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Abstract: The paper presents ,1 qualitative. Bavcsian model used 10 determine some interdependencies between 
sorpiion features [or mineral soils in southern Poland. Sorption properties arc very important, crucial for meas­ 
ure or fertility, nutrient retention capacity, and the capacity to protect groundwater from coutaminution. Cation 
exchange capacity (CFC) is a commonly applied indicator otihc soils conditions or vulncrahilitv. Base satura­ 
iion (BS) is an important clement of hazard degree assessment in soils lying within reach otimpact ofacidif",·ing 
agents. The considered soils represented different valuation classes and differed in their typology. The Bayesian 
model is used lor interdependences assessment. 

INTRODUCTION 

The soil sorpiion properties (Cation Exchange Capacity - CEC and Base Saturation - BS) 
are regarded as important soil valuation criteria. It is assumed that soils characterized by 
higher cation exchange capacity (the CEC value) retain applied nutrients better than those 
with smaller values. Similarly, base saturation indicating percent saturation of cation ex­ 
change capacity by base cations is an important soil condition indicator. Complete vul­ 
nerabity estimation except for CEC and BS, needs to introduce the intensity parameter. It 
informs us about the sorption aspect resulting, for instance, from soil density, soil mois­ 
ture and structure variation. 

Traditionally, the characteristic of soil sorption properties (CEC and 13S) is most 
o lien determined using the Kappen method. It involves determination of ions with base 
reaction and ions with acid reaction in a soil sample water extract. The sum of their capac­ 
ity gives the computed cation exchange capacity, while the sum of ions with base reac­ 
tion, given in percent, constitutes base saturation. The determination is relatively complex 
and time-consuming, therefore in some cases its substitute is being used (e.g. the extent 
of methylene blue sorption), or empirical equations (4, 7]. This is so because their pa­ 
rameters transform other soil properties, which are easier for laboratory testing. In soil 
science, these equations are called Pedo Transfer Functions - PTF [6]. 

However, in some circumstances, it is enough to have only qualitative information, 
referring to the scale and state of soil sorption. This approach was successfully applied, 



26 STANISLAW GRlJSZC7YŃSKI

for example, in making the database of the soils of the European Union, where so-called
PedoTransfer Rules (PTR) were adopted. The idea of constructing such a qualitative
model results from the general knowledge of the relationship between sorption properties
and the content of clay fraction and organic carbon, on one side, and the soi I reaction on
the other. Such a model can successfully be formalized. An efficient tool for the formali­
zation can be a properly designed Bayesian belief network.

In Bayesian belief network, a prior probability distribution is assigned to each vari­
able and then the strength of the dependence between each pair of variables is defined.
A Bayesian network f 1-3] is a probabilistic model that represents a set of random vari­
ables and their conditional independencies via a directed acyclic graph. Formally, Baye­
sian networks are directed acyclic graphs whose nodes represent variables, and whose
edges encode conditional interdependencies between the variables. Generalizations of
Bayesian networks that can represent and solve decision problems under uncertainty are
callee! influence diagrams. A Bayesian network could represent the probabilistic relation­
ships between reasons and effects.

MATERIAL AND METHODS

The soil material originated from studies carried out in the scope of implementation of
a project concerning determination of soil quality in reclaimed areas [5]. In the scope of
these studies, samples were taken from 67 soil pits in order to determine some physical
and chemical properties. This was aimed to develop a database containing characteristics
of soils in various (almost all) valuation classes. Soil pits were macie in soils belonging to
various valuation classes, from class li to VI of arable land. As regards typology, the soils
represented Luvisols, Carnbisols and Gleyic Phaeozerns. Open pits were macie in South­
ern Poland. Within the carried out investigations on 381 soil samples numerous physical
and chemical properties were determined. The following analytical methods were em­
ployed for the purposes of determining the properties used in this work:

grain-size distribution - Casagrande areometric method,
Ml-I, maximum hygroscopic i ty - in vacuum desiccator over I 0% sulphuric acid,
CEC and BS, cation exchange capacity and base saturation - the Kappen method,
pH(!) soil reaction in water suspension, pl-1(2) soil reaction in KCL suspension -
electrometrical ly,
OC, organic carbon - in the CS-500 Eltra elementary analyzer, after having deducted
inorganic carbon determined in the Schei bier apparatus,
SBM, methylene blue sorption - the Peter-Markert method according to Myślińska [8].
The results of determinations were used to develop the Bayesian, qualitative, ernpiri-

Table I. Basic statistical characteristics of soil samples used in the research: Clay - colloidal clay content in
%. OC - organic carbon content in%. MH - maximum hygroscopicity in% by weight, SBM - methylene

blue sorption in cmol/kg. Sor - Cf.C determined using the Kappen method, in crnol/kg, pH( I) - pH measured
in water suspension. pH(2) - pH measured in KCI suspension. BS - base saturation in%

Statistics Clay OC MH SBM Sor pH( 1) pH(2) BS
Average 13.2 0.37 3.23 8.7 12.2 6.43 5.51 76.1

Standard dev. 10.6 0.46 2.42 6.5 6.4 0.98 103 18.1
Minimum o O.O 0.1 O. I 1.2 3.6 3.3 9.6
Maximum 57 3.06 20.9 37.6 41.4 8.6 8.0 97.9
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cal model interrelations between properties or soi Is. Table I specifies elementary meas­ 
ures of central tendency and dispersion of data contained in the database. 

BAYESIAN MODEL OF SORl'TIVE RELATIONS 

Two circumstances connected with the issue ofCEC and 8S estimation are worth consid­ 
eration: correlations between these factors and thus variables forming them, and consid­ 
erable fuzzy relations between valuation of both components and qualitative classifica­ 
tion of soils. In other words, oftentimes linguistic, imprecise and fuzzy evaluations are 
sufficient, apart from the cases of absolute need to use numerical values of estimations 
of both quantities. In these conditions, the Bayesian model may constitute a good tool to 
perform an analysis of correlations determining sorption effects in soil. 

The Bayesian model, which belongs to the group or graphical models, is known in 
reference literature as the Bayesian network (Bn - Bayesian network, or belief network), 
and by assumption it rellects statistical relations between the system elements. This con­ 
cluding model assumes [I, 2) the existence of domain X, for which the following are 
specified: probability distribution Q and attributes u

1
, o2, .•. , a,, for a,:X➔A

1 
for i= I, 2, 

... , n. Conventionally, it is assumed for simplicity that the attributes are solely nominal, 
and we arc interested only in the relationship between them. In practical applications 
or this model, it is common to use different terminology: attributes arc referred to as 
variables, and the domain is constituted by the set of all possible attributions of variable 
values [2]. 

In recent years, the 811 networks have become popular as the concluding systems, 
mainly clue to the fact that computers considerably facilitate rather complex calculations 
required in order to estimate probability of a certain event. At the same time, packages 
make the 811 design easier and their utilization have been popularized as well [J]. 

The key problem involved in generating the 811 cause-effect networks is the algo­ 
rithm applied to reconstruct the form of relationships between the system variables. In 
general, two approaches are possible here, depending on certain circumstances: 

I. Construction of a 811 only with participation of experts, based on their belief". 
while an expert may design graph of the network and parameters for its process­ 
ing; or else a database will be used to determine these parameters after having 
designed the graph. 

2. Construction of the network as a whole - as a reflection of knowledge contained 
in the database only, in practice without direct participation ofan expert. There 
are many algorithms allowing to perform this operation [1-3], from extremely 
simplified to complex ones. 

In the 811 networks, individual variables arc bound up with conditional distribution 
tables determined by an expert or as a result of applying the learning procedure. This al­ 
lows to update individual distributions after having observed a specific value of any vari­ 
able, that is to establish distributions a posteriori. Each 811 network nocie has an attributed 
table of variable state probability on condition of the state or its predecessors (so-called 
,,parents") in the network. Concluding in the Bayesian networks is executed by propaga­ 
tion of successive conditional distributions at observed value of a specific variable, ac­ 
cording to the formula [2]: 

P(x1 , ••• ,xJ = [ł Ptx, I Predecessor(r;)) (I) 
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The GeN/e computational system has been used in the paper, developed at Pitts­
burgh University for research purposes. The obtained model was evaluated using the
Netica application from NorSys. 

Discretization 
Most of packages used to generate the Bn network require discrete variables. Certainly,
this involves the need to convert continuous variables into nominal variables.

One may assume - while analyzing regression examination results - that the network
of connections determining sorption properties of soils includes the following variables:
colloidal clay content, organic carbon content (OC), maximum hygroscopicity (Ml-I), 
methylene blue sorption (SBM), reaction (pll), and of course cation exchange capacity
( CEC) and base saturation (BS). In view of model construction requirements, these vari­
ables had to be discretized by rating their individual values in proper classes. Discretiza­
tion resulted in the conversion of raw variables into modified variables: clay, carbon, higr,
mblue, react, cec and bs. Table 2 shows the digitizing principles. Note that some variables
are classified (named) with certain exaggeration (for example those related to soil reac­
tion), but this results solely from the need to ensure the model communicativeness.

Tahic 2. The criteria of discretization the Bayesian model variables

Orig. var. Units Discr. var. Values and limits of variables
Clay content '1/o clay ABSENT(0), LOW(l-5), MED(6-l5), HIGH(> 15)
Carbon cont. % carbon ABSENT(0), LOW(0.0 1-0.5), MED(0.51-1 0), HIGH(> I .O)

MH % higr VLOW(< 2), LOW(2. l-4), IIIGH(4. l-8),VHIGH(> 8)
SBM cmol/kg mblue VLOW(< 5), LOW(5. I-I 0), HIGH( I 0.1-20), VIIIGH(> 20)
CEC cmol/kg cec VLOW(< 5). LOW(S.1-1 O), HIGH( I 0.1-20), VHIGH(> 20)

Reaction pH react VACID(< 5), ACID(5-6), NEUTR(6-7), ALK(7-8), VALK(> 8)
BS % bs LOW(< 50), MED(S0-75), HIGH(> 75)

The model graph 
Construction of a Bayesian model requires many tests to be performed. Employment of
an algorithm producing network graph in an automated procedure has the value of objec­
tivism, but it also carries with it the risk of occurrence of incidental connections between
variables. The graph of the model shown in Figure I is one of possible versions of the
concluding system. From this point of view, the 'rnblue ' and 'react' variables function as
diagnostic variables, connected with the variables we are interested in, which are difficult
to observe.

Figure 2 illustrates the distribution of probabilities for variables at determined (by
assumption observed) values of the 'react= NEUTR', 'rnblue = Vl-llGH' variables. This
configuration results in the p(HIGH) = 0.99 value being indicated for the 'bs' variable,
and p(HJGH) = 0.59 and p( VHJGH) = 0.4, respectively, for the 'cec' variable. In Figure
3, the configuration has changed, since it has been observed that 'react= VACI D'. In this
situation, the following estimate has been obtained for the 'bs ': p(LOW) = 0.12, p(MED) 
= O. 7, and p(H/GH) = O. 18. Also, the estimates of the 'ccc ' variable probabi lity value have
changed: p(/-f JG H) = 0.27, p( VH IC/-/) = O. 7, respectively, with further consequences.
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Fig. I. The structure of a Bn network for analyzing sorption properties of soils 
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Fig. 2. Probability distributions for variables of the Bn model variables at determined 'react= NEUTR', 
'rnblue = VHIGH' variables 
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Fig. 3. Probability distributions for variables of the Bn model variables at determined 'react= YACID',
'mblue = VHIGH' variables
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Fig. 4. Probability distributions for variables of the Bn model variables at determined 'react= YACID',
'mblue = YLOW' variables
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Figure 4 illustrates the situation in which 'react= NEUTR', and the observed value 
'mblue = VLOW'. As a consequence of these changes, we obtain the following configu­ 
ration for the 'bs ': p(LOW) = 0.13, p(MED) = 0.36, and p(HIGH) = 0.51. Significant 
changes have occurred in the distribution of probabilities for the 'cec' variable, which 
assume the following values: p( VLOW) = 0.67 and p(LOW) = 0.32. 

There is a problem of qualitative valuation of the obtained models. The following 
indicators are used conventionally in models valuation: error frequency coefficients, error 
matrixes, and indicators taking into consideration probability distribution for the states of 
the variable we are interested in. The Netica Package offers the fol lowing three indicators 
which analyze the distribution of probability indications: L1 (logarithmic loss), computed 
using formula: 

I " 
L1 = - · 1)-log(~)] 

n i=l 
(2) 

L11 (Brier, quadratic loss), computed using formula: 

(3) 

and Cs (spherical payoff), computed using formula: 

I " p 
Cs =-I r 

n ,cl "'"' (P)2 L._.j=I J 

(4) 

Lower limit of indicator L1 = O; this value shows the best efficiency. The Ln indicator 
value ranges within (O; 2), where O indicates the best efficiency. The C

1 
indicator value 

ranges within (O; I), where C1 = I shows best efficiency. 
Tables 3, 4 and 5 contain indicators for correct estimates made using the Bn. They 

show serious scattering of results, and difficulties with building of a reliable model, since 
the indicators have been obtained for the training set, assuming complete knowledge of 
the explanatory variables distribution (apart from predicted variables). 

Table 3. The error matrix for f3aycsian model otsorption properties: distribution or the CEC classes 
indications; symbols: 'Pr' - predicted class, 'Obs' - observed class 

Pr(VLOW) Pr(LOW) Pr(HIGH) Pr(VHIGH) 
Obs(VLOW) 62 4 o o 
Obs(LOW) 4 65 13 o 
Obs(HIGI-1) o 28 169 s 
Obs(VHIG!-1) o I 9 21 

Table 4. The error matrix lor Bayesian model of sorption properties: distribution or the BS classes indications; 
symbols: 'Pr' - predicted class, 'Obs' - observed class 

Pr(LOW) Pr(MED) Pr(HIGH) 
Obs(LOW) IS 28 o 
Obs(MED) 6 81 6 
Obs(I-IIG!-1) o 27 218 
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Table 5. Indicators of the Bayesian network indications quality for the CEC and US valuation

Indicator CEC BS
Error rate [%] 16.8 17.6

Logarithmic loss 0.32 0.36
Quadratic loss 0.21 0.23
Spherical loss 0.88 0.86

The Bayesian network indicates probability distribution for states, related to certain
configuration of variables. Besides certain cases of close function-type relations it does
not allow to determine what exactly will be the value of the variable. However, a diagnos­
tic model of this type may be a useful tool helping to make correct technical decisions, for
example during reclaiming works, in particular considering suitably extensive database
used to build it. Making of decisions concerning neutralizer closes, aimed to reach certain
saturation state may be based on a similar model.

Quite a serious problem in making adaptation models is defining their generaliza­
tion properties. Adaptation models often contain many free parameters, being justed in
the training procedure. With a relatively small amount of data, there is a risk of adjusting
a model to a concrete set, which then mani fests in a disproportional growth of the error
in the classification of the data outside the training set. A commonly applied way of the

Table 6. Results or the Bayesian network cross-validation (IO-Folds method) for the CEC and BS valuation
(ER - error rate in%)

CEC BS
Sample set ER L, L,, C ER L L,, C 
Training I 15.7 0.31 0.20 0.88 16.9 0.33 0.21 0.87

Valid I 15.8 w 0.26 0.86 23.7 0.74 0.45 0.74
Training 2 15.7 0.32 0.21 0.88 15.5 0.32 0.21 0.88

Valid 2 23.7 w 0.31 0.83 44.7 w 0.58 0.66
Training 3 14.3 0.29 0.18 0.89 18.1 0.38 0.24 0.86

Valid 3 39.5 w 0.48 0.72 13.6 0.23 O. I 5 0.90
Training 4 I 5.5 0.31 O. 19 0.89 16.9 0.35 0.23 0.87

Valid 4 28.9 w 0.40 0.78 23.7 0.48 0.3 I 0.81
Training 5 16.9 0.31 0.21 0.88 16.9 0.34 0.21 0.87

Valid 5 15.8 w 0.30 0.83 26.3 0.69 0.43 0.74
Training 6 18.1 0.33 0.21 0.87 14.3 0.31 0.20 0.88

Valid 6 26.3 w 0.39 0.79 52.6 w 0.66 0.60
Training 7 17.2 0.32 0.21 0.88 19.5 0.40 0.26 0.85

Valid 7 15.8 w 0.23 0.87 O.O 0.02 0.02 0.99
Training 8 16.0 0.33 0.21 0.88 19.5 0.41 0.26 0.84

Valid 8 21.1 0.34 0.22 0.88 O.O 0.00 0.00 1.00
Training 9 16.6 0.33 0.21 0.88 18.9 0.39 0.25 0.85

Valid 9 18.4 0.34 0.22 0.87 5.3 O. li 0.07 0.96
Training IO 15.5 0.31 0.20 0.88 17.8 0.35 0.23 0.87

Valid IO 23.7 w 0.45 0.77 23.7 w 0.43 0.76
Tr. av. I 6.2 0.32 0.30 0.88 17.4 0.36 0.23 0.86
Val. av. 23.7 - 0.33 0.74 21.4 0.32 0.31 0.81
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assessment of this risk is cross validation [I]. The results of this procedure for the dis­
cussed model are presented in Table 6. It is natural that the validation usually gives worse
results of the correctness of classification than it takes place with the application of data
used in the training. This is also true in this case, although the results of the validation are
relatively little significant, they are, generally, different than the assessment of the model,
based on the training data. Looking through the indicators of the classification correct­
ness, the model can be regarded as reflecting real relationships between soil features.

SUMMARY AND CONCLUSIONS

Problems on land use, soil conservation and environmental management require increas­
ingly accurate information onsoil properties and their geographical location. Qualitative
models, particulary in GIS/LIS application as a soils inference system, are developed for
estimation of attributes related to management, planning practices, environmental impact
assessment, environmental risk assessment and other areas.

All the soil properties are linked with one another in numerous relationships. The ac­
tivities, undertaken, e.g. to improve a certain soil property, can lead to the modification of
many features. A comprehensive model of the functioning of the soi1 system would prob­
ably be useful, but nowadays we have to do with extremely simplified models, neglecting
some conditions. The Bayesian belief network is helpful in the construction of such mod­
els. They were constructed with the objective to assess the impact on the environment of
different soil management scenarios. The attempt presented in the paper shows the advan­
tages and disadvantages of such modeling: despite significant simplifications and obvious
removals of some aspects, the obtained result can be regarded satisfactory. A model of
this type enables to bind comprehensively the observed parameters of the ecosystem and
analyzing its behavior in case of the intervention in its structure. Indirectly, the model of
this type shows the need of analyzing, if possible, many soil properties, because rudi­
mentary data do not al low the estimation of the directions of potential threats connected
with the intended activities, e.g. reclamation measures. An obvious disadvantage of this
is the need of basing on a rather large set of empirical data, because, otherwise, there is
a high risk to obtain a model insufficiently reflecting general relationships between soi I
properties.
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MODEL Bi\YESOWSKI WSPÓLZ/\Ll::ŻNOŚCI Mlr;ozy CECII/\MI SORPCYJNYMI GI.EB

Praca przedstawia jakościowy. bayesowsk i model niektórych współzależności między cechami sorpcyjnymi
mineralnych gleb opróbowanych w południowej Polsce. Właściwości sorpcyjne są ważnymi cechami, współ­
decydującymi o poziomie nawożenia, zasobności w składniki pokarmowe oraz zdolności do ochrony wód grun­
towych przed zanieczyszczeniem. Pojemność wymienna kationów jest powszechnie używanym wskaźnikiem
stanu gleb i ich odporności na różnorodne wpływy. Stopień wysycenia kationami zasadowymi jest ważnym
czynnikiem kształtowania ryzyka środowiskowego związanego z procesami zakwaszania gleb. Badane gleby
reprezentują różne klasy bonitacyjne i typologię. Do oceny współzależności zastosowano model bayesowski.


