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Abstract: The paper deals with recent developments in the fields of applied mathematics and operational re­
search triggered by the needs of effective support of environmental policy-making processes that require inter­
disciplinary science-based advice. Mathematical models developed for this purpose demand new modeling
paradigms for an adequate integration of pertinent knowledge. and creation of knowledge needed for rational
decision-making. The article first summarizes the model-based support for problem solving from the point
of view of actual decision-makers. Next, il discusses the model representation of the knowledge pertinent lo
a given decision-making problem, and the recently developed modeling technology supporting the whole proc­
ess of modeling complex problems. The last parł deals with novel methods and tools for integrated management
of risks related to natural catastrophes. The presented methodology is illustrated by its application lo actual
environmental policy-making support.

INTRODUCTION

Rational policy making is becoming more and more difficult because the corre­
sponding decisions cannot be adequately represented by well-structured problems that are
easy to solve by intuition or experience supported by relatively simple calculations. Even
the same type of problems that used to be easy to define and solve, are now much more
complex because of the globalization of the economy, and a much greater awareness of
its linkages with various environmental, social, and political issues. One of the dominant
driving forces is efficiency, which has led to globalization, increased dependency among
more diversified systems, a reduction in many safeties (both technological and social)
margins, and other factors which contribute to increased vulnerability. Traditional socie­
ties developed slower but in a more robust way, i.e., the consequences of wrong decisions
or natural catastrophes were rather limited. Nowadays, the consequences of wrong deci­
sions may be wider (even global and long-term) and more serious (in terms of economi­
cal, social and environmental impact).
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Rational support for policy making should be based on a comprehensive analysis 
of the underlying problem aimed at finding a possibly best portfolio of decisions. One 
should stress that possibly best does not mean an optimal solution in the traditional sense 
of mathematical programming. Comprehensive analysis implies exploitation of pertinent 
science (i.e. organized knowledge relevant to the decision problem) to analyze the conse­ 
quences (outcomes) of various decisions, and to help to identify a portfolio of decisions 
that correspond best to the preferred trade-offs in the outcome space. Thus, science-based 
support for policy-making means (I) integration (for properly representing relations 
between decisions and their consequences) and (2) creation (for analysis of attainable 
trade-offs between the consequences) of knowledge, both aimed at providing a basis for 
rational decision-making. This sounds to be an obvious conclusion. However, its proper 
application to the modeling process requires more attention to the modeling technology 
than is commonly recognized. 

The key features of policy-making are commonly known. Decisions: 
are rarely based on complete and precise information about the relations between 
decisions and all consequences of their implementations, 
have impacts on diversified stakeholders, typically having different, often conflict­ 
ing, interests and goals, 
often have consequences on various spatial and temporal scales, 
are done for the future, which always is uncertain. 
It is not possible to analyze all these elements for any actual decision problem. Yet, 

decisions have to be made, either with or without science-based support. Policy-making 
can be greatly either supported or misled by science. The unquestionable successes of 
operational research show opportunities of using mathematical models and their analysis 
for substantially contributing to solving problems in a better way than it would be possi­ 
ble without using models. Despite the countless number of successful applications, there 
is also well-justified criticism of various critical aspects of modeling, e.g., in [ 1, 2, 5, I 9, 
33]. The role of models in modern decision-making, a view shared by the author of this 
paper, is discussed in detail in [35], which also presents methodology and tools for model­ 
based decision-making support, and illustrates them with several applications to complex 
environmental policy-making problems. A more focused discussion of selected elements 
of modeling for decision support is provided in [25], which also includes an updated bib­ 
liography on modeling for decision support. 

This article discusses selected recent methodological developments triggered by 
actual applications of system analysis to supporting environmental policy-making. Al­ 
though developed for addressing specific practical environmental policy-making prob­ 
lems, the methods and tools have also been applied to other problems; therefore they may 
also be interesting to both researchers and practitioners working in the field of environ­ 
mental protection. 

The remaining part of this paper is composed of three parts. The first one sum­ 
marizes the model-based support for problem solving from the point of view of actual 
decision-makers. I n the next part we discuss the model representation of knowledge per­ 
tinent to a given decision problem, and the recently developed modeling technology sup­ 
porting the whole process of modeling complex problems. The last part deals with novel 
methods and tools for integrated management of risks related to natural catastrophes. 
The presented methodology is illustrated by applications to actual environmental policy­ 
making support. 
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MODEL-BASED PROBLEM SOLVING SUPPORT 

A mathematical modeling process for supporting problem solving is actually a network of 
carefully designed activities driven by the requirement analysis. The role of the require­ 
ment analysis is often underestimated although it is commonly known that a properly 
done analysis is a key condition for any successful modeling process. This topic is far 
beyond the scope of this paper, therefore we mention here only those key elements of the 
requirement analysis which are directly related to the process of knowledge integration 
and creation aimed at supporting analysis and solving of a given problem: 

What decisions are to be made? 
How the consequences of decisions are measured? 
What relations between the consequences and the decisions should be considered? 
What data is available? 
How the decision-maker(s) and/or stakeholders' preferences (for different decisions 
and the corresponding consequences) can be represented and analyzed? 
However, we emphasize that the requirement analysis (and the corresponding mod­ 

eling process) should be specific to a given decision-making situation. 
Mathematical models are probably the best way to manage (integrate and create) 

knowledge for problem solving whenever it involves analysis of large amounts of data 
and/or non-trivial relations. In such cases the elements of the requirement analysis cor­ 
respond to the basic elements of a typical structure (illustrated in Fig. I) when using a 
mathematical model for problem solving. 

User 

P(x,y)~--- 
z --·-·-- 

Mathematical model 
y = F (x,z) 

Fig. 1. A typical structure when using a mathematical model for problem solving 

A mathematical model describes the modeled problem by means of variables, which 
are abstract representations of these elements of the problem that should be considered 
for evaluation of the consequences of implementing a decision (typically represented by 
a vector composed of many variables). We present here a view on mathematical models 
from the perspective of actual users (who are rarely familiar with operational research) 
that differs from typical formulations of the corresponding mathematical programming 
problems. The term user denotes a person (or a group of persons) who make decisions, 
advise actual decision-makers, or use the model for analyzing the underlying problem. 
From a user (or decision-making) perspective, a model is developed using the following 
concepts: 

Decision (control, input) variables x, which are controlled by the user. 
External decisions (inputs) z, which are not controlled by the user. 
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Outcome (criteria, indicator, metric, output) variablesy, used for measuring the con­ 
sequences of implementation of the decisions. 
Auxiliary (other) variables defined and used in order to make the model easier to 
develop and analyze. A large model may have several millions of variables and con­ 
straints, even when the number of decision and outcome variables is much smaller 
(say several thousands). However, auxiliary variables are usually not interesting for 
the users; therefore for the sake of brevity we do not consider such variables here. 
Relations between decisions x and z, and outcomes y, such relations are typically 
presented in the form: 

y = F(x, z, A), ( 1) 
where F(-) is a vector of functions having parameters denoted by matrix A. In mathemati­ 
cal programming the relations are conventionally called constraints, and typically defined 
as: 

y - F(x, z, A) = O 

A representation of a preferential structure P(x, y) of the user, used for selecting ( out 
of typically an infinite number of solutions) a manageable subset of solutions cor­ 
responding best to user's preferences. 
The compact form of equation (I) may be misleading for those who are not farni liar 

with the complexity of the underlying knowledge representation. The latter is critically 
important for the model quality, therefore we discuss below the key aspects of modeling 
methodology. 

A common form of knowledge is a collection of facts and rules about a subject. Let 
us therefore consider mathematical models as composed of entities of three types: 

parameters, values of which represent facts ( data), 
variables, values of which are assigned during the model analysis, 
relations ( 1) that represent knowledge about the relationships among parameters and 
variables. 
Thus, by a proper definition of decision and outcome variables a model can indeed 

represent knowledge pertinent to analyzing consequences of various decisions aiming at 
finding the trade-offs between the consequences that best fit the preferences of decision­ 
maker(s) and/or stakeholders. This simple methodological recipe is however difficult to 
implement, even for problems that appear to be easy to analyze. To justify this statement 
we will now discuss key elements of the knowledge integration process, and illustrate it 
by a practical problem. 

KNOWLEDGE INTEGRATION 

Complex problems are typically composed of heterogeneous subjects, and often com­ 
plexity of the knowledge represented by the corresponding model is difficult to be judged 
from articles focusing on a model application, such as [7] summarizing the results of the 
RAINS/GAINS model. Actually, the structure of this model illustrated in Fig. 2 is pretty 
complex; it is composed of the following subjects: several sectors of economy (industry, 
transportation, agriculture, etc), the corresponding technologies, atmospheric chemistry, 
ecology, environmental and health impacts, and environmental targets. Moreover, for de­ 
veloping and maintaining this family of models also deep knowledge of negotiations, 



ADVANCES IN MODELING METHODOLOGY FOR SUPPORTING ENVIRONMENTAL... 133 

Economl c actlvltl es Emissions Transport 

.: Country ... I Country .. I 

Preferences 
, l\-1rnimurn ot costs 
, Environmental targets 
, Emission control policres 

• Demand for economic 
acuvrnes 

Country 2 
Country 1 

< 

fi~--- • SOx • PM, 
• NOx • CO2 
, voe 
• NH3 

-· 

I 
03 formation 

S dispersion 

PM dispersion 
and 

formation 

Health and 
environmental ._ 
impacts 

Effects 

Health and 
environmental t-------~ 
targets 

Fig. 2. RAINS/GAINS model structure 

policy making, and operational research is necessary. Each of these subjects is rather 
complex, and for each there exists a huge amount of knowledge accumulated in various 
fields of science and practice. Thus one of the challenges is to select a tiny subset of the 
(globally) available knowledge that is relevant to the modeled problem. Although het­ 
erogeneity of subjects represented by the RAINS/GAINS model is far beyond a typical 
model, selection of appropriate ( for the problem at hand) elements ofknowledge remains 
a challenge also for rather homogeneous (in terms of the science disciplines) problems. 

In many situations symbolic model specification can be based on commonly known 
rules of science. However, in other situations knowledge pertinent to a particular rela­ 
tion is so diversified that a definition of a single relation requires a dedicated study. To 
illustrate this problem let us recall that the relation between trophosperic ozone and its 
two precursors (nitrogen oxides and volatile organic compound) can be defined in very 
different ways, each having the corresponding diversified advantages and disadvantages 
depending on the content in which the relation is applied, see e.g., [ I 9]. Relations for each 
subject (in large scale models represented by a submode!) are defined in a close coopera­ 
tion between specialists in the corresponding area and a team of modelers capable to: 

assess the consequences of the considered relation types on numerical complexity of 
the resulting computational tasks, and 
assure consistency of the whole model to which the relation will be included. 
A model integrates knowledge pertinent to analyzing a particular problem on two 

levels: 
symbolic model specification, 
model instance (also called substantive model or core mode[) composed of model 
specification and a selected set of data used for instantiation of relations (through 
assigning values to parameters of the relations). 
Models are generated (except of tiny models composed of a small number of vari­ 

ables) from symbolic model specifications defined with help of compound entities (pa- 
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rametcrs, variables, and relations) and sets or indices, the latter used for generating the 
corresponding sets of entities. Thus, a compound entity is actually a multidimensional 
vector composed of the corresponding primitive entities defined by a generic entity and 
all admissible combinations of indices declared for it. To illustrate this point let us con­ 
sider a simple definition of an auxiliary variable in the GAINS model: 

XSs,j,u = L W;01 X;a1' i E /, p EP, a E A!P;p 
IE7i,0 

(2) 

where xs and x arc compound variables, w is a compound parameter, and indices i. p. u. I 
denote a country, pollution type, economic activity, and technology, respectively. For a 
typical instance or the GAINS/RAINS model there are about 200 subsets AIP. of the 

'I' 
activity set A; the equation (2) is therefore represented in the corresponding optimization 
problem by about 40 OOO constraints (and the same number or corresponding primitive 
variables x.\·;P,,) with about 200 OOO corresponding non-zero elements or the Jacobian. 

The complexity or this relation is caused by the fact that indices t and o are mem­ 
bers of sets which arc indexed by other indices. Moreover, the actual model is defined 
by dozens of compound relations; most of them arc much more complex than one of the 
simplest relations represented by equation (2). Therefore, even if the size of each set is not 
large, the structure of the corresponding indexed subsets is pretty complex and requires 
effective management. Such a management includes: 

efficient handling or the underlying data structures that in turn requires advanced 
use of DBMS (Database Management System), which is inevitable for an effective 
modeling process of large scale models; 
analysis of semantic correctness of indexing structures. 
Moreover, the modeling processes supporting policy making have to meet the strong 

requirements of: credibility, transparency, replicability of results, integrated model analy­ 
sis, controllability (modification of model specification and data, and various views on, 
and interactive analysis ot: results), quality assurance, documentation, controllable shar­ 
ing of modeling resources through the Internet, and efficient use of resources on computa­ 
tional Grids. These requirements also demand novel modeling technology. We comment 
here on only two related problems: 

Assuring semantic consistency of model specification requires verification of meas­ 
urement units of all model entities. The fact that this functionality is not provided 
by the general purpose modeling environments illustrates the underlying challenges. 
Recent achievements in this area are reported in [29]. 
Data for large models comes from different sources (also as results from analysis 
of various models), and larger subsets of data are maintained by teams. Persons 
working with well-defined subsets of data are experienced in collecting, cleansing, 
verifying, and maintaining the data they are responsible for. Therefore the "only" 
problem is how to structure the process of aggregating the subsets of data maintained 
by various teams (typically also using different hardware and software) into a data 
collection that can be used for model instantiation and analysis. To achieve this, a 
structured approach (such as the SMT described below) based on DBMSs and an 
automatically generated data warehouse is a must. 
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STRUCTURED MODELING TECHNOLOGY (SMT) 

The Structured Modeling Technology (SMT) has been developed in response to the mod­ 
eling needs of the RAINS/GAINS family of models, which could not be met by the avail­ 
able modeling tools. Although SMT exploits a great deal of modeling legacy, a number of 
challenging problems had to be solved to provide the needed functionality. This includes 
the SMT features summarized below. Finally, one has to stress that although the design 
and development of SMT was directed by the characteristics of the RAINS family of 
models this does not restrict applicability of SMT because the features of the RAINS 
models are typical for a wide range of complex models. 

The complexity of problems, and the corresponding modeling process involving 
inter-disciplinary teams are the two main factors that determine the requirements for 
modeling technology; such requirements are not met by the technologies successfully 
applied to modeling well-structured and relatively simple problems. In most publications 
that deal with modeling, small problems are used as an illustration of the presented mod­ 
eling methods and tools. Often, they can also be applied to large problems. However, as 
discussed above, the complexity is characterized not primarily by the size, but rather by 
the requirements of integrating heterogeneous knowledge, by the structure of the prob­ 
lem, and by the requirements for the corresponding modeling process. Moreover, efficient 
solving of complex problems requires the use ofa variety of models and modeling tools; 
this in turn will require even more reliable, re-usable, and shareable modeling resources 
(models, data, modeling tools). The complexity, size, model development process, and 
the requirements for integrated model analysis form the main arguments that justify the 
needs for the new modeling methodology. 

SMT has been developed for meeting such requirements. It supports distributed 
modeling activities for models with a complex structure using large amounts of diversi­ 
fied data, possibly from different sources. A description of SMT is beyond the scope of 
this paper, therefore we only summarize its main features here: 

SMT is Web-based, thus it supports any-where, any-time collaborative modeling. 
It follows the principles of Structured Modeling proposed by Geoffrion, see e.g., 
[ 15]; thus it has a modular structure which supports the development of various ele­ 
ments of the modeling process (model specification, processing (subsets of) data, 
integrated model analysis) by different teams. 
It provides automatic documentation of all modeling activities. 
It uses a DBMS for all persistent elements of the modeling process, which results 
in efficiency and robustness; moreover, the capabilities of DBMSs allow for the ef­ 
ficient handling of huge amounts of data. 
It ensures the consistency of: model specification, meta-data, data, model instances, 
computational tasks, and the results of model analysis. 
It automatically generates a Data Warehouse with an efficient (also for large amounts 
of data) structure for: 
o data, and the tree-structure of data updates, 
o definitions of instances, 
o definitions of preferences for diversified methods of model analysis, 
o results of model results, 
o logs of all operations during the modeling process. 
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This conforms to the requirement for the persistency of all elements of the modeling 
process: 

It exploits computational grids for large amounts of calculations. 
It also provides users with easy and context-sensitive problem reporting. 
The methodological background of structured modeling (including an overview of 
diversified modeling paradigms and the standard modeling methods and tools) as 
well as a detailed SMT description is available in [22]. 

COPING WITH UNCERTAINTY 

Out of the huge scientific area of uncertainty we are dealing here only with recent devel­ 
opments in integrated management of risks related to natural catastrophes. Policy options 
for such risk management include various ex-ante measures (such as mitigation, different 
arrangements for risk spreading) and ex-post measures aimed at reducing and sharing 
losses. The outcomes of implementing a given set of policy measures are typically meas­ 
ured by various indicators such as ex-ante and ex-post costs, benefits from mitigation 
measures, welfare, quality of the environment, and indicators of risk exposure (value at 
risk, insolvency). 

Novel methods for effective risk management had to be developed because the tra­ 
ditional approaches that rely on real observations and experiments are not applicable to 
rare events such as natural catastrophes. The first main issue is the lack of historical data 
on extreme events characterized by abrupt irreversible changes. The second key problem 
is that extreme events having such a big impact on societies are typically evaluated as 
improbable events during a human lifetime although a I OOO-year (an extreme event that 
occurs on average once in I OOO years) earthquake may occur even tomorrow; e.g., the 
Chernobyl disaster of 1986 was quantified as I OOO OOO-year event, and it occurred 9 years 
after the power plant was commissioned. The third important issue is the evaluation: actu­ 
ally, it is not rational to evaluate consequences of catastrophic events using traditional ap­ 
proaches. The traditional models in economics, insurance, risk-management, and extreme 
value theory are based on exact predictions and evaluations. Standard insurance theory 
essentially relies on the assumption of independent, frequent, low-consequence ( conven­ 
tional) risks, such as car accidents, for which decisions on premiums, claims estimates 
and the likelihood of insolvency can be calculated from rich historical data. Also the 
established extremal value theory deals primarily with independent events and assumes 
that these events are quantifiable by a single number [9]. However, catastrophes should 
not be quantified in this way because they have significant spatial and temporal patterns 
that induce heterogeneity of losses and gains. Moreover, random variables characterizing 
catastrophes have probability distributions with heavy tail; often the distributions are 
multimodal with expected values that correspond to events that never occur. 

The most important scientific challenge in addressing the problems summarized 
above is to develop proper methods for comparative analysis of feasible decisions and to 
design robust policies with respect to the uncertainties and risks involved. Although exact 
evaluations are impossible, the preference structure among decisions can be a stable basis 
for a relative ranking of alternatives. This issue is discussed in more detail in [ 16] along 
with other open research problems related to proper treatment of irreducible uncertainty, 
catastrophic risks, spatial and temporal heterogeneity, downscaling, and discounting. 
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Designing robust policies for integrated catastrophic risk management is a complex 
interdisciplinary problem requiring knowledge of environmental, natural, financial, and 
social systems. Consequences of catastrophes are unevenly distributed; therefore a cor­ 
responding decision-making process requires participation of various agents and stake­ 
holders such as governments, individuals, producers, consumers, insurers, investors. The 
perception of catastrophes by all these actors, and their goals and constraints with respect 
to these rare but high-consequence events is very diversified. A rational policy-making 
should therefore take into account all these elements which is hardly possible without 
support provided by a dedicated interdisciplinary modeling effort. 

Below, we outline the system or models developed for supporting actual policy­ 
making processes related to integrated management of natural catastrophe risks. These 
models support analysis of spatial and temporal heterogeneity of various agents (stake­ 
holders) induced by mutually dependent losses from extreme events. The implemented 
approach addresses the specifics of catastrophic risks: diversified interdisciplinary knowl­ 
edge about the catastrophes, limited data available for each specific case, the need for long 
tern, perspectives and geographically explicit models, and a multi-agent decision-making 
structure. Therefore, the corresponding models combine the available data representing 
the geographically explicit distribution of capital stocks and economic values of the re­ 
gional infrastructure and agriculture with a stochastic model that generates occurrences, 
magnitudes, and locations of catastrophes. Using advanced stochastic optimization tech­ 
niques, the model supports the search for, and the analysis or, robust optimal portfolios of 
ex-ante (land use, structural mitigation, insurance) and ex-post (adaptation, rehabilitation, 
contingent credits, redirecting of funds) measures for decreasing the vulnerability meas­ 
ured in terms of economic, financial, and human losses as well as in terms of selected 
welfare growth indicators. 
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The system of models has a modular structure illustrated in Figures 3 and 4 consist- 
ing of the following modules: 

A catastrophe module simulates a natural phenomenon. It is based on the knowledge 
of the corresponding type of event represented by a set of variables and relations be­ 
tween them, and uses the spatial data for a given location. Different versions of this 
module are implemented for different types of natural catastrophes. For example, a 
flood simulator (illustrated by the first two modules shown in Fig. 3) is composed 
of precipitation curves, water discharge, river characteristics, and spatial inundation 
models. For a hurricane simulator, the variables include the radius of the maximum 
winds, or the forward speed of the storm. An earthquake module simulates shaking of 
the ground using epicenter locations, magnitudes of earthquakes, Gutenberg-Richter 
laws, and attenuation characteristics. A catastrophe module therefore compensates 
the lack of historical data on the occurrence of catastrophes in locations where the 
effects of catastrophes may have never been experienced in the past. The catastrophe 
models used in various IIASA's case studies are based on the Monte Carlo dynamic 
simulations of geographically explicit catastrophe patterns in selected regions. Dis­ 
cussion of these models is beyond the scope of this paper but can be found, e.g., in 
[3, 6, 1 O, I 4, 34]. 
A vulnerability module, which provides estimations of damages caused by a specific 
(generated by the catastrophe module) catastrophe. Physical indicators (like shak­ 
ing intensities, duration of standing water, water discharge speed or wind speeds) 
generated by the corresponding catastrophe module are used for calculating the cor­ 
responding damages. The vulnerability module uses vulnerability curves and infra­ 
structure data (such as the age of buildings, the number of stores) for estimating 
damages induced by the simulated disaster. This module, therefore, provides spatial 
distributions of direct losses. 
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Fig. 4. Multi-agent accounting and adaptive Monte-Carlo optimization modules for supporting integrated 
management of natural catastrophe risks 
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The economic multi-agent accounting system (MAAS, see Fig. 4) is a stochastic 
dynamic welfare growth model (see, e.g., [ 11, 12]) that maps spatial losses (which 
depend on selected loss mitigating and sharing policy options) into gains and losses 
of agents (stakeholders) involved in the policy-making, e.g., central and local gov­ 
ernments, a (mandatory) catastrophe insurer, investors (e.g., interested in providing 
structural measures mitigating the consequences of a catastrophe), and individuals 
exposed to the catastrophe risks. 
The adaptive Monte-Carlo optimization is used together with the variability mod­ 
ule for designing "robust" optimal decisions. The design is done by incorporating 
stochastic spatial adaptive Monte-Carlo optimization techniques into catastrophic 
modeling that enables the design of desirable robust solutions without evaluating all 
possible alternatives. Discussion of the methodological background or the applied 
approach (presented in [ 12]) is beyond the scope of this paper. Here we only men­ 
tion that different catastrophic scenarios lead to different decision strategies, and the 
number or alternative decisions is typically huge; therefore a straightforward if then 
evaluation or all alternatives is not practicable. The novelty of the implemented ap­ 
proach is that it effectively supports finding a combination of decisions that forms a 
"best" strategy against almost all possible scenarios. This strategy takes into account 
the goals and constraints agreed with all stakeholders. 
The modular structure not only conforms to good software engineering practice but 

also allows for reuse of modules for case studies involving di ffercnt types of natural ca­ 
tastrophes. 

The above summarized methodology for the system of models developed for inte­ 
grated management of risks related to natural catastrophes is an example of application 
of novel methods and tools for effective coping with uncertainties. Descriptions of other 
methods and applications can be found in [21 ]; a broader scope of recent developments in 
coping with uncertainty is presented in [26-28]. Here we only mention the recently devel­ 
oped Fundamentally new concept of endogenous spatio-temporal discounting, so-called 
stopping time discounting [ 13]. This method is based on undiscounted stopping-time 
criterion which is equivalent to the standard discounted criterion in the case of market­ 
related discount factors. It enables a complementary (to the approach summarized above) 
evaluation of long-term spatially explicit robust risk management strategies against po­ 
tentially extreme catastrophic events. 

CONCLUSIONS 

This paper presents selected recent developments in modeling methodology and illus­ 
trates their applicability to supporting actual environmental policy-making. We close the 
presentation with more general comments that are based on the lessons from many real­ 
life applications. 

Most new modeling practitioners dealing with complex problems arc surprised by 
the amount of work and the length of time required to obtain results truly useful for pol­ 
icy-making support. Complex problems are modeled by interdisciplinary teams that first 
have to find a common language, and then for a selected modeling paradigm must find a 
way of avoiding too much detail while preserving the essential features of the considered 
problem. Although many well-developed modeling paradigms exist (an overview can be 



140 MAREK Mi\KOWSKI 

found in [31 ], more specific approaches in, e.g., [4, 17, 18, 22, 25, 35, 36]), it is not easy 
to select and implement the one that best serves the problem at hand. Moreover, some­ 
times a simple modification ofa model specification results in a dramatic decrease of the 
computing resources needed to solve the underlying computational task, or in providing 
solutions having more desired properties. Several examples illustrating this point can be 
found in [20, 30]. 

We also recommend the old (but still very relevant) guidelines formulated by Dan­ 
tzig, who summarized in [8] the opportunities and limitations of using large-scale models 
for policy making. Dantzig also coined the term Laboratory World that today can be 
interpreted as modeling environment in which various models are developed and used 
to learn about the modeled problem in a comprehensive way. Thanks to the development 
of algorithms and computing power today's large-scale models are at least I OOO-times 
larger; thus, large-scale models of the 1970s are classified as rather small today. This, 
however, makes Dantzig's message relevant to practically all models used today, not 
only for policy-making but also in science and management. Today's models are not only 
much larger. The modeled problems are more complex (e.g., by including representation 
of knowledge coming from various fields of science and technology), and many models 
are developed by interdisciplinary teams. The complexity, size, model development proc­ 
ess, and requirements for integrated model analysis form the main arguments justifying 
the needs for the new modeling methodology. More detailed arguments (including over­ 
view of the standard modeling methods and tools) supporting this statement are available 
in [22]. 

One should also point out tacit advantages from modeling complex problems: the 
modeling process ( especially the specification and verification of various versions of the 
model) typically facilitates learning about many characteristics of the modeled problem 
that had not been recognized even by experienced "problem-owners" before the modeling 
process started. To illustrate this issue let us note that even a simple (from decision­ 
making point of view) problem of selecting a solution from a set of discrete alternatives 
poses methodological challenges and pitfalls, see e.g., [23]. Thus learning about the de­ 
cision problem during the modeling process is typically at least equally important as 
a model-based support for finding a solution that the user considers fitting best her/his 
preferences. Note that the classical (and still most popular) approach is based on looking 
for an "optimal" solution, although actually any feasible solution can be proven to be (in 
a sense) optimal. This observation shows how important it is to properly use the power of 
optimization for solving actual problems, see e.g., [23, 25]. 

The truth is that there are no simple solutions for complex problems. Modeling 
a non-trivial problem, especially aimed at supporting policy-making, requires not only 
interdisciplinary team-work and appropriate modeling tools, but also a combination of 
explicit and tacit knowledge, experience, intuition, and taste. Aggregation of diversified 
modeling skills is rather difficult; therefore modeling remains and will remain an art. In 
other words, modeling is in a sense similar to cooking: recipes, ingredients, experience, 
and tools are necessary, but actually neither cooking nor modeling can be mastered from 
books. 
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POSTI;PY W Mf',TODOI.OGII MODELOWANIA MATEiVlATYCZNEGO DLA WSPOMAGANIA
I'ROCESOW DF:CYZY JNYCI I DOTYCZ;\CYCI I SRODOWISKA NATURALNEGO

W artykule przedstawiono nowe osiągnięcia w dziedzinach matematyki stosowanej i badań operacyjnych,
które są wynikiem badań motywowanych potrzebami efektywnego wspomagania procesów decyzyjnych
związanych z problemami środowiska naturalnego. Takie wspomaganie wymaga współpracy naukowców z
różnych dziedzin w celu budowania modeli matenuuycznych, które nie tylko reprezentują zintegrowaną wiedzę
dostępną w różnych dziedzinach nauki. ale także wspomagają tworzenie wiedzy użytecznej dla podejmowania
racjonalnych decyzji. W artykule scharakteryzowano rolę modeli matematycznych w procesach wspomagania
decyzji z punktu widzenia decydentów i ekspertów używających tych modeli. Następnie przedstawiono zagad­
nienia matematycznej reprezentacji interdyscyplinarnej wiedzy użytecznej dla danego problemu decyzyjnego;
w szczególności opisano nową technologię modelowania strukturalnego, która wspomaga cały proces mo­
delowania. Ostatnia część artykułu poświęcona jest nowej metodologii zintegrowanej analizy ryzyka związanego
z naturalnymi katastrofami; analiza służy znajdowaniu rozwiązań racjonalnych dla instytucji i społeczeństwa,
które mają różne cele i ograniczenia. Wszystkie prezentowane metodologie są ilustrowane praktycznymi zas­
tosowaniami we wspomaganiu procesów decyzyjnych dotyczących środowiska naturalnego.


