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Abstract

In this paper we consider a class of nonlinear autoregressive models in which
a specific type of dependence structure between the error term and the lagged
values of the state variable is assumed. We show that there exists an equivalent
representation given by a p-th order state-dependent autoregressive (SDAR(p))
model where the error term is independent of the last p lagged values of the
state variable (yt−1, . . . , yt−p) and the autoregressive coefficients are specific
functions of them. We discuss a quasi-maximum likelihood estimator of the
model parameters and we prove its consistency and asymptotic normality. To
test the forecasting ability of the SDAR(p) model, we propose an empirical
application to the quarterly Japan GDP growth rate which is a time series
characterized by a level-increment dependence. A comparative analyses is
conducted taking into consideration some alternative and competitive models
for nonlinear time series such as SETAR and AR-GARCH models.
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1 Introduction
In this paper we study a generalized version of an autoregressive model where we
assume a dependence structure which links the lagged state variable Yt−1 and the
error term ξt, extending the standard autoregressive model, in line with the approach
considered in Cherubini et al. (2016) (some temporal dependence properties of this
model, such as stationarity and mixing, are derived in Gobbi and Mulinacci, 2020).
The aim of this approach is to reconcile two needs: i) model nonlinearity in time
series; ii) capture the level-increment dependence. In particular, the dependence
between the state variable at time t−1, Yt−1 and its next increment ∆Yt = Yt−Yt−1
is of the utmost interest in our opinion. The issue has been investigated in Gobbi
and Mulinacci (2021) where the assumption that the error term is a function of the
current level plus some noise has been considered: the resulting model is applied
to the realized volatility extracted from financial indexes on a weekly basis and its
forecasting ability is analyzed in comparison with other nonlinear models. Aim of the
present paper is to generalize the model there introduced and discussed by allowing
the innovation to be a function of an arbitrary number of lags, in order to detect
in a more efficient way the level-increment dependence. Here our interest is to show
how the model can also be considered useful for low-frequency macroeconomic data
where the dependence on the past can be more pronounced. In particular, the time
series considered in this work is the Japan GDP growth rate which has two significant
characteristics: nonlinearity combined with a marked and negative level-increment
dependence. Two elements that make the model considered in this paper an ideal
candidate for its modeling.
Following Cherubini et al. (2011, 2012) and Cherubini et al. (2016), we consider a
stochastic process whose dynamics are governed by a relation of type

Yt = α+ Yt−1 + ηt, (1)

with α ∈ R and Yt−1 dependent on ηt. More in general, we assume that ηt is dependent
on the past history of the process and we model this dependence assuming that ηt is
a specific function of the lagged variables (Yt−1, Yt−2, . . . , Yt−p) plus a disturbance.
In this paper we will focus on a representation of type

ηt =
p∑
k=1

ψk (Yt−k; γi)Yt−k − Yt−1 + ξt,

where ψk are measurable functions depending on a set of parameters γk and ξt are
i.i.d. and independent of Yt−1, Yt−2, . . .. This way, we can rewrite (1) as

Yt = α+
p∑
k=1

ψk(Yt−k; γk)Yt−k + ξt, (2)
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where the error term ξt is characterized by a distribution with zero mean and standard
deviation σ, that is the model can be represented as a functional autoregressive model
along the lines of those introduced and discussed in Hastie and Tibshirani (1990)
and Chen and Tsay (1993), among others. We call the family of models of type
(2) p-th order state-dependent autoregressive (SDAR(p)) models. Clearly, its whole
specification strongly depends on the functional forms of the autoregressive coefficients
ψk, with k = 1, . . . , p. The heart of the reasoning is that the dependence between ηt
and (Yt−1, . . . , Yt−p) can be discharged onto the autoregression coefficients which will
each be functions of the corresponding lagged variable.
When p = 1, (2) coincides with the model studied in Gobbi and Mulinacci (2021)
and, as done in that paper for p = 1, we will assume suitable conditions that are
not too restrictive on the functional coefficients so that the process is geometrically
ergodic and stationary. Furthermore, the quasi-maximum likelihood (QML) estimator
is proved to be consistent and asymptotically normal.
Our aim is to investigate the forecasting ability of the SDAR model with p = 1
and p = 2, after specifying the functional forms of the autoregressive coefficients. A
comparison with two alternative classes of nonlinear models intensively used in the
literature is proposed: the self-exciting threshold autoregressive (SETAR) models and
the generalized autoregressive conditional heteroscedasticity (GARCH) models with
autoregressive structure of the mean equation (AR-GARCH). As for the SETAR
models, there is a rich literature since the 90’s on this topic. For example, Tiao
and Tsay (1994) and Potter (1995), among others, consider a self-exciting threshold
autoregressive (SETAR) model to analyse nonlinearity in the US GDP growth rate.
Krager and Kluger (1993) and Clements and Smith (1997) evaluate forecasts from
SETAR models of exchange rates. As regards AR-GARCH models, in the last twenty
years, many papers addressed the problem of the evolution of the Japan GDP growth
rate from the point of view of nonlinear time series. Among others, Hamori (2000)
provides an empirical analysis of the volatility of growth rates for different countries
including Japan. On the same line, Ho and Tsuy (2003) and Fang and Miller (2009)
study the structural decline of the variance of Japan GDP growth rate and they show
how the output variability does not affect output growth. Our study is conducted on
Japan GDP growth rate using quarterly data. The evaluation of the forecast accuracy
of different models adopted is conducted according to two different measures, the
average performance using the root mean square error (RMSE) and the mean absolute
error (MAE) over different forecast horizons, from 1 to 8 quarters ahead. A simulation
experiment is conducted using all the analyzed models and aims at identifying their
ability to intercept the level-increment dependence. We will show how the SDAR(p)
model with 2 lags is particularly effective for this purpose.
The paper is organized as follows. In Section 2 we introduce a process with dependent
increments equivalent to a p-th order state-dependent autoregressive model. In
Section 3 a QML estimator of the parameters of the SDAR(p) model is introduced
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and discussed. Section 4 presents an empirical application to the Japan GDP growth
rate. Section 5 concludes.

2 The SDAR(p) model
We consider stochastic processes (Yt)t∈N characterized by dynamics of type

Yt = α+ Yt−1 + ηt, (3)

with α ∈ R and
ηt = h (Yt−1, . . . , Yt−p) + ξt

where h : Rp → R is a measurable function and ξt is a sequence of i.i.d. centered
random variables independent of {Yt−k, k ≥ 1}. If we restrict to the case in which
h(y1, . . . , yp) =

∑p
k=1 ψk(yk)yk − y1, where, for k = 1, . . . , p, ψk : R → R are

measurable functions, then (3) can be rewritten as

Yt = α+
p∑
k=1

ψk (Yt−k)Yt−k + ξt. (4)

Stochastic processes of this type are Markov processes of order p, that is for all
n ≥ p+ 1 and t1 < t2 < · · · < tn−p < tn−p+1 < · · · < tn < t and for all x ∈ R

P
(
Yt ≤ x|Yt1 , . . . , Ytn−p

, Ytn−p+1 , . . . , Ytn
)

= P
(
Yt ≤ |Ytn−p+1 , . . . , Ytn

)
.

It is well known that, thanks to Sklar’s theorem, the joint cumulative distribution
function of a d-dimensional random vector (X1, . . . , Xd), FX1,...,Xd

(x1, . . . , xd), is
completely specified by the marginal distributions and the d-dimensional copula
function C(u1, . . . , ud), that, linking them and modeling the dependence structure,
allows to recover the joint distribution:

FX1,...,Xd
(x1, . . . , xd) = C (FX1(x1), . . . , FXd

(xd)) ,

where FXi is the cumulative distribution function of Xi for i = 1, . . . , d.
In the seminal paper of Darsow et al (1992), it is proved that the Markov property
of a stochastic process can be expressed in terms of some suitable requirements on
the copula functions representing the dependence structure of the finite dimensional
distributions. This result has been extended to Markov processes of order p ≥ 1 in
Ibragimov (2009), in the following way.
Let m,n ≥ p ≥ 1 and A and B be m- and n-dimensional copulas, respectively, such
that

A (1, . . . , 1, v1, . . . , vp) = B (v1, . . . , vp, 1, . . . , 1) = C (v1, . . . , vp) ,
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where C is a p dimensional copula. If

A1,...,m|m−p+1,...,m(u1, . . . , um−p, v1, . . . , vp) =

= ∂pA(u1, . . . , um−p, v1, . . . , vp)
∂wm−p+1 . . . ∂wm

/
∂pC(v1, . . . , vp)
∂w1 . . . ∂wp

and

B1,...,n|1,...,p(v1, . . . , vp, um+1, . . . , um+n−p) =

= ∂pB(v1, . . . , vp, um+1, . . . , um+n−p)
∂w1 . . . ∂wp

/
∂pC(v1, . . . , vp)
∂w1 . . . ∂wp

,

the ?p-product of the copulas A and B is defined as

A ?p B(u1, . . . , um+n−p) =

=
∫ um−p+1

0
· · ·
∫ um

0
A1,...,m|m−p+1,...,m(u1, . . . , um−p, v1, . . . , vp)·

·B1,...,n|1,...,p(v1, . . . , vp, um+1, . . . , um+n−p)dC(v1, . . . , vp).

Theorem 1 (Ibragimov, 2009). A stochastic process (Yt)t is a Markov process of
order p, p ≥ 1 if and only if for all n ≥ p+ 1 and t1 < . . . < tn

Ct1,...,tn = Ct1,...,tp+1 ?
p Ct2,...,tp+2 ?

p Ctn−p,...,tn ,

where Cs1,...,sk
is the copula associated to the vector (Ys1 , . . . , Ysk

).
Hence the law of a discrete time Markov process of order p is uniquely defined by the
family of the p + 1 dimensional copulas Ct,t+1,...,t+p and the family of the marginal
distributions of the variables Yt. In next proposition we provide the corresponding
expressions for the model dynamics defined in (4) extending the corresponding
representations for p = 1 in Gobbi and Mulinacci (2021).
Proposition 2. If G is the cumulative distribution function of ξt

σ , then the cumulative
distribution function of Yt, Ft, is

Ft(yt) =
∫ 1

0
· · ·
∫ 1

0
G

(
yt − α−

∑p
k=1 ψk

(
F−1
t−k (vt−k)

)
F−1
t−k (vt−k)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) (5)

and

Ct−p,...,t−1,t(ut−p, . . . , ut−1, ut) =

=
∫ ut−p

0
· · ·
∫ ut−1

0
G

(
F−1
t (ut)− α−

∑p
k=1 ψk

(
F−1
t−k (vt−k)

)
F−1
t−k (vt−k)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) . (6)
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Proof. The result follows immediately taking into account that

P (Yt ≤ yt, Yt−1 ≤ yt−1, . . . , Yt−p ≤ yt−p) =

= P

(
α+

p∑
k=1

ψk (Yt−k)Yt−k + ξt ≤ yt, Yt−1 ≤ yt−1, . . . , Yt−p ≤ yt−p

)
=

=
∫ yt−p

−∞
· · ·
∫ yt−1

−∞
P

(
ξt ≤ yt − α−

p∑
k=1

ψk (zt−k) zt−k

)
×

× dCt−p,...,t−1 (Ft−p(zt−p), . . . , Ft−1(zt−1)) =

=
∫ Ft−p(yt−p)

0
· · ·
∫ Ft−1(yt−1)

0
G

(
yt − α−

∑p
k=1 ψk

(
F−1
t−k (vt−k)

)
F−1
t−k (vt−k)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) .

Letting yt−k → +∞ for k = 1, . . . , p, one gets (5), while setting ut−k = Ft−k(yt−k),
for k = 0, 1, . . . , p one gets (6).

Similarly, one can compute the cumulative distribution function of ηt, Fηt , and its
dependence relation with Yt−1, . . . , Yt−p.

Proposition 3. Under the model defined in (4), the equivalent representation given
in (3) is characterized by

Fηt(x) =
∫ 1

0
· · ·
∫ 1

0
G

(
x− h

(
F−1
t−1 (vt−1) , . . . , F−1

t−p (vt−p)
)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) (7)

and

CYt−p,...,Yt−1,ηt
(ut−p, . . . , ut−1, u) =

=
∫ ut−p

0
· · ·
∫ ut−1

0
G

(
F−1
ηt

(u)− h
(
F−1
t−1 (vt−1) , . . . , F−1

t−p (vt−p)
)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) . (8)
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Proof. It follows immediately from

P (ηt ≤ x, Yt−1 ≤ yt−1, . . . , Yt−p ≤ yt−p) =
= P (h (Yt−1, . . . , Yt−p) + ξt ≤ x, Yt−1 ≤ yt−1, . . . , Yt−p ≤ yt−p) =

=
∫ yt−p

−∞
· · ·
∫ yt−1

−∞
G

(
x− h (zt−1, . . . , zt−p)

σ

)
×

× dCt−p,...,t−1 (Ft−p(zt−p), . . . , Ft−1(zt−1)) =

=
∫ Ft−p(yt−p)

0
· · ·
∫ Ft−1(yt−1)

0
G

(
x− h

(
F−1
t−1 (vt−1) , . . . , F−1

t−p (vt−p)
)

σ

)
×

× dCt−p,...,t−1 (vt−p, . . . , vt−1) ,

and conclusions trivially follow.

In order to guarantee ergodicity and stationarity, we introduce the following
assumptions relative to the functional autoregressive coefficients.

i) Assumption A1: there exist λ1, . . . , λp such that |ψk(x)| ≤ λk and∑p
k=1 λk < 1.

ii) Assumption A2: ξt are i.i.d. with zero mean, positive density and with finite
fourth moment.

Assumptions A1 and A2 ensure that the Markov model of order p defined by (4)
is geometrically ergodic (see Theorem 3.2 in An and Huang, 1996), which implies
strict stationarity (see Theorem 2.2 in Fan and Yao, 2003). Moreover, they imply the
finiteness of the fourth moment of Yt which is a technical requirement for the validity
of next Lemma 5.

3 Quasi-maximum likelihood estimation
In the sequel, we will suppose that the functions ψk(y; γk) with k = 1, . . . , p
are measurable functions that depend on a dk-dimensional vector of parameters
γk = (γ1,k, . . . , γdk,k) and we rewrite (4) as{

Yt = α+
∑p
k=1 ψk(Yt−k; γk)Yt−k + ξt,

ξt/σ ∼ g,
(9)

where g is the density of the standardized random variable ξt/σ.
As a consequence, if D =

∑p
k=1 dk, model (9) depends on the D + 2 parameters

θ = (γ1, . . . ,γdk
, α, σ).

In order to ease the notation, we set ψ
γi,k

k (y; γk) = (∂/∂γi,k)ψk(y; γk) and
ψ
γi,k,γj,k

k (y; γk) = (∂2/∂γi,k∂γj,k)ψk(y; γk). Moreover, we introduce the additional
assumptions:
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i) Assumption A3. The parameter space Θ is a compact subset of RD+2.

ii) Assumption A4. First and second-order partial derivatives of the persistence
functions ψk with respect to the parameters are continuous for k = 1, . . . , p.

iii) Assumption A5. |ψγi,k

k (y; γk)| ≤ Ci,k uniformly on R×Θ, for i = 1, . . . , dk and
k = 1, . . . , p and |ψγi,kγj,k (y; γk)| ≤ Di,j,k uniformly on R×Θ, for i, j = 1, . . . , dk
and k = 1, . . . , p.

iv) Assumption A6. The density g of the standardized random variable ξt/σ is
twice differentiable.

Let us now assume a time series yn = (y1, . . . , yn) generated by (9) be given. If pθ
t is

the conditional distribution of Yt given Yt−1, . . . , Yt−p, since the process given in (9)
is a Markov process of order p, the quasi log-likelihood is given by

Ln (yn; θ) = 1
n

n∑
t=p+1

`t
(
yt; θ

)
,

where `t (yt; θ) = ln pθ
t (yt) and yt = yt|(yt−1, . . . , yt−p). Since

pθ
t (yt) = 1

σ
g

(
yt − α−

∑p
k=1 ψk (yt−k; γk) yt−k

σ

)
= 1
σ
g (zt)

with zt = ξt/σ, we have that `t (yt; θ) = − ln σ + ln g(zt).
The QML estimator is the solution of the maximization problem

θ̂n = argmax
θ∈Θ

1
n

n∑
t=p+1

`t(yt; θ). (10)

If we denote by ∇θ`t(yt; θ) and by ∇2
θ`t(yt; θ) the D + 2-dimensional gradient and

the (D + 2) × (D + 2)-dimensional hessian matrix of `t(yt; θ) respectively, we are in
the position to introduce the following theorem.

Theorem 4. Under Assumptions A1–A6 the QML estimator θ̂n is strongly
consistent for θ0 and moreover it satisfies

H̄0
n

(
G0
n

)−1/2√
n(θ̂n − θ0) d−→ N(0, I),

where

H̄0
n = E

[
1
n

∑
t

∇2
θ`t(Y t; θ0)

]
,

G0
n = E

[
1
n

∑
t

(
∇θ`t(Y t; θ0)

) (
∇θ`t(Y t; θ0)

)T]
and I is the identity matrix of order D + 2.
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Proof. Even if (9) is more general than the case of only one lag studied in Gobbi and
Mulinacci (2021), the proof is a straightforward adaptation of that of the analogous
result provided by Theorem 2.1 in Gobbi and Mulinacci (2021), where the asymptotic
normality of the estimator is proved in the SDAR(1) case. The proof there given is
based on the application of Theorems 3.13 and 6.4 in White (1994) whose assumptions
are proved to be satisfied by the model. Since the derivatives of the likelihood are
exactly of the same type as those considered there for the SDAR(1) model, apart from
the partial second order derivatives of type

∂2

∂γi,k∂γj,h
`t (y; θ) = 1

σ2ψ
γi,k

k (yt−k; γk)ψγj,h

h (yt−h; γh) yt−kyt−hv(zt)

where v(x) =
(
g′′(x)g(x)− (g′(x))2

)
/g2(x), in the present framework we need to

additionally consider a more general formulation of the uniform strong law of large
numbers provided by Lemma 5.1 introduced in Gobbi and Mulinacci (2021). For the
sake of completeness we state here the required result, without presenting the proof,
that, under our assumptions follows exactly the same steps as that of Lemma 7.1 in
Gobbi and Mulinacci (2021).

Lemma 5. We assume that the stochastic process (Yt)t∈N follows the SDAR dynamics
in (9) and that Assumptions A1, A2 and A3 are fulfilled. Let q : R3 ×Θ→ R given
by q(y1, y2, z,θ) = f(y1, y2,θ)h(z) so that f : R2×Θ→ R is continuous and such that
|f(y1, y2,θ)| ≤ H|y1y2| for some H > 0 and all (y1, y2,θ) ∈ R2×Θ and h : R→ R is
a measurable function such that E

[
|h(zt)|β

]
< +∞, for some β ≥ 2. Then

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

q(Yt−i, Yt−j , zt,θ)− E [q(Yt−i, Yt−j , zt,θ)]

∣∣∣∣∣→ 0. (11)

3.1 Two particular specifications of the model
The choice of the functional form of the autoregressive coefficients ψk in line with
the Assumptions A1, A4 and A5 is not a trivial matter. In Gobbi and Mulinacci
(2021) the authors discuss two families of continuous functions which are particularly
suitable for shape and functional properties: both have, in fact, the characteristic
of reducing the effect of persistence as the value of the state variable increases. In
particular, we will focus on the following two particular type of persistence functions
ψk:

1. φe(x) = ± exp
{
−
(
γ1 + γ2x

2γ3
)}

, with γ1 > 0, γ2 ≥ 0 and γ3 > 0,

2. φp(x) = 1/(γ1 + γ2x
2γ3) with γ1 > 1, γ2 ≥ 0 and γ3 > 0,
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that fulfil Assumptions A4 and A5. Since Assumption A1 additionally requires that∑p
k=1 supx |ψk(x)| < 1 and being supx |φe(x)| = exp {−γ1} and supx |φp(x)| = 1/γ1,

additional constraints on the parameters must be considered case by case, depending
on the particular specification of the model and of the persistence functions involved.
Some properties relating to the temporal dependence structure induced by these
families of persistence functions are investigate in Gobbi (2021) through a Monte
Carlo simulation experiment.

4 Empirical application and Monte Carlo
experiment

The empirical data analysis has been carried out on the quarterly Japan GDP growth
rate. The observation period goes from 1960.Q1 until 2017.Q3 (230 observations)
and is depicted in Figure 1. The series appears mean-stationary but with a slightly
decreasing dynamics which highlights the trend of low economic growth in Japan
since the 90s. In fact, the average quarterly growth in the first half of the sample is
around 1.5% while in the second half (precisely from the 1990s onwards) is 0.3%. The
variance of the growth rate features the volatility clustering phenomenon with periods
with high volatility followed by periods of low volatility. Furthermore, volatility is
higher in the last part of the time series (indicatively after the great recession).

Figure 1: Quarterly Japan GDP growth rate
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4.1 Descriptive statistics of the Japan GDP growth rate
Table 1 reports the summary of the descriptive statistics of the Japan GDP growth
rate. The series is characterized by excess kurtosis and negative asymmetry. The
asymmetry characterized by negative skewness means that in the sample period a
greater probability exists of large decreases in GDP growth than larger increases while
the kurtosis exhibits leptokurticity with fat tails highlighting that extreme changes
can occur more frequently. The Jarque-Bera test (Jarque and Bera, 1980 and 1987)
strongly rejects the normality hypothesis. Furthermore, the Ljung-Box test (Ljung
and Box, 1978) indicates autocorrelation (up to 20 lags) in the time series. The
McLeod-Li test (McLeod and Li, 1983) suggests a time-varying variance structure
leading to the rejection of the null of no ARCH components up to 20 lags.

Table 1: Descriptive statistics for the Japan GDP growth rate

Japan GDP growth rate

N. of obs. 230
Mean 0.00938
Median 0.00836

Maximum 0.05541
Minimum -0.04921
Std. dev. 0.01288
Skewness -0.11356
Kurtosis 2.24206

Jarque-Bera (p-value) 0.00000
Ljung-Box (p-value) 0.00000
McLeod-Li (p-value) 0.00000

4.2 Linearity tests
Table 2 reports the p-values of four different linearity tests performed on the full
sample and on the last ten years of observations. For each test we consider different
lag structures (lag=1,2,3). We employ four different linearity tests intensively used
in the literature: the TNN test, the WNN test, the Tlrt test and the Tsay test.
In the Teraesvirta Neural Network test (TNN test), introduced in Teraesvirta, Lin
and Granger, (1993), and in the White Neural Network test (WNN test), discussed
in Lee, White and Granger (1993), the null is the hypotheses of linearity in mean.
The Tlrt test carry out the likelihood ratio test for threshold nonlinearity and was
implemented by Chan (1990). The null hypothesis is that the fitted model to the time
series is an AR model with a specified lag structure and the alternative is that the
fitted model is a threshold autoregressive model with the same lag structure for each
regime. Finally, the Tsay test, which was introduced and implemented in Tsay (1986)
is a test for quadratic nonlinearity in a time series in which the null hypothesis is
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a normal AR process. The results show that there is a strong evidence of nonlinearity
in the full series, since in a number of cases tests lead to the rejection of linearity.
In particular, all tests highlight low p-values (less than 10%) when the lag structure
considered is 1. On the other hand, whether the lag structure increases to 2 or 3
the nonlinearity is less strong. Tlrt test and the Tsay test do not reject the null of
linearity for all lag structures, reflecting a weakness of the hypothesis of quadratic
and threshold autoregressive nonlinearities.

Table 2: Linearity tests. p-values for different lag structures and different portions of
the observed time series

Japan GDP: full sample 1960.Q1–2017.Q3
lag=1 lag=2 lag=3

TNN test 0.00374 0.00298 0.00553
WNN test 0.00375 0.02571 0.02628
Tlrt test 0.06754 0.17411 0.19391
Tsay test 0.09310 0.04539 0.13110

Japan GDP: last 10 years 2008.Q1–2017.Q3
lag=1 lag=2 lag=3

TNN test 0.00053 0.00456 0.00000
WNN test 0.00056 0.82980 0.31672
Tlrt test 0.28371 0.27641 0.32904
Tsay test 0.42711 0.18231 0.58571

Note: The cases highlighted in bold lead to the rejection of the null.

In order to realize whether the nonlinearity structure strengthens or not in more recent
period, we conduct the same linearity tests in a portion of the sample corresponding
to the last 10 years of observations. Table 2 shows a weakening of the nonlinearity
to the point that only in one case (TNN test) the hypothesis is rejected for all lag
structures. It is possible that this result can have consequences from the point of
view of the forecasting evaluation as argued in Granger and Terasvirta (1993) and
in Terasvirta and Anderson (1992). Indeed, in that papers the authors suggest that
the superior in-sample performance of nonlinear models will only be matched out-
of-sample if the nonlinear features also characterize the latest period of observation.
Furthermore, even Ljung-Box and McLeod-Li tests provide p-values significantly high
(0.8227 and 0.9986) indicating that this last portion of the time series is free from
autocorrelation and heteroskedasticity.

4.3 Estimation
This section discusses the estimation results of the selected nonlinear models. The
benchmark model is the standard linear autoregressive model of order 3 (AR(3)). To
evaluate the forecasting accuracy of SDAR models with two lags we estimate five

F. Gobbi and S. Mulinacci
CEJEME 14: 81-108 (2022)

92



State-dependent Autoregressive Models . . .

alternative nonlinear models within three different classes: SDAR models with one
lag, SETAR models with two or three regimes and AR-GARCH models. We consider
Gaussian error terms for all models. The estimation results are collected in Appendix
A where we also report the functional form of the alternative models.
Results for each model are contained in Tables A1–A6 in Appendix A. The selection
of the best combination of parameters within each class of nonlinear models is based
on the AIC criterion. The AR lag order p is selected by fixing a maximum lag length.
In Table A1 are reported the estimates for the AR(3) model which is the optimal
linear model and will be used as benchmark regarding the forecasting accuracy. We
can observe that all parameter estimates are positive and in particular the second
coefficient is higher than the first and the third ones, i.e., for the second lag the
persistence appears stronger. Regarding the self-exciting threshold autoregressive
model with two regimes the AIC criterion leads to a SETAR(2,3,5) model whereas
in the case of three regimes leads to select a SETAR(3,3,3,5) model as documented
in Tables A2 and Table A3. A few words on the estimates are necessary. As for
the SETAR(2,3,5) model all estimates relative to the low regime are positive. This
can be interpreted as the poor ability of Japan GDP growth rate to react to the
recessionary phases and could be consistent with the long-term trend which, as seen
in Figure 1, is slightly negative. On the contrary, the second coefficient relating to
the second lagged variable within the high regime is negative. On the other hand,
in the SETAR(3,3,3,5) model the coefficient of yt−2 is negative in all three regimes,
to emphasize that the effect of the GDP growth of two quarters earlier produced
a contribution in the opposite direction to its value. As for AR-GARCH models,
in line with the number of lags estimated in the linear model, we select an AR(3)-
GARCH(1,1) model after checking that a higher order in the AR component or in the
conditional variance structure produced a lower AIC. Table A4 shows the results. We
note that the GARCH component, measured by ω2, is strong, indicating a temporal
structure in the variance dynamics.
Finally Table A5 and Table A6 report the results of estimating SDAR models
with Gaussian error term for both specifications adopted, SDAR(1) and SDAR(2),
depending on the chosen persistence functions φe and φp as introduced in
Subsection 3.1. We consider a maximum of p = 2 lags to avoid over-parameterization
problems. As the tables clearly indicate, all parameters are significant. However, as
the estimates relating to previous models have shown, the coefficient of yt−2 appears
to be particularly important. For this reason we expect that the SDAR model with
one lag could not be adequate for the explanation and forecast of the dynamics of the
Japan GDP growth rate. On the other hand, in the SDAR models with two lags the
functional coefficients take into account the differences in temporal dynamics induced
by yt−1 and yt−2. In particular, if we observe the parameters estimated in the four
SDAR models with two lags, γ̂1 and γ̂2, we can make some interesting observations.
Let’s take the first model SDAR(2;φe,φe) as an example. For each couple (yt−1, yt−2)
we have φe(yt−2; γ̂2) > φe(yt−1; γ̂1): this means that the second persistence function
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which refers to the second lag of the Japan growth rate, yt−2, is constantly higher
than the first persistence function which refers to the first lag of the Japan growth
rate, yt−1. A similar consideration holds for the remaining employed SDAR models.
In other words, our SDAR models with two lags attribute a greater weight to the
second lag than to the first and this is consistently true throughout the period under
consideration.
To evaluate if the proposed models are well specified, we consider residuals variance
and p-values associated to the McLeod-Li test up to 20 lags. Results reflect a good
specification for all models under considerations since the hypothesis of absence of
serial autocorrelation of squared residuals can be accepted.

4.4 A simulation experiment to detect the “level-increment”
dependence

In this subsection we perform a Monte Carlo simulation experiment based on the
models estimated above. In particular we simulate trajectories from the models
specified in Appendix A: Equation (14) for the SETAR(2,3,5) model, Equation (15)
for the SETAR(3,3,3,5) model, Equation (16) for the AR(3)-GARCH(1,1) model and
Equations (17), (18), (19), (20), (21) and (22) for the SDAR models with one and
two lags.
The aim is to investigate the ability of the considered models to capture the “level-
increment” dependence in the time series of Japan GDP growth rate. As measure
of dependence we use the Kendall’s tau parameter that is a measure of concordance
between pairs of random variables that only depends on the copula function linking
them, that is it only depends on the dependence structure (see, among the others,
Nelsen, 2006, for more details). We denote by τGDP the empirical Kendall’s τ
coefficient between yt−1 and ∆yt = yt− yt−1. It is likely that this ability or disability
may have effects on the forecast skills of the models themselves. The simulation design
is arranged in such a way that a number of trajectories will be generated from each
selected model exactly with estimated parameters (Tables A2–A6 in Appendix A).
For each trajectory we compute the Kendall’s τ coefficient associated to the simulated
pairs (ỹ(i)

t−1,∆ỹ
(i)
t ) getting a vector of realizations of τ , i.e., (τ (1), . . . , τ (M)), where M

is the number of simulations. The measure of the “level-increment” dependence is the
average value of τ ’s, denoted by τ̃ . For each simulated model we compute the absolute
relative distance (ARD) between the empirical Kendall’s τGDP and τ̃ as a measure of
accuracy that each model has in intercepting the level-increment dependence

ARD = |τ̃ − τGDP |
τGDP

.

We expect that the absolute relative distance between the dependence implied by
each model and the actual data dependence increases, the model is less appropriate
to provide a good forecasts.
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Table 3 provides a summary of the simulation results. It is noted that the level-
increment dependence is not intercepted with sufficient accuracy by at least 4 models:
SDAR(2; φe, φp), SETAR(2,3,5) and SETAR(3,3,3,5). On the contrary, the SDAR(2;
φe, φe), SDAR(2; φp, φe), SDAR(2; φp, φp) and AR(3)-GARCH(1,1) models are
capable of reproducing this dependence effectively. In particular, the models report
a very low ARD value compared to the simulated average values.

Table 3: Data dependence vs. model dependence

Kendall’s τ ARD
Data dependence -0.3544
SDAR(1; φe) -0.3174 0.1044
SDAR(1; φp) -0.3227 0.0894

SDAR(2; φe, φe) -0.3717 0.0488
SDAR(2; φe, φp) -0.2249 0.3654
SDAR(2; φp, φe) -0.3763 0.0618
SDAR(2; φp, φp) -0.3465 0.0223
SETAR(2,3,5) -0.4635 0.3078
SETAR(3,3,3,5) -0.4693 0.3242

AR(3)-GARCH(1,1) -0.3564 0.0056

Note: Kendall’s τ coefficient: average values from the set of simulated trajectories and absolute relative
distance (ARD) from data dependence.

4.5 Forecasting accuracy
This section presents results about the forecasting ability of the estimated models.
In particular, our approach is that to generate multi-period forecasts using a Monte
Carlo simulation. This technique is particularly efficient when nonlinear models for
time series are used (see, for example, Granger and Terasvirta, 1993). As for SDAR(2)
models, we follow the same simulation setting proposed in Gobbi and Mulinacci (2021)
for the case of one lag. Denote with H the forecast horizon. Let ỹ(m)

n+h be the (n+h)-th
forecast with h = 1, . . . ,H obtained in the m-th simulation where n is the time of the
last observation in the sample. The forecast simulation scheme for a SDAR(2) model
is

ỹ
(m)
n+1 = α̂+ ψ1(yn; γ̂1)yn + ψ2(yn−1; γ̂2)yn−1 + ξ̃

(m)
n+1,

ỹ
(m)
n+2 = α̂+ ψ1(ỹ(m)

n+1; γ̂1)ỹn+1 + ψ2(yn; γ̂2)yn + ξ̃
(m)
n+2,

ỹ
(m)
n+h = α̂+ ψ1(ỹ(m)

n+h−1; γ̂1)ỹ(m)
n+h−1 + ψ2(ỹ(m)

n+h−2; γ̂1)ỹ(m)
n+h−2 + ξ̃

(m)
n+h, h = 3, ...,H

(12)
where ψ1 and ψ2 are equal to φe or φp, ξ̃(m)

n+1 and ξ̃(m)
n+h are normally distributed with

zero mean and standard deviation σ̂ for each simulation m. Now, averaging these
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forecasts across the m = 1, ..,M iterations of the MC yields

ỹn+h =
M∑
m=1

ỹ
(m)
n+h, h = 1, ..,H.

We use 8 values out-of-sample of the Japan GDP growth rate from 2017.Q4 to
2019.Q3. Therefore, the forecast errors are given by en+h = yn+h − ỹn+h, with
h = 1, . . . ,H, with H = 8. To compare the average accuracy of the forecasts
we use two measures: the root mean square error (RMSE) and the mean absolute

error (MAE). The RMSE is defined as
√

1
H

∑H
h=1 e

2
n+h whereas the MAE is given

by 1
H

∑H
h=1 |en+h|. Table 4, Figures 2–5 summarize the results in terms of relative

efficiencies for a forecast horizon from 1 to 8 quarters ahead. The relative efficiency
(RE) is obtained as the ratio of the RMSE (or MAE) of the model under consideration
and the RMSE (MAE) of the model used as benchmark, i.e., the linear AR(3). A value
of RE greater or equal than one indicates that the benchmark model provides more
accurate forecast than the alternative nonlinear model. Results are very significant.
As we see there are two models which provide more accuracy than the benchmark
for all forecast horizons, i.e., the SETAR(2,3,5) model and the AR(3)-GARCH(1,1)
model, even if the first one offers a superior performance reaching a gain of over 30%
for H = 3. The SETAR(3,3,3,5) and both SDAR(1;φe) and SDAR(1;φp) models do
worse than the benchmark.
On the other hand, SDAR models with two lags guarantee a performance that depends
on their specification. In fact, as highlighted in Table 4 and Figures 3 and 5, except
for the model SDAR(2;φe,φp), the other specifications provide a forecasting accuracy
which is higher than the benchmark from the third quarter onwards. But even more
significant is the fact that the performance in the last four quarters is the best among
all tested models. What seems to be concluded is the ability of the SDAR(2) models,
in at least three out of four specifications, to guarantee a gain in forecast accuracy in
the medium-long term. For example, forH = 8 (8 quarters ahead) the SDAR(2;φe,φe)
has a forecasting capacity 40% higher than that of the linear AR(3) model.
We can make some considerations by comparing the results contained in Table 3 and
Table 4. As we can observe, the AR(3)-GARCH(1,1) model is the one most able
to intercept the level-increment dependence followed by the SDAR(2; φp, φp) and
SDAR (2; φe, φe). All three of these models have a good predictive ability. The
AR(3)-GARCH (1,1) model is constantly better than the benchmark without being
influenced by the forecast horizon, whereas SDAR(2; φp, φp) and SDAR (2; φe, φe)
models offer excellent performance, especially in the medium-long term. On the other
hand, the SDAR models with a single lag provide a worse forecasting ability and at the
same time worse capacity to reproduce the level-increment dependence as we deduce
from Table 3. Differently, for the SETAR models does not seem to be any correlation
between the two behaviors. Both do not intercept the level-increment dependence
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Figure 2: Relative RMSEs for each nonlinear model expressed in terms of that for
AR(3)

1 2 3 4 5 6 7 8

Forecast horizon (quarters)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Relative RMSEs

Legend: “*” for SETAR(2,3,5), “o” for SETAR(3,3,3,5), “�” for AR(3)-GARCH(1,1), “.” for SDAR(1;φe)
and “x” for SDAR(1;φp).

Figure 3: Relative RMSEs for each nonlinear model expressed in terms of that for
AR(3)
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Legend: “*” for SDAR(2;φe, φe), “o” for SDAR(2;φe, φp), “�” for SDAR(2;φp, φe), “.” for SDAR(2;φp, φp).

implied in the time series of the Japan GDP growth rate but the model with two
thresholds offers excellent forecasts for all the time horizons analyzed.
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Figure 4: Relative MAEs for each nonlinear model expressed in terms of that for
AR(3)
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Legend: “*” for SETAR(2,3,5), “o” for SETAR(3,3,3,5), “�” for AR(3)-GARCH(1,1), “.” for SDAR(1;φe)
and “x” for SDAR(1;φp).

Figure 5: Relative MAEs for each nonlinear model expressed in terms of that for
AR(3)
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Legend: “*” for SDAR(2;φe, φe), “o” for SDAR(2;φe, φp), “�” for SDAR(2;φp, φe), “.” for SDAR(2;φp, φp).
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Table 4: Relative efficiency of the forecasting accuracy measures RMSE (bottom) and
MAE (down) with the AR(3) model as benchmark

Number of quarters ahead
H 1 2 3 4 5 6 7 8

SETAR(2,3,5) 0.7486 0.7811 0.7424 0.8337 0.8235 0.8090 0.8093 0.8001
0.7486 0.7092 0.6615 0.7695 0.7506 0.7122 0.7161 0.7995

SETAR(3,3,3,5) 1.3808 1.1253 1.1267 1.0931 1.1095 1.0991 1.1013 1.0891
1.3808 1.1646 2.1424 1.1224 1.1353 1.1280 1.1246 1.1022

AR(3)-GARCH(1,1) 0.9266 0.9399 0.9323 0.9455 0.9395 0.9348 0.9296 0.9213
0.9266 0.9376 0.9163 0.9331 0.9219 0.9103 0.9015 0.9028

SDAR(1;φe) 1.1818 1.1634 1.1789 1.2306 1.1426 1.1496 1.1565 1.1541
1.1818 1.1664 1.2098 1.1524 1.1796 1.1913 1.2052 1.1904

SDAR(1;φp) 1.2306 1.1731 1.1957 1.1496 1.1526 1.1706 1.1620 1.1671
1.2306 1.1783 1.2329 1.1890 1.1922 1.2216 1.2073 1.2022

SDAR(2;φe,φe) 0.9941 1.0631 1.0410 0.8656 0.8310 0.8253 0.8030 0.7688
0.9941 1.1211 0.9021 0.8272 0.7440 0.6924 0.6242 0.6067

SDAR(2;φe,φp) 2.1281 1.9684 2.0689 1.6436 1.6622 1.6837 1.6919 1.6448
2.1228 2.0747 2.1890 1.7932 1.8072 1.8387 1.8402 1.7655

SDAR(2;φp,φe) 0.9913 1.0794 1.0361 0.9022 0.8760 0.8616 0.8431 0.8119
0.9913 1.1377 0.9322 0.8769 0.8077 0.7453 0.6955 0.6822

SDAR(2;φp,φp) 0.9482 1.0441 1.0127 0.8791 0.8520 0.8405 0.8198 0.7775
0.7486 1.0976 0.8963 0.8464 0.7224 0.7105 0.6467 0.6309

Note: A value of the ratio lesser than 1 indicates that the nonlinear model ensures more accuracy than
the AR(3) model.

5 Concluding remarks
We introduce a class of nonlinear time series where the error term is dependent on
a number of lagged values of the state variable. To let the model be tractable in
practice, we focus on an autoregressive model in which the error term is independent
of the lagged values of the state variables but the autoregressive coefficients are
specified functions of the state variables themselves. We call this model p-order
state-dependent autoregressive (SDAR(p)) model. We consider the case with p
lags and a generic distribution of the error term. This model is strictly stationary
and geometrically ergodic under very mild conditions satisfied by the functional
autoregressive coefficients ψk(yt−k), k = 1, . . . , p. Furthermore, we propose a
maximum likelihood estimator of parameters and we prove its consistency and
asymptotic normality. A simulation experiment shows the ability of the model to
capture the level-increment dependence. Finally, an empirical analysis of the Japan
GDP growth rate is conducted, to evaluate the forecasting performance of a normal-
SDAR(2) model compared with three alternative nonlinear models such as SETAR,
AR-GARCH and normal-SDAR(1). The results show that if the autoregressive
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coefficients are appropriately chosen, the normal-SDAR(2) model provides a better
forecast performance especially for medium-long horizons.
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Appendix A Estimation results
In this appendix we report the parameter estimates and relative standard errors for
each model we have considered.

i) The benchmark is the linear AR(3) model.{
yt = α+

∑3
i=1 φiyt−i + ξt, t ≥ 2,

ξt ∼ IID N(0, σ),
(13)

where ξt is independent of the lagged variables yt−1, . . . , yt−p. The vector of
parameters is θ = (α, φ1, φ2, φ3, σ).

ii) Self-exciting threshold autoregressive (SETAR) models were first proposed in
Tong (1978, 1983), Tong and Lim (1980) and discussed in detail in Tong (1995).
SETAR models considered in this paper assume that a variable yt is a linear
autoregression within a regime, but may move between regimes depending on
the value assumed by the first lag yt−1. We estimate two SETAR models, the
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Table A1: AR(3) model

AR(3)
Parameters Estimate SE

α -0.0001744 0.000722
φ1 0.2108 0.064422∗∗∗

φ2 0.2481 0.063667∗∗∗

φ3 0.1922 0.063629∗∗∗

Residuals variance 0.0001189
ML test (p-value) 0.1161

first with two regimes and the second with three regimes. We denote SETAR(2,
p1, p2) the model with two regimes whose specification is{

yt = α1 +
∑p1
i=1 φ1,iyt−i + ξ1,t, yt−1 ≤ v,

yt = α2 +
∑p2
i=1 φ2,iyt−i + ξ2,t, yt−1 > v,

(14)

where v is the threshold variable, p1 and p2 are the orders of the
linear AR within each regime, ξj,t ∼ IID N(0, σj), j = 1, 2. Furthermore
ξ1,t and ξ2,t are independent for all t. The vector of parameters is
θ = (α1, α2, φ1,1, . . . , φ1,p1 , φ2,1, . . . , φ2,p2 , σ1, σ2). SETAR model with three
regimes, denoted by SETAR(3, p1, p2, p3) is defined as

yt = α1 +
∑p1
i=1 φ1,iyt−i + ξ1,t, yt−1 ≤ v1,

yt = α2 +
∑p2
i=1 φ2,iyt−i + ξ2,t, v1 < yt−1 ≤ v2,

yt = α3 +
∑p3
i=1 φ3,iyt−i + ξ3,t, yt−1 > v2,

(15)

where v1 and v2, with v1 < v2 are two threshold variables,
p1, p2 and p3 are the orders of the linear AR within each
regime ξj,t ∼ IID N(0, σj), j = 1, 2, 3. The vector of parameters is
θ = (α1, α2, α3, φ1,1, . . . , φ1,p1 , φ2,1, . . . , φ2,p2 , φ3,1, . . . , φ3,p3σ1, σ2, σ3).

iii) GARCH models were proposed in Bollerslev (1986) as a generalization of
ARCH model introduced in Engle (1982). In this paper we consider an AR(p)
component in place of a constant mean for the Equation of the variable yt in
light of the preliminary analysis carried out in the previous section on the time
series of Japan GDP growth rate. Therefore, our specification of the model is
the following 

yt = α+
∑p
i=1 φiyt−i + ξt, t ≥ 1,

ξt|Ft−1 ∼ IID N(0, ht),
h2
t = ω0 + ω1y

2
t−1 + ω2h

2
t−1,

(16)

where Ft−1 is the information set which includes the lagged values of the variable
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Table A2: SETAR(2,3,5) model

SETAR(2,3,5)
Parameters Estimate SE

α1 0.0030231 0.0010076∗∗

φ1,1 0.1875983 0.0733370∗

φ1,2 0.0097874 0.0883190
φ1,3 0.2226274 0.0753082∗∗

α2 0.0163617 0.0066186∗

φ2,1 0.0065853 0.1338019
φ2,2 -0.1024677 0.2301083
φ2,3 0.0536636 0.1274458
φ2,4 0.0481957 0.1252912
φ2,5 0.2998508 0.1418985∗

Residuals variance 0.0001046
ML test (p-value) 0.3197

Table A3: SETAR(3,3,3,5) model

SETAR(3,3,3,5)
Parameters Estimate SE

α1 0.0014215 0.0013503
φ1,1 0.2190270 0.1024155∗

φ1,2 -0.2143976 0.1346354
φ1,3 0.1410807 0.1139681
α2 0.0065093 0.0039263∗

φ2,1 0.1548477 0.1040731
φ2,2 -0.1990346 0.3437589
φ2,3 0.2796797 0.1000679∗∗

α3 0.0163617 0.0065656∗

φ3,1 0.0065853 0.1327299
φ3,2 -0.1024677 0.2282648
φ3,3 0.0536636 0.1264248
φ3,4 0.0481957 0.1242874
φ3,5 0.2998508 0.1407616∗

Residuals variance 0.0001011
ML test (p-value) 0.4315

yt−1, yt−2, . . . and the conditional variance has a GARCH(1,1) specification. The
vector of parameters is θ = (α, φ1, . . . , φp, ω0, ω1, ω2).
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Table A4: AR(3)-GARCH(1,1) model

AR(3)-GARCH(1,1)
Parameters Estimate SE

α 0.00215 0.00085∗

φ1 0.20200 0.07170∗∗

φ2 0.28701 0.06854∗∗∗

φ3 0.24822 0.06853∗∗∗

ω0 0.00001 0.00000
ω1 0.20791 0.08197∗

ω2 0.69401 0.10071∗∗∗

Residuals variance 0.0001183
ML test (p-value) 0.7963

iv) Let us consider SDAR models with one or two lags with persistence function
of type specified in Subsection 3.1. We list explicitly the models in order to
facilitate the reading of the estimate results.

SDAR(1;φe) :

yt = α+ exp
(
−
(
γ1,1 + γ2,1y

2γ3,1
t−1

))
yt−1 + +ξt, t ≥ 1, (17)

SDAR(1;φp) :

yt = α+ 1
γ1,1 + γ2,1y

2γ3,1
t−1

yt−1 + ξt, t ≥ 1, (18)

SDAR(2;φe, φe) :

yt = α+
2∑
k=1

exp
(
−
(
γ1,k + γ2,ky

2γ3,k

t−k

))
yt−k + ξt, t ≥ 2, (19)

SDAR(2;φe, φp) :

yt = α+ exp
(
−
(
γ1,1 + γ2,1y

2γ3,1
t−1

))
yt−1 + 1

γ1,2 + γ2,2y
2γ3,2
t−2

yt−2 + ξt, t ≥ 2,

(20)

SDAR(2;φp, φe) :

yt = α+ 1
γ1,1 + γ2,1y

2γ3,1
t−1

yt−1 + exp
(
−
(
γ1,2 + γ2,2y

2γ3,2
t−2

))
yt−2 + ξt, t ≥ 2,

(21)
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SDAR(2;φp, φp) :

yt = α+
2∑
k=1

1
γ1,k + γ2,ky

2γ3,k

t−k
yt−k + ξt, t ≥ 2. (22)

In all four specified models we have ξt ∼ IID N(0, σ2) and independent of yt−j
for j ≥ 1.

Table A5: SDAR(1) models

SDAR(1,φe) SDAR(1, φp)
Parameters Estimate SE Estimate SE

α 0.00421 0.00054∗∗∗ 0.00438 0.00055∗∗∗

γ1,1 0.56975 0.12981∗∗∗ 1.78480 0.18149∗∗∗

γ2,1 0.42785 0.16243∗∗∗ 3.77341 0.51811∗∗∗

γ3,1 0.37173 0.07017∗∗∗ 0.50019 0.00003∗∗∗

σ 0.01189 0.00287∗∗∗ 0.011715 0.00289∗∗∗

Residuals variance 0.0001484 0.0001422
ML test (p-value) 0.02251 0.04134
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Table A6: SDAR(2) models

SDAR(2,φe,φe) SDAR(2, φe,φp)
Parameters Estimate SE Estimate SE

α 0.00312 0.00045∗∗∗ 0.00665 0.00081∗∗∗

γ1,1 1.00962 0.12941∗∗∗ 0.84511 0.09783∗∗∗

γ2,1 1.49491 0.21675∗∗∗ 1.72401 0.41976∗∗∗

γ3,1 0.18518 0.01828∗∗∗ 0.72136 0.09058∗∗∗

γ1,2 0.52757 0.12439∗∗ 1.94412 0.16744∗∗∗

γ2,2 0.88476 0.23307∗∗∗ 0.97394 0.24906∗∗∗

γ3,2 0.11285 0.02439∗∗∗ 0.98946 0.05156∗∗∗

σ 0.01138 0.00129∗∗∗ 0.01350 0.00124∗∗∗

Residuals variance 0.0001291 0.0001441
ML test (p-value) 0.1480 0.1425

SDAR(2, φp,φe) SDAR(2,φp ,φp)
Parameters Estimate SE Estimate SE

α 0.00386 0.00064∗∗∗ 0.00324 0.00074∗∗∗

γ1,1 3.65489 0.60401∗∗∗ 2.96076 0.60564∗∗∗

γ2,1 3.42116 0.70877∗∗∗ 3.31371 0.55915∗∗∗

γ3,1 0.58821 0.04357∗∗∗ 0.50018 0.00088∗∗∗

γ1,2 1.17677 0.16892∗∗∗ 3.18532 0.47609∗∗∗

γ2,2 0.07385 0.03075∗∗∗ 1.70891 0.72061∗∗∗

γ3,2 0.54835 0.10944∗∗∗ 0.86593 0.08491∗∗∗

σ 0.01137 0.01291∗∗∗ 0.01138 0.00149∗∗∗

Residuals variance 0.0001533 0.0001274
ML test (p-value) 0.1645 0.1325
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