted parameter val-
ues y:

𝜎𝑦 =

√√
1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑦𝑘 − 𝑦̄]2 ; (30)

• 𝜌 is correlation coefficient of z and y:

𝜌 =
1

𝜎𝑧𝜎𝑦

1
𝑛𝐺

𝑛𝐺∑︁
𝑘=1

[𝑧𝑘 − 𝑧] [𝑦𝑘 − 𝑦̄] . (31)

𝑈𝑀 +𝑈𝑆 +𝑈𝐶 = 1 and in ideal scenario 𝑈𝑀 = 0, 𝑈𝑆 = 0
and 𝑈𝐶 = 1 as the first two are measures of systematic error
and ability to duplicate variability by the model respectively,
whereas the latter is a measure of nonsystematic error.

5.4. Regression fitting results
Regression fit results are presented in Fig. 5, in Fig. 6 and in
Table 4. Power function 𝛽1𝑥

𝛽2 turned out to be the best fit re-
gression function and the function coefficients and correctness
of fit factor values for both parameters are presented in Table 4.
Values 𝑅2, 𝑈, 𝑈𝑀 , 𝑈𝑆 , 𝑈𝐶 testify that the fit is satisfactory, as
𝑅2 ≥ 0.75 and 𝑈 ≤ 0.2 show high level of correlation, while
𝑈𝑀 , 𝑈𝑆 , 𝑈𝐶 show that nonsystematic error is dominant part of
fit error.

Location parameter values for all airports are presented in
Fig. 5 by blue scatter points. Regression representing the gen-
eralized model is presented in Fig. 5 by scattered black points.

Scale parameter values for all airports are presented in Fig. 6
by blue scatter points. Regression representing the generalized
model is presented in Fig. 6 by black scattered points.
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Fig. 5. Location parameter values for all airports and regression line
(generalized model)
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Fig. 6. Scale parameter values for all airports and regression line
(generalized model)

Table 4
Regression fit for power function 𝛽1𝑥

𝛽2 : coefficients values
and correctness of fit factors for generalized model

location parameter scale parameter

𝛽1 3972.89 14631.41

𝛽2 –0.597245 –0.991530

𝑅2 0.845397 0.756742

𝑈 0.047211 0.107445

𝑈𝑀 0.000031 0.000126

𝑈𝑆 0.052675 0.084699

𝑈𝐶 0.947294 0.915175

Finally, the generalized model can be expressed in the form
of the probability density function as follows:

𝑝

(
𝑡
𝑖, 𝑗
𝑠 , 𝑥

)
=

1

14631.41𝜋𝑥−0.99153

(
1+ (𝑡

𝑖, 𝑗
𝑠 −3972.89𝑥−0.597245)2

14631.41𝑥−1.98306

) , (32)

where 𝑥 stands for a number of arrivals and the following con-
straints apply due to the mechanism of the separation phe-
nomenon, Cauchy distribution properties and assumptions in
the study:
• 𝑥 ∈ 〈80;550〉;
• 𝑝(𝑡𝑖, 𝑗𝑠 , 𝑥) ≤ 0 shall be rejected as they are not physical;
• as Cauchy distribution is defined on (−∞,+∞) interval, it

may sometimes yield big nonphysical values, so reasonable
upper threshold should be also defined.

Example of sampling from the generalized model was per-
formed for comparison with the real data. Daily fit presented in
Fig. 2 was compared with the output from equation (32). Com-
parison is presented in Fig. 7. Red solid line presents the daily
fit, the black solid line presents the model fit, and the blue his-
togram bars present results of the sampling model presented by
the black line.
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Fig. 7. Example comparison of daily fit and fit from generalized model
(Model fit)

Results show that building a generalized model which com-
prises traffic from various airports is possible and aircraft air
separation can be expressed by a single expression in the form
of probability density function as shown in equation (32). As
shown by the correctness of fit, and visible in Fig. 7, location
parameter estimated value is usually more precise than scale
parameter estimated value. However, peak value location looks
to be a more important parameter for a task of modelling of the
aircraft separations. As can be seen in Fig. 7, despite visible dif-
ference in scale parameter, thanks to good estimate of location
parameter model was able to provide an output which is very
close to the true data.

5.5. Generalized model application
Regarding practical applications, the major advantages of the
generalized model of aircraft separations in the form of prob-
ability distribution are its simplicity, versatility, and flexibility
of use. Relying on one simple explicit formula allows to apply
the model quickly and reliable in various simulation or compu-
tational environments. A number of applications are proposed,
and the applications are not limited with those listed. Examples
of model applications:
• generation of samples for air traffic management algorithms

testing and evaluation. Obtaining and processing historical
air traffic data is time-consuming and requires additional
resources. Moreover, the obtained data sets are usually lim-
ited to a certain number of days. Arriving aircraft separa-
tions model allows to quickly generate an unlimited num-
ber of samples which can be used for generating sequences
of arriving aircraft, e.g., in the development of arrivals se-
quencing [15] or taxing algorithms [10];

• comparison of arriving traffic; Two metrics, location and
scale parameters of Cauchy distribution, allow to quickly
assess arrival traffic at different time intervals. Parameters
values and parameters values differences (e.g., deviations
from desired values) can be used for the assessment of ar-
riving traffic with a goal of improving arriving traffic;

• validation of other separation models; Some models, e.g.,
neural network models, do not provide explicit formulas
and function as black-box models. Even well-trained mod-

els of this kind might sometimes yield unrealistic data. The
model provided within this study provides an explicit for-
mula and can be used for quick validation with the use of
e.g., TIC or 𝑅2 factors provided in Section 5.

Sample application analysis was also performed. One thou-
sand days of arrival sequences were generated assuming arriv-
ing traffic intensities of 300, 400 and 500 aircraft. Generation
of samples was performed on a computer with Intel® Core™
i7 processor and Windows 10 operating system.

Results presenting the time consumed to generate samples
are presented in Table 5. Total sampling times were around
one second and increased with the number of samples. Median
times for generating one sample were less than 0.001 seconds
in all cases. Median times were provided, as due to nondeter-
ministic threads executions times on Windows, some samplings
took a few times longer than usual, so the mean value was not a
good metric in this case. Sampling times prove time efficiency
of the derived model.

5.6. Single airports models
In addition to the generalized model, single airport models were
derived using Cauchy distribution and power function regres-
sion. Results are presented in Table 6, Fig. 8 and Fig. 9.

Table 5
Generalized model sampling timing analysis

Number
of arrivals

Total
sampling time [s]

Median
sampling time [s]

300 0.702968 0.0006642

400 0.875851 0.0008324

500 1.138790 0.0009730

Location parameter values for all airports are presented in
Fig. 8 by scatter points, where each colour represents a differ-
ent airport, and each dot represents an individual day. Regres-
sion representing the generalized model is presented in Fig. 8
in black colour. The same scheme was used for presenting the
scale parameters as can be seen in Fig. 9 in black colour.
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Fig. 8. Location parameter values for all airports and regression line
representing generalized model
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Fig. 9. Scale parameter values for all airports and regression line
representing generalized model

As can be observed in Fig. 8 and Fig. 9 which present Cauchy
distribution parameters for each airport together with the re-
gression line, the data for each airport is within the regression
line. Thus, the generalized model can be used as an approxima-
tion for the initial point when estimating the detailed models as
well.

In Table 6 it can be observed that the power function coeffi-
cient values have significant differences. This is caused by the

Table 6
Regression fit for power function 𝛽1𝑥

𝛽2 : coefficients values and
selected correctness of fit factors for single airports models

𝛽1 𝛽2 𝑅2 𝑈

EBBR
𝑥0 3725.49 –0.59173 0.74834 0.03621

𝛾 24821.50 –1.05351 0.72257 0.07338

EGCC
𝑥0 4244.22 –0.58945 0.71782 0.03342

𝛾 813838.50 –1.72116 0.74494 0.09224

EGSS
𝑥0 3581.48 –0.56959 0.37493 0.04081

𝛾 129220.10 –1.38688 0.44851 0.09190

EKCH
𝑥0 2158.12 –0.49447 0.75780 0.03133

𝛾 7299.78 –0.86414 0.73713 0.06750

ENGM
𝑥0 5175.54 –0.64583 0.81943 0.04588

𝛾 75439.97 –1.28015 0.80583 0.10272

EPWA
𝑥0 1585.54 –0.42274 0.47320 0.03465

𝛾 101476.31 –1.38098 0.59893 0.09390

LEBL
𝑥0 1736.23 –0.45293 0.83134 0.02171

𝛾 9855.08 –0.92682 0.76967 0.05575

LEPA
𝑥0 3115.93 –0.55376 0.92135 0.04698

𝛾 25898.23 –1.12527 0.93442 0.07586

LFPO
𝑥0 4378.45 –0.61517 0.59628 0.03649

𝛾 627496.60 –1.65392 0.56594 0.11384

LIRF
𝑥0 499.89 –0.26134 0.43366 0.02124

𝛾 5820.07 –0.81029 0.73217 0.03578

LSZH
𝑥0 860.82 –0.35737 0.31312 0.02886

𝛾 4372038.62 –1.99359 0.42515 0.13718

fact that for each airport the cluster of points covers a different
range of arrivals numbers, what results in different regression of
the function. However, TIC and 𝑅2 show that identified models
are very good or good. Compared to single airport models, there
is an advantage of the generalized model which, thanks to the
use of data from various airports, provides coverage of a wide
range of arrivals. To efficiently compare the values of regression
function coefficient between single airports models or between
the single airport model and the generalized model, sampling
should be done and TIC or 𝑅2 criterion can be used.

6. CONCLUSIONS
In this study, a method for establishing a generalized aircraft air
separation model in function of the number of arriving aircraft,
by means of fitting the data to a continuous probability distri-
bution and expressing the distribution parameters using nonlin-
ear regression, was presented. Motivation and introduction to
the study were followed by presenting the process of obtaining
and processing arrival data, fitting the data to continuous distri-
butions, and choosing the best fit distribution. Afterwards, the
nonlinear regression approach to estimate the best fit distribu-
tion parameters in function of the number of arriving aircraft
was presented, ending with providing the generalized aircraft
air separation model and its comparison with real data. Model
assumptions and constraints were also provided.

Model of this kind is a novelty and similar models have not
been observed in the literature. As described within the article,
aircraft separation models in the form of probability distribution
can improve results, ATM modelling and optimization activi-
ties, as the use of artificial data can lead to insufficient coverage
of algorithms testing and biased results. The methodology used
in this research has been successfully used and produced ac-
curate results in the modelling of aircraft motion for full flight
simulators [18, 20] or atmospheric phenomena, e.g., icing con-
ditions [26].

Modelling approximates reality and the models will always
contain some inaccuracies. A number of error sources were pre-
sented in this study and future studies will focus on the mini-
mization of errors impact, which will result in a more accu-
rate model. As mentioned in Section 3, DDR2 data has two
disadvantages: insufficient resolution and occurrence of flights
which contain flight plan data, instead of real data. Other data
sources, e.g. OpenSky Network can be considered which is
of higher resolution, however several other issues are present,
like validity and missing flights, as described in [12]. DDR2
data still should be used as the reference data, so ideally a
merge of DDR2 and OpenSky Network data could give high-
confidence high-accuracy data. Given the significant number of
flights analysed within this study, all must be done with care
to avoid mistakes and requires significant computing capabili-
ties.

Future studies may also focus on building models which de-
pend on other factors than the number of arrivals, like weather
or airport configuration. Moreover, more sophisticated models
can be developed which consider the traffic characteristics of
each airport.
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Finally, it is worth noting that the model estimation and as-
sessment techniques presented within this article can be applied
to various scientific disciplines, whereas the generalized air sep-
aration modelling approach can be applied to other transport
fields, like railway or road traffic, where the need for mod-
elling becomes higher due to autonomous technologies [27].
Also, more specific traffic aspects can be addressed, e.g.: vehi-
cle separations in intermodal terminals [28].
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