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Abstract

The present paper describes a methodological framework developed to select a multi-label
dataset transformation method in the context of supervised machine learning techniques.
We explore the rectangular 2D strip-packing problem (2D-SPP), widely applied in industrial
processes to cut sheet metals and paper rolls, where high-quality solutions can be found for
more than one improvement heuristic, generating instances with multi-label behavior. To
obtain single-label datasets, a total of five multi-label transformation methods are explored.
1000 instances were generated to represent different 2D-SPP variations found in real-world
applications, labels for each instance represented by improvement heuristics were calculated,
along with 19 predictors provided by problem characteristics. Finally, classification models
were fitted to verify the accuracy of each multi-label transformation method. For the 2D-SPP,
the single-label obtained using the exclusion method fit more accurate classification models

compared to the other four multi-label transformation methods adopted.
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Introduction

The rectangular 2D strip-packing problem (2D-
SPP) is one of the most applied cutting and pack-
ing problems in the industry, as seen in the cutting
of sheet metal and paper rolls. Given a set of small
rectangles and a strip, the objective is to minimize the
space to cut or position all rectangles into the strip,
reducing possible waste. For the 2D problem, one of
the dimensions of the strip is considered fixed, while
the other is flexible. All rectangles must be into the
strip without overlapping (Wischer et al., 2007).

The 2D-SPP is an NP-hard problem and can be
solved by exact methods and heuristics. In the exact
methods, an optimal solution can be found and the
optimality is proved. On the other hand, heuristics
produce very good results with relatively low compu-
tational times, especially when the number of rectan-
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gles is very large, but the optimality cannot be proven
(Alvarez-Valdés et al., 2008; Hopper & Turton, 2001;
Martello et al., 2003; Ntene & Vuuren, 2009; Oliveira
et al., 2016).

The heuristics are divided in constructive and im-
provement heuristics. In constructive heuristics, the
rectangles are positioned into the strip according to
determined criteria, such as bottom-left and best-fit,
until obtaining a complete solution. In the improve-
ment heuristics, a complete solution obtained by using
any constructive heuristic is improved through succes-
sive modifications in the arrangement of the rectan-
gles already positioned into the strip or by modifying
the rectangles sequence ordering. For both, the first
complete solution is improved with small consecutive
changes until a stop criterion is reached (Oliveira et
al., 2016).

Since the 80s, more than 30 improvement heuris-
tics were developed to solve the rectangular 2D-SPP
(Oliveira et al. 2016), which reveals the difficulty to
select a good improvement heuristic option accord-
ing to the industrial application represented by prob-
lem instances. Therefore, strategies to reduce the time
required to select an improvement heuristic for the
rectangular 2D-SPP must be adopted. Computer al-
gorithms can be used to develop an efficient selec-
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tion process, as verified for categorical and numeri-
cal classification models based on supervised machine
learning (SML) techniques (Glover, 1986; Brazdil et
al., 2008).

Classification problems can assume the format of
single-label and multi-label, depending on the intrin-
sic characteristics and context of the problem. The
single-label format is related to problems where each
instance is associated with a single solution, named
as “label” (e.g. LA, LB, LC, ...). In the multi-label
format, each instance can be associated with differ-
ent solutions (Tsoumakas & Katakis, 2007; Horvath &
Vircikova, 2012; Rogalewicz & Sika, 2016), as verified
primarily for text categorization and medical diag-
noses. As an example, in medical diagnoses, a patient
may be suffering from more than one disease in the
same period, such as hepatitis and flu. Modern ap-
plications are related to industrial optimization prob-
lems, as verified for the rectangular 2D-SPP, in which
a quality solution can be found using more than one
improvement heuristic. In quality solutions, the waste
to position all the rectangles into the strip is reduced.
Thus, the 2D-SPP can be characterized as a multi-
label problem, a fact that prevents fit classification
models using traditional SML techniques, requiring
a method to transform a dataset with multi-label in-
stances in single-label instances.

Given the difficulty to select good improvement
heuristics options for rectangular 2D-SPP instances,
the objective of this article is to describe a method-
ological framework developed to select a multi-label
dataset transformation method. The main contribu-
tions of this article are as follows: a) Identify the
best multi-label transformation method for the 2D-
SPP, enabling fit classification models with accept-
able levels of accuracy and generalization, based on
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single-label datasets consistent with the phenomena
and characteristics observed for the 2D-SPP; b) De-
velop an adaptive methodological framework that can
be used in other combinatorial optimization problems,
mainly cutting and packing problems, as bin packing
and knapsack problems; and ¢) From an academic per-
spective, filling a research gap related to the lack of
studies applying a multi-label transformation method
in the context of cutting and packing problems, in
specific, the strip packing problem. The research gap
was verified with a literature review on Web of Science
and Scopus platforms, using as inclusion criteria for
the research protocol: English language articles from
scientific journals; publications before 2020; primarily
keywords “strip”, “packing”, “open”, “dimension”, and
“problem”; secondary keywords “rectangular” and “two
dimensional”’; and abstracts and titles related with the
context.

The article was structured according to the follow-
ing descriptions. Section 1 introduces the topic ad-
dressed in this paper. Section 2 shows the method-
ological framework. In Section 3, a contextualization
about multi-label transformation methods was orga-
nized. In Section 4, a practical application of the
methodological framework was proposed. Finally, Sec-
tion 5 shows some of the main conclusions obtained
during the research.

Methodological framework

This section aims to describe the methodologi-
cal framework proposed to transform the multi-label
datasets (Fig. 1). Concepts about each step of the
methodological framework are presented in this sec-
tion.
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Fig. 1. Methodological framework
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The methodological framework was developed con-
sidering the processing of two multi-label datasets
(Step 1), named as main dataset and new dataset.
Both datasets are generated to represent intrinsic
problem characteristics. The main dataset (in blue)
is used to fit classification models for each multi-label
transformation method, converting the main dataset
into single-label datasets (in green). The test dataset
(in orange) is used to compare the accuracy perfor-
mance of classification models fitted with each single-
label dataset converted using multi-label transforma-
tion methods. A good accuracy performance is ob-
tained when substantial information about intrinsic
problem characteristics are not lost. Dashed arrows
represent the transfer of fitted classification models
throughout the framework and solid arrows are re-
lated to the input data transfer (labels, predictors,
and datasets) to fit or use the classification models.

In technical analysis (Step 2), the objective is to ob-
tain labels for each instance, represented by improve-
ment heuristics. The 2D-SPP is a multi-label problem.
For one instance, if the value of the best solution found
is the same for more than one improvement heuristic,
then this instance can be represented by more than
one label.

Therefore, a constructive heuristic must be adopted
to position the rectangles into the strip. The bottom-
left (BL) is one of the most widely used constructive
heuristics in the literature and was the first construc-
tive heuristic developed based on the rectangles posi-
tioning concept (Baker et al., 1980). The BL aims to
position each rectangle as lowest-left location as pos-
sible in any feasible space available in the strip until
all rectangles are positioned. Thus, a complete solu-
tion with a strip height (H;;) is obtained. The great
advantage of BL is its low complexity and very fast
computational processing time.

In a second moment, a total of six improvement
heuristics (completely random, dynamic random, ran-
dom weight, tabu search, simulated annealing, and
genetic algorithm) are used to improve the quality
of the complete solution. At each iteration, changes
in the rectangles sequence ordering are promoted ac-
cording to the improvement heuristic rules. The best
solution found using an improvement heuristic is given
by the lowest gap (gap;:) between the strip height
(H;t) found in each iteration (i¢) and the simple lower
bound (LB;t), proposed by (Martello et al., 2003), as
shown in (1).

Hit — LBy

LBy (1)

gapit =

Due to the intrinsic characteristics, an instance can
be better adapted to a specific improvement heuristic,
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reflecting in different strip heights and gaps results.
Therefore, the label of each instance is defined by the
improvement heuristic that reached the lowest gap. If
the lowest gap is given by more than one improve-
ment heuristic, then the instance can be considered
as multi-label.

In problem characterization (Step 3), the indepen-
dent variables are predictors based on variations of
problem characteristics. A total of 19 predictors (Ta-
ble 1) were developed by (Neuenfeldt et al., 2019) for
the 2D-SPP, based on information collected from cut-
ting and packing problems generators and with an
observation of literature instances. Variations in the
rectangles and the strip dimensions, in addition to in-
trinsic instances information, were used to develop the
19 predictors (Neuenfeldt et al., 2017).

Table 1
Predictors’ definition. Source: (Neuenfeldt et al., 2019;
Neuenfeldt et al., 2017)

Predictor Definition

The ratio between the strip area and rect-
angles area, influenced by the ratio (be-
tween percentiles or quartiles measures)
and composition (between the sum of
larger and smaller measures) variables.

areacomp

The ratio between the strip area and rect-
angles area, based on variables charac-
terized by classical statistical measures
(mean, median and, standard deviation).

areastats

The ratio between the strip perimeter and
rectangles perimeters, influenced by ratio
and composition variables.

perimcomp

The ratio between the strip perimeter and
rectangles perimeters, based on variables
characterized by classical statistical mea-
sures.

perimstats

The average dimension of rectangles com-
pared to the strip width, influenced by ra-
tio and composition variables.

dimcomp

The average dimension of rectangles com-
pared to the strip width, based on vari-
ables characterized by classical statistical
measures.

dimstats

Size of the largest rectangles dimension
compared to the strip width, influenced
by ratio and composition variables.

widthdimcomp

Size of the largest rectangles dimension
compared to the strip width, based on
variables characterized by classical statis-
tical measures.

widthdimstats

Level of proportion between the strip and
rectangle’s dimensions, influenced by ratio
and composition variables.

propcomp
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Table 1 [cont.]

Predictor Definition
Level of proportion between the strip and
ropstats rectangles dimensions, based on variables
prop characterized by classical statistical mea-
sures.
n The total number of rectangles.
coefficient | Average rectangles’ dimensions values.
heterog The proportion of different rectangles.
heterognt T'he proportion of different rectangles
with more than one rectangle.
difcoefficient T.he totcal number of different rectangles
dimensions.
obidimratio The number of times that the strip lower
J bound is bigger than the strip width.
The number of times that the maximum
itdimratio | rectangles dimension is bigger than the
minimum rectangles dimensions.
mazcoefficient | 10% larger rectangles dimensions values.
mancoefficient | 10% smaller rectangles dimensions values.

After identifying the predictors and labels for each
instance, the multi-label dataset can be transformed
into single-label datasets (Step 4), being able to fit
classification models using SML techniques. Single-
label datasets are generated for each transformation
method.

The classification analysis (Step 5) should be devel-
oped by submitting the single-label datasets to differ-
ent SML techniques, to verify which transformation
method is more accurate with an acceptable level of
generalization for the 2D-SPP. The use of more than
one SML technique allows to check the behavior of
a single-label dataset holistically and without bias.
Thus, a pre-test with some instances was conducted
to choose a total of six SML techniques (random for-
est, support vector machine, back-propagation neural
networks, stochastic gradient boosting, extreme gra-
dient boosting, and sparse partial least squares).

To fit classification models using SML techniques,
a H-fold cross-validation was developed, subdividing
each single-label dataset into five folders. The best
classification model of each SML technique is given
by the highest accuracy classification model tested in
all folders of each single-label dataset.

In predictions (Step 6), the fitted classification
models for each single-label dataset are used to pre-
dict the label of the new dataset instances. Thus, the
best transformation methods are given by the level of
accuracy, calculated by the proportion of the number
of instances in which the prediction corresponds to
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the label of each instance calculated by the improve-
ment heuristic that reached the lowest gap. The more
accurate the classification model is, the closer to 1 is
the accuracy level.

Multi-label transformation methods

The literature review was established to show
multi-label transformation methods. At the end of
this section, some studies on transformation methods
applied in the context of other problems are described.

As a meta-learning process, the classification anal-
ysis for the 2D-SPP can be solved using SML tech-
niques. In stages, the machine adjusts a meta-model
(named as “model”) to select algorithms (improve-
ment heuristics) based on problem characteristics pro-
vided by the instances dataset. As output, new in-
stances datasets are submitted for the adjusted clas-
sification models to select heuristics for each new in-
stance tested.

Multi-label transformation methods are used to
convert multi-label instances into one or more single-
label instances, allowing the use of traditional SML
techniques. Over the years, different multi-label trans-
formation methods have been developed for a wide
range of problems. Below, six of the main multi-label
transformation methods are presented.

In the first transformation method, named method
1 (ML1), a decomposition of multi-labels into several
single-labels is proposed. No instances are lost and
no original data is changed (Tsoumakas & Katakis,
2007). Fig. 2 shows an example where the decompo-
sition promotes a significant expansion of the origi-
nal dataset, which can affect the processing time re-
quired to fit classification models. Also, the decom-
position allows all labels to be considered, even for
multi-label instances. However, the characteristics of
these instances are unique, which can cause a duality
to fit more accurate classification models.

Instance | Label

1 A

Instance | Label 2 A
1 A 2 B

2 ABC 2 C

3 C 3 C

4 AC 4 A

5 B 4 C

5 B

Fig. 2. Example of ML1 transformation method

In the exclusion method, named Method 2 (ML2),
instances with multi-label behavior are not consid-
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ered. All instances with more than one label are elim-
inated, avoiding stipulating a positive or negative in-
terpretation bias for a specific label. Such bias could
contribute to distortions in the pattern of the charac-
teristics of the multi-label instance, affecting the clas-
sification models fitted (Tsoumakas & Katakis, 2007;
Kanda et al., 2011). As shown in Fig. 3, the size of the
generated dataset can decrease significantly compared
to the original multi-label dataset.

Instance | Label
1 A Instance | Label
2 ABC 1 A
3 C 3 C
4 AC 5 B
5 B

Fig. 3. Example of ML2 transformation method

A negative aspect of the exclusion method is the
loss of intrinsic problem characteristics to the ex-
cluded multi-label instances. The fitted classification
models will not be able to recognize specific patterns
verified in these instances. Also, if the original dataset
has a high number of multi-label instances, then the
single-label dataset will be composed of a very small
number of instances, which may not accurately rep-
resent characteristics of the problem and, as a conse-
quence, the classification models fitted are unable to
accurately recognize cause-effect patterns (Kanda et
al., 2011; Aleksovski et al., 2009).

The powerset method, named Method 3 (ML3),
considers each multi-label instance as a new single-
label option, as can be seen in Fig. 4. As a positive as-
pect, the results for each label are processed in detail.
However, the possible low number of instances charac-
terizing a new label can hinder the search for “usable”
and representative problem patterns to fit classifica-
tion models (Boutell et al, 2004). Another issue is re-
lated to the possibility of a future new instance being
represented by a new label. Further analysis to verify
the real label that best characterizes the instance is
necessary.

Instance | Label Instance | Label
1 A 1 A
2 ABC 2 Z1
3 C 3 C
4 AC 4 Z2
5 ABC 5 Z1

Fig. 4. Example of ML3 transformation method

In the choice method, named Method 4 (ML4),
for each multi-label instance, a unique label must

Volume 12 ¢ Number 4 e December 2021

be determined randomly, while the other labels are
discarded, as shown in Fig. 5. In ML4 any instance
is eliminated, preventing loss some problem charac-
teristics. However, the random choice increases the
difficulty to find patterns to fit classification models
(Tsoumakas & Katakis, 2007).

Instance | Label Instance | Label
1 A 1 A
2 ABC 2 C
3 C 3 C
4 AC 4 A
5 B 5 B

Fig. 5. Example of ML4 transformation method

Finally, in the pseudo-label method, named Method
5 (ML5), the artificial creation of a new label for
multi-label instances is necessary (Fig. 6). However,
the pseudo-label may not accurately represent the in-
stances’ characteristics, confusing the verification of
patterns and cause-effect relations between predictors
variation and the label (or pseudo-label) to fit classi-
fication models. As in ML3, further analysis to ver-
ify the true label that best characterizes the instance
based on the problem characteristics is necessary.

Instance | Label Instance | Label
1 A 1 A
2 ABC 2 Z
3 C 3 C
4 AC 4 Z
5 AB 5 Z

Fig. 6. Example of ML5 transformation method

As mentioned before, problems with the multi-label
format are found in different scientific research areas.
However, no occurrence in the literature for the 2D-
SPP or even for cutting and packing problems has
been identified. A small review of articles from dif-
ferent research areas (as combinatorial optimization
problem) were used to show the usage of multi-label
transformation methods and to develop our method-
ological framework.

Reference (Kanda et al., 2011) used multi-label
classification methods for the traveling salesman prob-
lem (TSP), in which the cost to travel between all
cities and return to the starting point must be min-
imized. A model to predict the metaheuristics per-
formance for new TSP instances is proposed, select-
ing the most promising optimization technique for
a new TSP instance. Three transformation methods
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(ML1, ML2, and the binary method) were used. For
two datasets, synthetic and real data, the best perfor-
mance was obtained using the binary method. Also,
the results demonstrate that the problem for the TSP
context is promising.

Reference (Dantas & Pozo, 2018) developed a com-
parison between a problem transformation method
and an algorithm adaptation method to know the
most efficient prediction for the quadratic assignment
problem. Given two sets of locations and installations,
the objective is to assign each installation to a unique
location to minimize the total flow and the distance
between associations. The ML3 was used with a total
of 135 instances. As a result, both ML3 and algorithm
adaptation methods achieved good performance, but
the algorithm adaptation method was better to se-
lect algorithms for the quadratic assignment problem.
Reference (Glinka et al., 2016) implemented multi-
label transformation methods to facilitate the medical
children diagnostics, using a multi-perspective classi-
fication problem as reference. A total of four multi-
label transformation methods applied to real datasets
were used, such as binary method and ML3. To find
results, six datasets were separated, covering 2126
cases evaluated using two metrics: Accuracy and ham-
ming loss.

Methodological framework usage

This section aims to describe the use of the method-
ological framework developed to select the multi-label
transformation method. Firstly, the test input param-
eters and the generated instances are presented. Next,
the improvement heuristics and the SML techniques
are defined. Finally, the classification models obtained
are tested and the accuracy is measured and analyzed
for each transformation method.

The multi-label dataset is composed of 1000 in-
stances, with a number of rectangles ranging between
7 and 2883, generated using 2DPackGen (Silva et al.,
2014), based on input parameters from the 2D-SPP
characteristics. The multi-label dataset was randomly
divided into two parts. The training dataset is com-
posed of 800 instances, 80% of the total, while the
test dataset is composed of 200 instances, 20% of the
total.

For technical analysis, six improvement heuris-
tics were defined to calculate the lowest gap and
assign a label to each instance. The improvement
heuristics were performed using different criteria and
parametrized specifications to order the rectangles se-
quence to be positioned into the strip, according to
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the improvement heuristics presented below. The cri-
teria and parametrized specifications were established
through extensive empirical studies conducted previ-
ously in this article.

The completely random, named Label A (LA), is
a naive local search algorithm in which the rectangles
sequence ordering is independent for each iteration
and is defined randomly, exploring the solution space
in a more general manner, being null the learning level
by iteration. The dynamic random, named Label C
(LC), randomly change the rectangles sequence or-
dering at each iteration by 5%. The dynamic random
local search explores the solution space applying local
and small changes, maintaining significant informa-
tion about the current best solution.

For the random weight, named Label D (LD), in
the first 4% of rectangles sequences are ordered by
geometric characteristics as decreasing area, perime-
ter, width, and height. The next 76% of sequences are
ordered using a random weighted procedure, divided
into four parts containing changed sequences based on
area, perimeter, width, and height. Finally, the last
20% of sequences are fully randomly generated. The
rectangles sequence ordering is not completely ran-
dom. Each rectangle has a probability to occupy the
first place to be positioned based on the rectangles’
geometric characteristics (Neuenfeldt et al., 2019). For
LA, LC, and LD, the current reference solution is re-
placed only if the new solution found in each iteration
is better (lowest gap).

The simulated annealing, named Label B (LB),
changes the rectangles sequence ordering based on
analogy to the thermodynamics cooling process. A so-
lution can be accepted as a reference even if it is worse
than the current reference solution, avoiding local op-
timal solutions. The initial temperature (7,) in (2)
is given by the rectangle’s (r) area (A,). The cooling
temperature (T;;) at each iteration (it) is based on the
initial temperature and two logarithmic functions, as
shown in (3).

T,=005» A, (2)
r=1
T .
Tit:bgi(;%; it<3—>Ty=Ty. (3)
log 2.717

The temperature reduction factor (k;) in (4) is
a support parameter to measure the cooling intensity
between iterations, based on the maximum number of
iterations (M).

100
kit = kit + 2 (M) . (4)
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Finally, the acceptance probability (p;;) is the con-
dition to assume a complete solution (H;;) as a new
reference solution (Hyp). If p;x = 1, H; has a lower
value than H; and will be the new reference solution.
Otherwise, p;; can be a value between 0 and 1, ac-
cording to the acceptance probability function shown
in (5).

N L

If p;; is closer to zero, then the solution H; is too
far from Hj, which reduces the chances of H;; being
the new reference solution. The auxiliary variable (/)
is used to regulate how easily a worse quality solution
will replace the current reference solution. A random
number is generated at each iteration, if p;; is greater
than this value, then H;; must replace H; and be the
new reference solution.

The genetic algorithm, named Label E (LE), is
based on evolutionary biology, composed of a set of
iterations in which new rectangles sequence ordering
is obtained from parents’ characteristics. As a genetic
chromosome, in the crossover process, new sequences
(children) receive parts of the parents’ sequence or-
dering (Hartmann, 1998). The initial 30% of the new
sequence is provided by parent 1 and the final 30%
of the new sequence by parent 2. Also, the remaining
intermediate new sequence (40%) is determined ran-
domly to escape from the local optima, with sequences
not selected from parents.

The 25 initial parents’ generation is obtained us-
ing the rules and parameters defined for the dynamic
random heuristic. At each iteration, five children are
generated, with 80% of the children coming from the
crossover and 20% generated using a completely ran-
dom mutation method. The list of parents is updated
through a probabilistic tournament selection, where
rectangles sequence ordering with higher quality so-
lutions are privileged. A total of five parents are re-
placed at each iteration.

In the tabu search, named Label F (LF), the in-
formation from previous iterations are memorized
through a set of lists. At each iteration, prohibitions
are introduced to not allow moving some rectangles
in the sequence order. Two lists of prohibitions are
used: the short-term and the long-term. For example,
for instances with more than 200 rectangles, when se-
lected for the short-term list, the rectangle cannot be
moved in the next 8 consecutive iterations. If selected
for the long-term list, the rectangle cannot be moved
in the next 15 consecutive iterations. The values of
the short-term and long-term lists can be increased
or reduced proportionally to the total number of rect-
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angles. For LE and LF, a complete solution will be
a reference solution if the calculated height is lower
than the current reference solution.

All improvement heuristics are run in the same en-
vironment, Windows 8.1 using an i7 3.0 GHz pro-
cessor with 8 GB of RAM. This led to run times
of approximately 900 seconds per instance. More de-
tails and concepts about improvement heuristics in
the context of the 2D-SPP can be seen in (Oliveira et
al., 2016).

The multi-label dataset is composed of 1000 in-
stances. After solving all instances using the BL con-
structive heuristic and all 6 improvement heuristics to
define the labels, a total of 871 instances are charac-
terized as single-label, with the following distribution:
LA (4); LB (23); LC (131); LD (84); LE (67); and LF
(562). The remaining 129 instances are characterized
as multi-label, where more than one quality solution
was obtained. Fig. 7 shows the Venn diagram for all
labels using the iterative tool for analysis proposed by
(Heberle et al., 2015).

Fig. 7. Venn diagram for the multi-label dataset.

To fit classification models, six SML techniques
were selected, preventing the analysis of the results
under the bias of any SML technique specificity. The
SML techniques used in this study are the random for-
est, support vector machine, back-propagation neural
networks, stochastic gradient boosting, extreme gra-
dient boosting, and sparse partial least squares.

The random forest combines the classification anal-
ysis developed by different decision trees to obtain
a prediction with greater accuracy and stability, with
the possibility to measure the importance of each pre-
dictor, where the most relevant are in nodes found
in the first levels of the trees (Breiman, 2001). The
extreme gradient boosting used a more regularized
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model formalization, which helps to reduce overfit-
ting, providing a more efficient implementation of gra-
dient boosting framework, observing the distribution
of predictors in the decision trees to reduce search
spaces (Chen, 1990; Chen & Tong, 2019). A gradient
variable controls the size of the tree branches. The
challenge is to find the best gradient value to avoid
biases or generic classification models.

The support vector machine is one of the most flex-
ible and effective techniques for classification analy-
sis. The challenge is to efficiently adjust parameters
of cost, order, and kernel, according to the problem
characteristics (Suykens & Vandewalle, 1999). Back-
propagation neural networks are composed of layers
of input, output, and, at least, one layer with a non-
linear processing element (Chen, 1990). The technique
works in two steps to train classification models: Feed-
forward and backward. In the feedforward step, the
input data is processed by neurons. The output val-
ues are compared with known prediction values to es-
timate the results error. In the backward step, the
error found is used to fit classification models. The
algorithm continues to work in cycles to improve its
learning capacity until a stop criterion is reached.

The stochastic gradient boosting has a constant
f(0 < f < 1) defined by the training dataset sub-
sample size (Friedman, 2002). Smaller values of f in-
troduce more randomness to avoid biased classifica-
tion models, in addition to lower computational pro-
cessing time. Instead, higher values of f can exces-
sively adjust the classification model to the charac-
teristics of the training dataset. Finally, the sparse
partial least squares select predictors to fit classifi-
cation models, using fit parameters and the sparsity
concept (Chun & Keleg, 2010). Low sparsity values
enable the selection of more predictors.

Table 2 shows the parameters used in each SML
technique. The software RStudio, specifically the
function “train” in “caret” package (Kuhn, 2008), was
used to develop the classification analysis. The pa-
rameter values were defined based on the best classi-
fication models fitted to each single-label dataset and
SML technique.

For the multi-label transformation process, five of
the six transformation methods shown in Section 2
were used in this research (ML1, ML2, ML3, ML4,
and ML5). Table 3 shows the results containing the
accuracy level of the classification models fitted to
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Table 2
Parameters used to fit classification models for each single-label dataset and SML technique
SML technique Param. MLI | ML4 | ML2 | ML3 | ML5
Random forest (rf) miry 2
degree 1 2 ‘ 1
Suppf)rt vector scale 0.001 0.01
machine (suvmPoly)
c 0.25 \ TE
Back-prop. neural decay 0 ‘ 0.0001 0.1
networks (nnet) size 1 ‘ 5
n.trees 50
Stochastic gradient iteration.depth 1
boosting (gbm) shrinkage 0.1
n.minobsinnode 10
nrounds 50
max_ depth 1
eta 0.3
Extreme gradient
. gamma 0
boosting (zgbTree)
colsample bytree 0.6 0.8
min_ child_weight 1
subsample 1 0.75 0.5 ‘ 1
) K 2 3 1 7
Sparse partial least eta 09 01 05 ‘ 01
squares (spls)
kappa 0.5
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single-label datasets, as well as the total number of
instances and labels. A standard accuracy behavior
between SML techniques of each single-label dataset
was obtained, demonstrating the reliability of the re-
sults, despite SML techniques having different char-
acteristics to fit classification models using different
ways.

Table 3
Accuracy results

SML technique Accuracy

ML1 | ML2 | ML3 | ML4 | ML5
Random forest 0.40 | 0.64 | 0.57 | 0.57 | 0.58
Support vector 0.49 | 0.65 | 0.55 | 0.59 | 0.62
machine
Back-propagation |\ | 6 64 1 056 | 0.59 | 0.60
neural networks
Stochastic gradient |\« | 6 63| 056 | 0.58 | 0.60
boosting
Extreme gradient | o 6 631 054 | 0.59 | 0.60
boosting
Sparse partial least |\« | g 64 | 057 | 0.5 | 0.61
squares
Mean 0.46 | 0.64 | 0.56 | 0.59 | 0.60
Number of instances | 1353 | 895 | 1000 | 1000 | 1000
Number of labels 6 6 37 6 7

The strategy of decomposing the multi-labels in
single-labels proposed in ML1 is not appropriated for
the 2D-SPP, despite the strategy trying to keep most
of the problem characteristics, without removing any
instance from the dataset. A duality to represent the
predictor’s values of one instance for more than one
single-label does not allow to fit classification mod-
els with good accuracy. As an example, the instance
pt1 99 325 has quality solutions for all labels, being
divided into six single-label instances, each one with
a different label, from LA until LF. To fit the clas-
sification model, any SML technique must read the
same predictor’s values of the instance pt1 99 325
six times, with different labels.

In ML3, a total of 31 new labels were generated
based on all multi-label instances combinations. The
problem is the low representativeness of each new
label, being infeasible to fit accurate classification
models able to identify the problem characteristics
of a new label. For example, both new labels, LBC
and LBCD, are characterized by only one instance.
Also, the excessive number of labels (6 proposed for
the 2D-SPP +31 new) diffuse the input informa-
tion about the problem provided to the SML tech-
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niques, fitting generic and unrepresentative classifica-
tion models. Similarly, in ML5 the artificial creation
of a pseudo-label for multi-label instances found is
determined. For the seven labels (6 proposed for the
2D-SPP +1 pseudo), the ability to verify patterns to
fit classification models was increased, mainly due to
the improved pseudo-label instances representative-
ness compared to ML3. However, a new instance pre-
dicted with a pseudo-label cannot provide enough in-
formation about the best improvement heuristic op-
tion used to obtain the quality solution. Thus, the new
instances predicted using a classification model pro-
vided by ML5 can be represented by a non-existent
improvement heuristic.

For ML4, each multi-label instance is defined ran-
domly by only one label. The other instance labels
are excluded. The random selection process hindered
the fitted classification models, due to the lack of effi-
ciency to recognize patterns between problem charac-
teristics given by the predictor’s values and the label
chosen for each multi-label instance.

In ML2, the ratio between the number of instances
and the available labels is the lowest in comparison
with other transformation methods. This fact can con-
tribute to explaining the best accuracy obtained re-
gardless of the SML technique used to fit classifica-
tion models. The single-label dataset characteristics
are less diffuse by the exclusion of all multi-label in-
stances, allowing a real identification of the patterns
between predictors and labels. However, a negative
ML2 aspect can be a significant loss of information
about the problem with the exclusion of instances
from the main dataset, causing inaccuracy to predict
labels of new instances with similar characteristics to
those instances excluded. Also, this exclusion reduces
the generalization level of the classification model,
even the accuracy obtained with the ML2, in compar-
ison to other transformation methods, is higher for
the 2D-SPP.

Thus, a complementary study to verify the accu-
racy of the predictions only for the 129 multi-label
instances excluded from the ML2 single-label dataset
was conducted. The classification models fitted by the
random forest and the support vector machine were
used. If the predicted label matches with any multi-
label of each instance, then the classification models
are potentially accurate for multi-label instances.

For the random forest classification model, in 75%
of instances, the predicted label is equal to one multi-
label. For the support vector machine classification
model, the accuracy is 80%. As expected, a reduced
accuracy of 60% was verified for instances with two
or three multi-labels, motivated by the reduction of
the labels’ assertiveness options. For more than four
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multi-labels, the accuracy is substantially improved.
Therefore, for the 2D-SPP, the exclusion of multi-
label instances did not significantly affect the ML2
ability to obtain single-label datasets and fit accurate
and generalized classification models to different in-
stances’ characteristics.

Conclusions

As observed in the analysis of the results, the
methodological framework works well to identify the
transformation method for the 2D-SPP, providing co-
herent single-label datasets that can be used to fit
classification models in future studies.

As mentioned in the introduction and shown during
this article, the methodological framework proposed
can be easily adapted. One of the basic premises and
one of the main advantages of this research is the pos-
sibility to generalize the methodological framework
for other combinatorial optimization problems vari-
ations (Neuenfeldt et al., 2022), mainly cutting and
packing problems, as bin packing and knapsack prob-
lems. Few changes in the structure of the method-
ological framework are necessary to enable the use in
other cutting and packing problems. As an example,
for the bin packing problem, it is necessary to gen-
erate instances to be used as main datasets and new
datasets, predictors to characterize the problem, and
select constructive and improvement heuristics capa-
ble to solve the problem, thus obtaining labels for each
main instance.

From an academic perspective, a lack of studies re-
lated to the context of multi-label transformations
methods for cutting and packing problems and, in
specific, for the strip packing problem was filled with
this study, assisting other researchers in the use of
data mining and machine learning approaches in the
search for efficient solutions.

Some limitations were observed during the research.
A limited number of constructive and improvement
heuristics were used to calculate the gap and gen-
erate labels for each instance. Also, the problem
was assigned to be solved by transformation meth-
ods, avoiding the use of adaptation methods. For fu-
ture research, we expect to apply the methodologi-
cal framework to transform multi-label instances from
other cutting and packing problems in single-label in-
stances. Also, the single-label dataset generated us-
ing the transformation method ML2 will be used to
fit more detailed classification models and select im-
provement heuristics according to the characteristics
of new instances for the 2D-SPP.
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