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Explicit modeling of multi-period setup times
in proportional lot-sizing and scheduling problem

with variable capacity

Waldemar KACZMARCZYK

Small bucketmodels withmany short fictitiousmicro-periods ensure high-quality schedules
in multi-level systems, i.e., with multiple stages or dependent demand. In such models, setup
times longer than a single period are, however, more likely. This paper presents new mixed-
integer programming models for the proportional lot-sizing and scheduling problem (PLSP)
with setup operations overlapping multiple periods with variable capacity.

A new model is proposed that explicitly determines periods overlapped by each setup
operation and the time spent on setup execution during each period. The model assumes that
most periods have the same length; however, a few of them are shorter, and the time interval
determined by two consecutive shorter periods is always longer than a single setup operation. The
computational experiments show that the newmodel requires a significantly smaller computation
effort than known models.

Key words: production, lot-sizing and scheduling, mixed-integer programming

1. Introduction

This paper addresses a class of mixed-integer programming (MIP) models
for the lot-sizing and scheduling problems with discrete time scale. Multiple
products have to be produced to satisfy deterministic, time-varying demand.
There is one machine with limited capacity, i.e., during each period, the total
workload assigned to the machine cannot exceed its length. When the machine
is changed over from the production of one product to another, a setup operation
must be executed. Each setup operation causes additional costs and takes some
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time that may be longer than a period, i.e., may overlap several periods. Neither
the setup costs nor times are sequence-dependent. The objective is to minimize
the sum of the setup and inventory holding costs.
Simultaneous lot-sizing and scheduling integrates two decision levels of the

classic production planning system. First, capacitated lot-sizing determines sizes
and completion dates of production orders (lots), i.e., assigns orders to periods
(weeks, days, or shifts), to minimize the set-up and inventory (work-in-process)
holding costs [7,19]. Second, machine scheduling determines detailed production
schedules for fixed lots during a single period, i.e., assignment to machines and
sequences of orders, to ensure that all orders assigned to a period are completed
during this period. Such integration is not possible when system requirements
make scheduling hard to solve even as a stand-alone problem [20]. Then schedules
are determined separatelywith set-up times aggregatedwith processing times [20]
or modeled explicitly, to determine shorter product cycle times [4,18], or because
set-up times depend on the sequence of products [5].
Researchers divide lot-sizing and schedulingmodels into three classes,models

with large or small time-buckets and hybrid models. Large bucket models allow
many machine setups and lots within the same period. Small bucket models
allow one machine setup and two lots per period at most. To ensure high-quality
solutions of small bucket models, real periods (macro-periods) are usually split
into several short fictitious micro-periods, e.g., [9, 16, 21], which makes setup
times longer than a single period more likely. Hybrid models use both macro-
and micro-periods. A more detailed discussion of large and small buckets pros
and cons provide [7, 11, 14, 21].
This paper considers the proportional lot-sizing and scheduling problem

(PLSP) [8, 10]. The PLSP is the most flexible small bucket model, as it al-
lows for the processing of two products during a single period (one before and
another after the setup operation).
The amount of research on small bucket models with setup times longer than

period length is limited. There are a few papers on models with constant period
capacity. Blocher et al. [3] and Cattrysse et al. [6] extended the discrete lot-
sizing and scheduling problem [9], which assumes that processing times of lots
and setups are integer multiples of a period. Kaczmarczyk [12] proposed three
model formulations for the PLSP that explicitly determine the end of each setup
operation for the known begin time. Kaczmarczyk [15] also proposed another
PLSP model that explicitly determines the beginning of each setup operation for
the known completion time. Haase [10] and Suerie [21] proposed models for the
PLSP with variable capacity, which determine a setup schedule implicitly: an
additional variable accumulates the time assigned to the setup operation during
consecutive periods until it becomes equal to the setup time.
This paper proposes an adaptation of the explicit model for uniform periods

[15] to the case with variable capacity of periods. It is based on the simple
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observation, most periods have the same capacity in the calendar of a short-term
production schedule, and only a few are shorter. For example, there are three
shifts on ordinary working days in certain companies (i.e., the working day is 24
hours long), but there are only one or two shifts during the day on Saturdays or
days before certain holidays. Some other companies produce during two shifts
per day but schedule some overtime hours at the end of certain days. If the shift
is the basic period, then overtime constitutes an additional shorter period. Also,
scheduled maintenance operations decrease the capacity of some distant periods.
Section 2 presents themodel for uniformperiods [15], including its parameters

and variables. In this model, four different cases of schedules of a single setup
operation are possible. Subsection 2.2 presents the approach of combining similar
constraints into one more general one, enabling a more concise description of the
model. In Section 3, the same approach is applied to formulate the new model
with variable capacity and general constraints for twenty different cases of setup
schedule. Subsection 3.5 presents the heuristics for the explicit models. Section 4
describes the computational experiments, data sets, tools, and results. Section 5
gives a summary. The appendix contains illustrative examples for all cases of the
setup execution considered in the new model.

2. Models for uniform periods

The list below presents the notation: firstly, the basic parameters that define
the PLSP; next, the derivative parameters necessary for the explicit description
of the changeovers in the model; and finally, the continuous and binary variables.

Parameters:

T = {1, . . . , 𝑇max} – set of periods;
N = {1, . . . , 𝑁max} – set of products;
𝑑 𝑗 𝑡 – demand of product 𝑗 during period 𝑡;
𝑝 𝑗 – processing time of product 𝑗 ;
𝐼 𝑗0 – initial inventory of product 𝑗 ;
ℎ 𝑗 𝑡 – unit holding cost of product 𝑗 during period 𝑡;
𝑠𝑐 𝑗 – setup cost of product 𝑗 ;
𝑠𝑡 𝑗 – setup time of product 𝑗 ;
𝐶𝑡 – capacity (length) of single period 𝑡;

Derivative parameters :

𝐶 – ordinary period capacity; i.e., capacity upper limit (𝐶𝑡 ¬ 𝐶);
𝑄 𝑗 = b𝑠𝑡 𝑗/𝐶c is (integer) quotient of setup time of product 𝑗 and capacity;
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𝑅 𝑗 = 𝑠𝑡 𝑗 −𝑄 𝑗𝐶 is the remainder of setup time of product 𝑗 divided by capacity;
however, if setup time is integer multiply of capacity (𝑄 𝑗 ­ 1 and 𝑠𝑡 𝑗 =

𝑄 𝑗𝐶), then 𝑄 𝑗 = b𝑠𝑡 𝑗/𝐶c − 1 and 𝑅 𝑗 = 𝐶;
P 𝑗 = {−𝑄 𝑗 , . . . , 0} ∪ T – set of periods extended by past periods necessary to

describe unfinished setup of product 𝑗 started in the past.

Continuous variables:

𝑥 𝑗 𝑡 – production volume of product 𝑗 during period 𝑡;
𝐼 𝑗 𝑡 – inventory of product 𝑗 at the end of period 𝑡;
𝑏 𝑗 𝑡 – time during period 𝑡 reserved for product 𝑗 before changeover;
𝑎 𝑗 𝑡 – time during period 𝑡 reserved for product 𝑗 after changeover;
𝑠 𝑗 𝑡 – time used to set up machine for product 𝑗 during period 𝑡 (but only when 𝑡

is last period overlapped by setup operation);
𝑠′
𝑗 𝑡
– time used to set up machine during any period 𝑡 overlapped by setup oper-
ation;

Binary variables:

𝑦 𝑗 𝑡 = 1 if machine is set up to process product 𝑗 at the end of period 𝑡 (i.e.,
machine is reserved [ready] for that product); 0 otherwise;

𝑧 𝑗 𝑡 = 1 if machine starts up to produce product 𝑗 during period 𝑡 (i.e., setup
operation for this product is finished); 0 otherwise;

𝑤 𝑗 𝑡 = 1 if processing of product 𝑗 during period 𝑡 is switched off; 0 otherwise;
𝑣 𝑗 𝑡 = 1 if 𝑧 𝑗 𝑡 = 1 and time used to process setup operation of product 𝑗 during

period 𝑡 is longer than remainder of setup time (𝑠 𝑗 𝑡 ­ 𝑅 𝑗 ); 0 otherwise;
𝑢 𝑗 𝑡 = 1 if setup operation of product 𝑗 during period 𝑡 is processed but not finished

(i.e., it must be continued during the next period); 0 otherwise.
In the models described in this paper, all variables with period indices 𝑡 ¬ 0

or 𝑡 ­ 𝑇max + 1 (i.e., from the past or future planning horizon) are set to be
equal to zero. There are only two exceptions; firstly, inventory variables 𝐼 𝑗0 may
represent non-zero initial inventories; and secondly, variables with 𝑡 ¬ 0 describe
the initial state of the machine, i.e., determine which product may be produced at
the beginning of the first period or describe the state of a setup operation started
i n the past. Variable 𝑠′

𝑗 𝑡
is used only to describe schedules in the illustrative

example and not in the considered models.
If the products are indivisible, demand, production, and inventory values

should be integer. However, this article assumes that all these parameters and
variables are continuous because dynamic lot-sizing models are used to plan the
serial production of medium-volume products. The values of the period demand
are then measured in hundreds or thousands of items. So, rounding up or down
the production changes the daily or weekly workload by only a few minutes. If
the demand per period is small, e.g., less than ten, the production volume must be
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integer, but the set of feasible solutions is also small and can be quickly examined
by the branch and bound algorithm.
The basis for further considerations constitutes an explicit formulation of the

PLSP model [17] (denoted here as PLSP/E), which uses variables 𝑏 𝑗 𝑡 and 𝑎 𝑗 𝑡 to
describe the division of capacity among consecutive lots explicitly (i.e., the time
before and after beginning each setup operation).
The example in Table 1 illustrates the basic idea of the model proposed by

Kaczmarczyk [15]. The setup time for product 𝑗 is 𝑠𝑡 𝑗 = 350, and the capacity is
𝐶 = 100; i.e., the (integer) quotient of setup time and capacity is 𝑄 𝑗 = 3, and the
remainder of that division is 𝑅 𝑗 = 50.
Variable 𝑧 𝑗 𝑡 points to the end of the setup and separates time intervals during

which production is prevented and enabled. Variable 𝑠 𝑗 𝑙 describes the capacity
used to set up the machine during the last period 𝑙 overlapped by the setup
operation. If 𝑠 𝑗 𝑙 is longer or equal to the remainder of setup time 𝑅 𝑗 (see Case a),
then the setup operation overlaps the 𝑄 + 1 periods; otherwise, it overlaps the
𝑄 + 2 periods (see Case b). To complete the schedule of a setup operation, one
must determine the first overlapped period 𝑓 and the capacity 𝑎 𝑗 𝑓 used to process
it during this period. During time interval [ 𝑓 , 𝑙 − 1], production is prevented by
binary variable 𝑢 𝑗 𝑡 , and during period 𝑙, the capacity available for production is
decreased by 𝑠 𝑗 𝑙 .

Table 1: Scenarios of setup operation finished during period 𝑙 in the model with constant
capacity

a) 𝑠 𝑗𝑙 ­ 𝑅 𝑗 ; i.e., 𝑣 𝑗𝑙 = 1

𝑡 𝑙 − 4 𝑙 − 3 𝑙 − 2 𝑙 − 1 𝑙 𝑙 + 1
𝑎 𝑗𝑡 70
𝑠′
𝑗𝑡

70 100 100 80
𝑥 𝑗𝑡 20 100
𝑧 𝑗𝑡 1
𝑣 𝑗𝑡 1
𝑢 𝑗𝑡 1 1 1
𝑦 𝑗𝑡 1 1

b) for 𝑠 𝑗𝑙 < 𝑅 𝑗 ; i.e., 𝑣 𝑗𝑙 = 0

𝑡 𝑙 − 4 𝑙 − 3 𝑙 − 2 𝑙 − 1 𝑙 𝑙 + 1
𝑎 𝑗𝑡 30
𝑠′
𝑗𝑡

30 100 100 100 20
𝑥 𝑗𝑡 80 100
𝑧 𝑗𝑡 1
𝑣 𝑗𝑡 0
𝑢 𝑗𝑡 1 1 1 1
𝑦 𝑗𝑡 1 1

The explicit formulation of the PLSP/E model with setup operations overlap-
ping multiple periods proposed by Kaczmarczyk [15] (denoted as PLSP/E-MS/P)
is presented below:

min
∑︁
𝑡∈ T

∑︁
𝑗∈N

(𝑠𝑐 𝑗 𝑧 𝑗 𝑡 + ℎ 𝑗 𝑡 𝐼 𝑗 𝑡), (1.1)
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𝐼 𝑗 ,𝑡−1 + 𝑥 𝑗 𝑡 − 𝑑 𝑗 𝑡 = 𝐼 𝑗 𝑡 , 𝑗∈N , 𝑡∈ T , (1.2)
𝐶𝑡 (𝑦 𝑗 𝑡 − 𝑣 𝑗 𝑡) + 𝑎 𝑗 𝑡 + 𝑏 𝑗 𝑡 ­ 𝑝 𝑗𝑥 𝑗 𝑡 + 𝑠 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ T , (1.3)

𝐶𝑡𝑦 𝑗 𝑡 + 𝑏 𝑗 𝑡 ­ 𝑝 𝑗𝑥 𝑗 𝑡 + 𝑠 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 ­ 1, 𝑡∈ T , (1.4)
𝐶𝑡 (1 − 𝑧 𝑗 ,𝑡+1 + 𝑣 𝑗 ,𝑡+1) ­ 𝑝 𝑗𝑥 𝑗 𝑡 + 𝑠 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ T , (1.5)∑︁

𝑗∈N
(𝑏 𝑗 𝑡 + 𝑎 𝑗 𝑡) =

∑︁
𝑗∈N

𝐶𝑡𝑤 𝑗 𝑡 , 𝑡∈ T , (1.6)

𝐶𝑡𝑤 𝑗 𝑡 ­ 𝑏 𝑗 𝑡 , 𝑗∈N , 𝑡∈ T , (1.7)
𝐶𝑡

(
𝑣 𝑗 ,𝑡+𝑄 𝑗

+ 𝑧 𝑗 ,𝑡+𝑄 𝑗+1 − 𝑣 𝑗 ,𝑡+𝑄 𝑗+1
)
­ 𝑎 𝑗 𝑡 , 𝑗∈N , 𝑡∈ P 𝑗 , (1.8)∑︁

𝑗∈N
(𝑦 𝑗 𝑡 + 𝑢 𝑗 𝑡) = 1, 𝑡∈ T , (1.9)

𝑧 𝑗 𝑡 − 𝑤 𝑗 𝑡 = 𝑦 𝑗 𝑡 − 𝑦 𝑗 ,𝑡−1, 𝑗∈N , 𝑡∈ T , (1.10)

𝑅 𝑗𝑣 𝑗 𝑡 ¬ 𝑠 𝑗 𝑡 , 𝑗∈N , 𝑡∈ T , (1.11)
𝑠 𝑗 𝑡 ¬ 𝐶𝑡𝑧 𝑗 𝑡 , 𝑗∈N , 𝑡∈ T , (1.12)

𝑧 𝑗 ,𝑡+1 − 𝑣 𝑗 ,𝑡+1 ¬ 𝑢 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ P 𝑗 , (1.13)
𝑅 𝑗 (𝑧 𝑗 𝑡 + 𝑣 𝑗 𝑡 − 1) ¬ 𝑎 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ P 𝑗 , (1.14)
𝑅 𝑗 (𝑧 𝑗 ,𝑡+1 − 𝑣 𝑗 ,𝑡+1) ¬ 𝑎 𝑗 𝑡 + 𝑠 𝑗 ,𝑡+1, 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ P 𝑗 , (1.15)

𝑄 𝑗+1∑︁
𝑟=1

𝑧 𝑗 ,𝑡+𝑟 − 𝑣 𝑗 ,𝑡+𝑄 𝑗+1 ¬ 𝑢 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 ­ 1, 𝑡∈ P 𝑗 (1.16)

(𝑅 𝑗 + 𝐶) (𝑧 𝑗 ,𝑡+𝑄 𝑗
+ 𝑣 𝑗 ,𝑡+𝑄 𝑗

− 1) ¬ 𝑎 𝑗 𝑡 + 𝑠 𝑗 ,𝑡+𝑄 𝑗
, 𝑗∈N: 𝑄 𝑗 ­1, 𝑡∈ P 𝑗 , (1.17)

𝑅 𝑗 (𝑧 𝑗 ,𝑡+𝑄 𝑗+1 − 𝑣 𝑗 ,𝑡+𝑄 𝑗+1) ¬ 𝑎 𝑗 𝑡 + 𝑠 𝑗 ,𝑡+𝑄 𝑗+1, 𝑗∈N: 𝑄 𝑗 ­1, 𝑡∈ P 𝑗 , (1.18)

𝐼 𝑗 𝑡 ­ 0, 𝑗∈N , 𝑡∈ T , (1.19)
𝑥 𝑗 𝑡 , 𝑎 𝑗 𝑡 , 𝑏 𝑗 𝑡 , 𝑠 𝑗 𝑡∈ [0, 𝐶], 𝑗∈N , 𝑡∈ T , (1.20)

𝑤 𝑗 𝑡∈ [0, 1], 𝑗∈N , 𝑡∈ T , (1.21)
𝑧 𝑗 𝑡 , 𝑣 𝑗 𝑡 , 𝑦 𝑗 𝑡 , 𝑢 𝑗 𝑡∈ {0, 1}, 𝑗∈N , 𝑡∈ T . (1.22)

The above model is correct only for a constant period capacity over the
planning horizon (𝐶𝑡 = 𝐶 for all 𝑡). Nevertheless, the capacity is often denoted as
𝐶𝑡 and not 𝐶 for compatibility with the considerations in the following sections.
The model objective is to minimize the total setup and inventory holding

costs (1.1). Equalities (1.2) ensure the balance of production, inventory, and
demand.
Constraints (1.3)–(1.5) limit the production volume depending on themachine

state. Constraints (1.6) ensure that the whole period capacity is distributed among
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the products. Constraints (1.7) and (1.8) allow non-zero values of 𝑏 𝑗 𝑡 and 𝑎 𝑗 𝑡

only if the machine switches off (𝑤 𝑗 𝑡 = 1) or starts up (𝑣 𝑗 𝑡 = 1) the processing of
product 𝑗 , respectively.
Constraint (1.9) ensures the unique state of the machine at the end of each

period. Constraint (1.10) forces start-up variables 𝑧 𝑗 𝑡 and switch-off variables 𝑤 𝑗 𝑡

to take a value of 1 after each change of the machine state 𝑦 𝑗 𝑡 .
Constraints (1.11)–(1.18) model the execution of the setup operations. During

the last period overlapped by setup operation (𝑧 𝑗 𝑡 = 1), constraint (1.11) ensures
that the finish variable 𝑣 𝑗 𝑡 takes a value of 1 only if 𝑠 𝑗 𝑡 ­ 𝑅 𝑗 . In such a case,
the setup operation overlaps only 𝑄 𝑗 + 1 periods (Example a) in Table 1). Con-
straint (1.12) ensures that there is no setup time when 𝑧 𝑗 𝑡 = 0. Otherwise, it could
be “profitable” to set 𝑣 𝑗 𝑡 = 1, as it would ensure some (infeasible) capacity for
production according to (1.8).
Constraints (1.13) and (1.16) force the variables 𝑢 𝑗 𝑡 to take value 1 during the

periods in which the setup operation is continued. Constraints (1.14) and (1.17)
reserve the capacity 𝑎 𝑗 𝑡 for the setup in the first overlapped period when the
setup operation overlaps 𝑄 𝑗 + 1 periods, and constraints (1.15) and (1.18) when
it overlaps 𝑄 𝑗 + 2 periods.

2.1. Valid inequalities

The valid inequalities presented below (denoted as ilb) determine theminimal
inventory necessary at the end of period 𝑡−1 if, during some time interval [𝑡, 𝑡+Δ],
the machine is never set up to produce product 𝑗 , e.g., [1, 2, 19, pp. 217-220].
They are added a priori to the model here.

𝐼 𝑗 ,𝑡−1 ­
𝑡+Δ∑︁
𝜏=𝑡

𝑑 𝑗𝜏

[
1 − 𝑦 𝑗 ,𝑡−1 −

𝜏∑︁
𝑘=𝑡

𝑧 𝑗 𝑘

]
, 𝑗 ∈ N , 𝑡 ∈ T , Δ ∈ [0, 𝑇max − 𝑡] .

(2)
In models with fictitious micro-periods, demand is usually non-zero only at

the end of the last micro-period of each macro-period [11]. For such a demand
pattern, inventory lower bound (2) should be replaced by constraints (3) (denoted
here as ilbw), which are defined only for macro-periods [14].

Additional parameters in cases with macro- and micro-periods:

W = (1, . . . ,𝑊max) – set of macro-periods; where 𝑊max is the number of
macro-periods,

T𝑤 = 𝐹 (𝑤), . . . , 𝐿 (𝑤) – set of periods (micro-periods) in macro-period 𝑤;
where 𝐹 (𝑤) and 𝐿 (𝑤) are the first and last period in macro-period 𝑤,

𝑌 𝑗𝑤 = 1 if machine is setup to process product 𝑗 during macro-period 𝑤;
0 otherwise.
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Macro-period based inventory lower bound:

𝑌 𝑗𝑤 ∈ {0, 1}, 𝑗 ∈ N , 𝑤 ∈ W, (3.1)

𝑌 𝑗𝑤 = 𝑦 𝑗 ,𝐿 (𝑤−1) +
∑︁
𝑡∈T𝑤

𝑧 𝑗 𝑡 , 𝑗 ∈ N , 𝑤 ∈ W, (3.2)

𝐼 𝑗 ,𝐿 (𝑤−1) ­
𝑤+Δ∑︁
𝜏=𝑤

𝑑 𝑗𝜏

[
1 −

𝜏∑︁
𝑘=𝑤

𝑌 𝑗 𝑘

]
, 𝑗 ∈ N , 𝑤 ∈ W,Δ ∈ [0,𝑊max − 𝑤] . (3.3)

2.2. Generalization of constraints

In themodel for uniform periods (1), several constraints are either for products
with setup times shorter or longer than a single period length, i.e., for 𝑄 𝑗 = 0 or
𝑄 𝑗 ­ 1. Below, they are generalized into constraints suitable for all products to
make the model more concise.
The generalization of constraints that determine the values of continuation

variables 𝑢 𝑗 𝑡 is simple. For 𝑄 𝑗 = 0, constraint (1.16) reduces to (1.13); i.e., we
may replace them by the following generalized constraint:

𝑄 𝑗+1∑︁
𝑘=1

𝑧 𝑗 ,𝑡+𝑘 − 𝑣 𝑗 ,𝑡−(𝑄 𝑗+1) ¬ 𝑢 𝑗 𝑡 , 𝑗 ∈ N , 𝑡 ∈ T . (4.1)

Capacity constraints (1.3) and (1.4) differ only in variables 𝑣 𝑗 𝑡 and 𝑎 𝑗 𝑡 , so it
is easy to replace them by the following generalized constraint using additional
binary (logical) parameter 𝑞 𝑗 = sgn(𝑄 𝑗 ):

𝐶𝑡

(
𝑦 𝑗 𝑡 − (1 − 𝑞 𝑗 )𝑣 𝑗 𝑡

)
+ (1 − 𝑞 𝑗 )𝑎 𝑗 𝑡 + 𝑏 𝑗 𝑡 ­ 𝑝 𝑗𝑥 𝑗 𝑡 + 𝑠 𝑗 𝑡 , 𝑗 ∈ N 𝑡 ∈ T , (4.2)

Constraints (1.14)–(1.15) and (1.17)–(1.18) ensure accurate values of vari-
ables 𝑎 𝑗 𝑓 for a given 𝑠 𝑗 𝑙 . Their generalization is not difficult; however, a general
approach introduced below is used later to formulate the model with variable
periods, which is much more complex and requires some systematic procedure.
In the problem with uniform periods, there are four different cases of setup

execution: for 𝑄 𝑗 = 0 or 𝑄 𝑗 ­ 1, and 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 or 𝑠 𝑗 𝑙 < 𝑅 𝑗 ; denoted a, b, A,
and B. The description of these cases is summarized in Table 2, where 𝑓 is the f
irst and 𝑙 is the last period overlapped by the setup operation. For known period
𝑙 and setup execution time 𝑠 𝑗 𝑙 , distance 𝑙 − 𝑓 points to the period during which
the setup must start, and 𝑎 𝑗 𝑓 gives the necessary time during this period 𝑓 to
complete the setup operation.
First, all four of the cases given in Table 2 can be generalized with the help of

parameter 𝑞 𝑗 to the two general cases, denoted aA and bB, presented in Table 3.
Second, one has to apply the standard description of big-M (indicator) con-

straints, e.g., [22, p. 158]. Condition 𝛿 = 0→ ∑
𝑗 𝑎 𝑗𝑥 𝑗 ¬ 𝑏 may be represented
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Table 2: Summary of the model with uniform periods

Case 𝑞 𝑗 Condition: 𝑣 𝑗𝑙 𝑙 − 𝑓 𝑎 𝑗 𝑓

a 0 𝑠 𝑗𝑙 ­ 𝑅 𝑗 1 0 𝑅 𝑗

b 0 𝑠 𝑗𝑙 < 𝑅 𝑗 0 1 𝑅 𝑗 − 𝑠 𝑗𝑙

A 1 𝑠 𝑗𝑙 ­ 𝑅 𝑗 1 𝑄 𝑗 + 0 𝑅 𝑗 + 𝐶 − 𝑠 𝑗𝑙

B 1 𝑠 𝑗𝑙 < 𝑅 𝑗 0 𝑄 𝑗 + 1 𝑅 𝑗 − 𝑠 𝑗𝑙

Table 3: Summary of the generalized model with uniform periods

Case Condition: 𝑣 𝑗𝑙 𝑙 − 𝑓 𝑎 𝑗 𝑓

aA 𝑠 𝑗𝑙 ­ 𝑅 𝑗 1 𝑄 𝑗 + 0 𝑅 𝑗 + 𝑞 𝑗 (𝐶 − 𝑠 𝑗𝑙)
bB 𝑠 𝑗𝑙 < 𝑅 𝑗 0 𝑄 𝑗 + 1 𝑅 𝑗 − 𝑠 𝑗𝑙

in a MIP model by inequality
∑

𝑗 𝑎 𝑗𝑥 𝑗 ¬ 𝑏 + 𝑀 𝛿, where 𝛿 ∈ {0, 1} and 𝑀 is
the upper bound of

∑
𝑗 𝑎 𝑗𝑥 𝑗 − 𝑏. To improve readability of the following sec-

tions, all expressions replacing 𝑀 are written in square brackets [𝑀] and 𝛿 in
pointy brackets

〈
𝛿
〉
. If 𝛿 is an integer that takes values greater than 1, the big-M

constraint remains valid but is less tight.
According to Table 3, if in period 𝑙 ends setup operation for 𝑗 (𝑧 𝑗 𝑙 = 1), then

the following constraints ensure the setup time during the first overlapped period:

Case aA: 𝑅 𝑗 + 𝑞 𝑗 (𝐶 − 𝑠 𝑗 𝑙) ¬ 𝑎 𝑗 𝑓 +
[
𝑅 𝑗 + 𝑞 𝑗𝐶

] 〈
(1 − 𝑧 𝑗 𝑙) + (1 − 𝑣 𝑗 𝑙)

〉
,

where 𝑓 = 𝑙 −𝑄 𝑗 ,

Case bB: 𝑅 𝑗 − 𝑠 𝑗 𝑙 ¬ 𝑎 𝑗 𝑓 +
[
𝑅 𝑗

] 〈
(1 − 𝑧 𝑗 𝑙) + 𝑣 𝑗 𝑙

〉
,

where 𝑓 = 𝑙 −𝑄 𝑗 + 1.
Substituting 𝑓 by 𝑡, and 𝑙 by 𝑡 + 𝑄 𝑗 or 𝑡 + 𝑄 𝑗 + 1, after reduction, one gets the
constraints in their final forms:

(𝑅 𝑗 + 𝑞 𝑗𝐶) (𝑧 𝑗 ,𝑡+𝑄 𝑗
+ 𝑣 𝑗 ,𝑡+𝑄 𝑗

− 1) ¬ 𝑎 𝑗 𝑡 + 𝑞 𝑗 𝑠 𝑗 ,𝑡+𝑄 𝑗
, 𝑗 ∈ N , 𝑡 ∈ P 𝑗 , (4.3)

𝑅 𝑗

(
𝑧 𝑗 ,𝑡+𝑄 𝑗+1 − 𝑣 𝑗 ,𝑡+𝑄 𝑗+1

)
¬ 𝑎 𝑗 𝑡 + 𝑠 𝑗 ,𝑡+𝑄 𝑗+1, 𝑗 ∈ N , 𝑡 ∈ P 𝑗 , (4.4)

To summarize, four constraints (4) may replace eight constraints in model
(1): (1.3)–(1.4), (1.13)–(1.15), and (1.16)–(1.18). For example, for 𝑞 𝑗 = 1, (4.3)
reduces to (1.17) and (4.4) to (1.18).

3. Model with variable period capacity

In this section presented is a new model for problems with periods 𝑡 ∈ T of
different length 𝐶𝑡 . Model for uniform periods (1) is for such problems incorrect,
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which may be explained with the help of the example presented in Table 4. Here,
the ordinary period capacity is equal to 𝐶 = 100, and the processing time of
the setup operation is equal to 𝑠𝑡 𝑗 = 350 (i.e., the quotient is 𝑄 𝑗 = 3, and the
remainder is 𝑅 𝑗 = 50). The processing of the setup operation ends during period
𝑙 = 7, the most recent shorter period 𝑟 (𝑙) before 𝑙 is 3, and its length is equal to
𝐶3 = 30.

Table 4: Examples of processing long setup operation (𝑠𝑡 𝑗 = 350)

t 1 2 3 4 5 6 7 8
𝑣 𝑗7 𝑣′′

𝑗7 𝐶𝑡 100 100 30 100 100 100 100 100
1 - 𝑠′

𝑗𝑡
– – - 60 100 100 90 –

0 0 𝑠′
𝑗𝑡

– – 20 100 100 100 30 –
0 1 𝑠′

𝑗𝑡
– 10 30 100 100 100 10 –

“–” is unimportant or replaces zero

Depending on the time reserved for the setup operation during the last period
(i.e., 𝑠 𝑗8 = 90, 30, or 10), there are three different cases; i.e., the setup operation
may be started during periods 𝑙 −𝑄 𝑗 = 4, 𝑙 − (𝑄 𝑗 + 1) = 3 or 𝑙 − (𝑄 𝑗 + 2) = 2. To
distinguish between them, one binary variable 𝑣 𝑗 𝑡 from model (1) is not enough;
another one is necessary (denoted as 𝑣′′

𝑗 𝑡
).

The proposed model extends the model for uniform periods (1). The concept
of this new model is based on a simple observation. In the calendar of short-term
production planning, most time buckets (periods) are of the same length – only
a few are shorter, and none of them is longer than an ordinary period.

3.1. Basic assumption

It is assumed that shorter periods occur so rarely that the schedule of each
setup operation may be determined by considering at most one shorter period.
More precisely, if 𝛼 and 𝜔 are two consecutive shorter periods, then it is assumed
that time interval [𝛼, 𝜔] is longer or equal to the longest setup time; i.e.,

𝜔∑︁
𝑡=𝛼

𝐶𝑡 ­ max
𝑗

𝑠𝑡 𝑗 . (5)

This assumption may be justified with the help of the examples presented in
Table 5. There are four schedules of setup operations on a calendar with two
shorter periods: 𝛼 = 4 and 𝜔 = 7. The total capacity of time interval [𝛼, 𝜔]
is equal to

∑𝜔
𝑡=𝛼 𝐶𝑡 = 300; it is smaller than the setup time of product 𝑖 (with

𝑠𝑡𝑖 = 350), greater than the setup time of product 𝑗 (with 𝑠𝑡 𝑗 = 250), and equal
to the setup time of product 𝑘 (with 𝑠𝑡𝑘 = 300).
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Table 5: Setup operations overlapping two consecutive shorter periods

𝑡 1 2 3 4 5 6 7 8 9 10
𝐶𝑡 100 100 100 60 100 100 40 100 100 100
𝑠′
𝑖𝑡

− − 49 60 100 100 40 1 − −
𝑠′
𝑗𝑡

− − − 9 100 100 40 1 − −
𝑠′
𝑘𝑡

− − − 59 100 100 40 1 − −
𝑠′
𝑘𝑡

− − 1 60 100 100 39 − − −
“–” replaces zero.

If the setup of product 𝑖 ends during Period 8, then it may start during Period
3; the time 𝑎𝑖3 used to process it during this period depends on the capacity
of both shorter periods (𝐶4 and 𝐶7); i.e., 𝑎𝑖3 = 𝑠𝑡𝑖 −

∑7
𝑡=4𝐶𝑡 − 𝑠𝑖8. In the same

situation, the setup for product 𝑗 must end during Period 4, and 𝑎 𝑗4 depends only
on 𝐶7; i.e, 𝑎 𝑗4 = 𝑠𝑡 𝑗 −

∑7
𝑡=5𝐶𝑡 − 𝑠 𝑗8.

For product 𝑘 , the situation is similar as for 𝑗 ; however, when 𝑠𝑘8 tends
towards zero, 𝑎𝑘4 goes to 𝐶4, and any increment of 𝑠𝑡𝑘 could extend the setup
for Period 3. If the setup for 𝑘 starts during Period 7, it must end during Period
3. To calculate 𝑎𝑘3, one must consider only 𝐶4 while 𝐶7 is unimportant, as
𝑎𝑘3 = 𝑠𝑡𝑘 −

∑6
𝑡=4𝐶𝑡 − 𝑠𝑘7 and (4.2) ensure that 𝑠𝑘7 ¬ 𝐶7.

Therefore, 𝑠𝑡𝑘 =
∑𝜔

𝑡=𝛼 𝐶𝑡 is the longest setup operation whose schedule (value
of variable 𝑎𝑘 𝑓 ) depends on the capacity of one shorter period at most.
In the introduction, two examples justifying such an assumption have already

been presented. Moreover, when it is not satisfied in certain processes, it may be
possible to modify the planning calendar to fulfill it. Let us see an example. In
some companies, the ordinary period capacity is equal to three shifts (24 hours);
however, the company works two shifts on weekends (16 hours). This means
that there are two shorter periods (Saturday and Sunday), one after another.
However, for the needs of the optimization model, one can create two fictitious
periods on weekends: the first being three shifts long and the second only one
shift long. The optimized schedule may be easily recalculated to match the real
calendar.

3.2. Notation

The list belowpresents all of the additional parameters and variables necessary
in the new model.

Indices:
𝑓 – first period overlapped by setup operation;
𝑙 – last period overlapped by setup operation;
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Distance to recent shorter period:
𝑟 (𝑡) – most recent shorter period before current period 𝑡; i.e., 𝑡 − 𝑟 (𝑡) ­ 1,

𝐶𝑟 (𝑡) < 𝐶, and 𝐶𝑟 (𝑡)+1 = . . . = 𝐶𝑡−1 = 𝐶; if 𝐶1 = . . . = 𝐶𝑡−1 = 𝐶 then
𝑟 (𝑡) = 0;

𝜋𝐿
𝑗𝑡
= 1 if 𝑄 𝑗 ­ 1 and 1 ¬ 𝑡 − 𝑟 (𝑡) < 𝑄 𝑗 ; 0 otherwise;

𝜋0
𝑗 𝑡
= 1 if 𝑄 𝑗 ­ 1 and 1 ¬ 𝑡 − 𝑟 (𝑡) ¬ 𝑄 𝑗 ; 0 otherwise;

𝜋1
𝑗 𝑡
= 1 if 𝑡 − 𝑟 (𝑡) = 𝑄 𝑗 + 1; 0 otherwise;

𝜋2
𝑗 𝑡
= 1 if 𝑡 − 𝑟 (𝑡) ­ 𝑄 𝑗 + 2; 0 otherwise;

Capacity of the recent shorter period:
𝜂 𝑗 𝑡 = 1 if 𝐶𝑟 (𝑡) ­ 𝑅 𝑗 ; 0 otherwise;
𝑣′′
𝑗 𝑡
= 1 if 𝑧 𝑗 𝑡 = 1 and 𝑠 𝑗 𝑡 ­ 𝑅 𝑗 + 𝜂 𝑗 𝑡 𝐶 − 𝐶𝑟 (𝑡); 0 otherwise.

Binary parameters 𝜋𝐿
𝑗𝑡
, 𝜋0

𝑗 𝑡
, 𝜋1

𝑗 𝑡
, and 𝜋2

𝑗 𝑡
describe the distance between the last

period 𝑙 overlapped by a setup operation and the recent shorter period 𝑟 (𝑙). 𝑣′′
𝑗 𝑡
is

the only additional variable.

3.3. Description of cases

In the assumed capacity pattern, one can distinguish 20 different cases of setup
schedules. In this section, only four cases are discussed to explain the approach
used to derive the constraints of the new model. Table 7 presents a concise but
complete description of all cases, making it easy to recognize similarities and
differences between them. The appendix contains illustrative examples for all
cases.
In the considered cases, the setup time is longer than the ordinary period

length (𝑄 𝑗 ­ 1), and distance 𝑙 − 𝑟 (𝑙) between last period 𝑙 overlapped by the
setup operation and recent shorter period 𝑟 (𝑙) is equal to 𝑄 𝑗 + 1. This discussion
illustrate examples with 𝑙 = 9, capacity 𝐶 = 100, and setup time 𝑠𝑡 = 350
(𝑄 𝑗 = 3, 𝑅 𝑗 = 50). The recent shorter period is 𝑟 (𝑙) = 5, and its capacity 𝐶𝑟 (𝑙) in
Case D is 70, while it is 30 in Cases E and F. Scenarios with extreme values for
each case are presented in Table 6.

Case C: In the example, for 100 ­ 𝑠 𝑗9 ­ 50, the setup must start during Period
6 with 50 ¬ 𝑎 𝑗6 ¬ 100 because variable 𝑠 𝑗9 cannot take values greater than
100, and for values smaller than 50, the capacity of Period 6 is not enough to
complete the setup operation; i.e., it must overlap earlier periods. Generalizing,
if 𝑙 − 𝑟 (𝑙) = 𝑄 𝑗 + 1 and 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 (or 𝑣 𝑗 𝑓 = 1), then the setup operation starts
during period 𝑓 = 𝑙 −𝑄 𝑗 and the capacity needed to complete the setup during
this period is equal to 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝑠 𝑗 𝑙 .



EXPLICIT MODELING OF MULTI-PERIOD SETUP TIMES IN PROPORTIONAL
LOT-SIZING AND SCHEDULING PROBLEMWITH VARIABLE CAPACITY 895

Table 6: Examples for all scenarios of setup operation that ends in 𝑄 𝑗 + 1 periods from
a recent shorter period

Case 𝑡 1 2 3 4 5 6 7 8 9 10
C 𝑠′

𝑗𝑡
− − − − − 50 100 100 100 −

𝑠′
𝑗𝑡

− − − − − 100 100 100 50 −
D 𝑠′

𝑗𝑡
− − − − 1 100 100 100 49 −

𝑠′
𝑗𝑡

− − − − 49 100 100 100 1 −
E 𝑠′

𝑗𝑡
− − − − 1 100 100 100 49 −

𝑠 𝑗𝑡 − − − − 30 100 100 100 20 −
F 𝑠′

𝑗𝑡
− − − 1 30 100 100 100 19 −

𝑠′
𝑗𝑡

− − − 19 30 100 100 100 1 −

Case D: If the remainder of setup operation 𝑅 𝑗 was not completed during Period
9 (i.e., 𝑠 𝑗9 < 50) but it fits in the recent shorter period (e.g., 𝐶5 = 70), then the
setup starts during Period 5, and requires capacity 0 < 𝑎 𝑗5 < 50. Generalizing,
if 𝑙 − 𝑟 (𝑙) = 𝑄 𝑗 + 1, 𝑠 𝑗 𝑙 < 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 0), and 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1), then
𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

Case E: If the setup time during the last period is smaller than setup remainder
𝑅 𝑗 (i.e., 𝑠 𝑗9 < 50) but greater than the setup remainder less the capacity of the
recent shorter period (e.g.,𝐶5 = 30 and 𝑠 𝑗9 ­ 50−30), then the rest of the setup
fits in the recent shorter Period 5 and requires 0 < 𝑎 𝑗5 ¬ 30. Generalizing, if
𝑙 − 𝑟 (𝑙) = 𝑄 𝑗 + 1, 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0), and 𝑅 𝑗 > 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 −𝐶𝑟 (𝑙) (or 𝑣 𝑗 𝑙 = 0
and 𝑣′′

𝑗 𝑙
= 1), then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

Case F: If 𝐶5 = 30 and 50 − 30 > 𝑠 𝑗9 > 0, then the setup starts during Period
4 and requires 0 < 𝑎 𝑗4 < 20. Generalizing, if 𝑙 − 𝑟 (𝑙) = 𝑄 𝑗 + 1, 𝐶𝑟 (𝑙) < 𝑅 𝑗

(or 𝜂 𝑗 𝑙 = 0), and 𝑠 𝑗 𝑙 < 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0), then 𝑓 = 𝑙 − (𝑄 𝑗 + 2) and
𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙 .

All cases are summarized in Table 7. There are 6 cases for𝑄 𝑗 = 0 (or 𝑞 𝑗 = 0)
(denoted as a to f) and 14 cases for 𝑄 𝑗 ­ 1 (or 𝑞 𝑗 = 1) (denoted as A to P).
These are categorized into four groups according to the distance between the last
period overlapped by the setup operation and recent shorter period: 𝑙 − 𝑟 (𝑙) equal
or longer than 𝑄 𝑗 + 2, equal to 𝑄 𝑗 + 1 or 𝑄 𝑗 , or shorter than 𝑄 𝑗 but longer than
or equal to 1. Due to the definition of 𝑟 (𝑡), the difference 𝑡 − 𝑟 (𝑡) cannot be zero.

3.4. New model

In Table 8, all cases of the setup processing are generalized with the help of
binary parameters. One should note that setup finish variables 𝑣 𝑗 𝑡 and 𝑣′′

𝑗 𝑡
are
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Table 7: Detailed summary of cases for the model with variable capacity

Case 𝑞 𝑗 𝑙 − 𝑟 (𝑙) 𝜋𝐿
𝑗𝑙
𝜋0
𝑗𝑙
𝜋1
𝑗𝑙
𝜋2
𝑗𝑙

𝑣 𝑗𝑙 𝜂 𝑗𝑙 𝑣
′′
𝑗𝑙

𝑙 − 𝑓 𝑎 𝑗 𝑓

a 0 ­ 0 + 2 0 0 0 1 1 − − 0 𝑅 𝑗

b 0 0 0 0 1 0 − − 1 𝑅 𝑗 − 𝑠 𝑗𝑙

c 0 = 0 + 1 0 0 1 0 1 − − 0 𝑅 𝑗

d 0 0 0 1 0 0 1 − 1 𝑅 𝑗 − 𝑠 𝑗𝑙

e 0 0 0 1 0 0 0 1 1 𝑅 𝑗 − 𝑠 𝑗𝑙

f 0 0 0 1 0 0 0 0 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

A 1 ­ 𝑄 𝑗 + 2 0 0 0 1 1 − − 𝑄 𝑗 + 0 𝑅 𝑗 + 𝐶 − 𝑠 𝑗𝑙

B 1 0 0 0 1 0 − − 𝑄 𝑗 + 1 𝑅 𝑗 − 𝑠 𝑗𝑙

C 1 = 𝑄 𝑗 + 1 0 0 1 0 1 − − 𝑄 𝑗 + 0 𝑅 𝑗 + 𝐶 − 𝑠 𝑗𝑙

D 1 0 0 1 0 0 1 − 𝑄 𝑗 + 1 𝑅 𝑗 − 𝑠 𝑗𝑙

E 1 0 0 1 0 0 0 1 𝑄 𝑗 + 1 𝑅 𝑗 − 𝑠 𝑗𝑙

F 1 0 0 1 0 0 0 0 𝑄 𝑗 + 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

G 1 = 𝑄 𝑗 0 1 0 0 − 1 1 𝑄 𝑗 + 0 𝑅 𝑗 + 𝐶 − 𝑠 𝑗𝑙

H 1 0 1 0 0 − 1 0 𝑄 𝑗 + 1 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

K 1 0 1 0 0 − 0 1 𝑄 𝑗 + 1 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

L 1 0 1 0 0 − 0 0 𝑄 𝑗 + 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

M 1 < 𝑄 𝑗 1 1 0 0 − 1 1 𝑄 𝑗 + 0 𝑅 𝑗 + 2𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

N 1 1 1 0 0 − 1 0 𝑄 𝑗 + 1 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

O 1 1 1 0 0 − 0 1 𝑄 𝑗 + 1 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

P 1 1 1 0 0 − 0 0 𝑄 𝑗 + 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙

“–” denotes unimportant value

Table 8: Generalized summary of cases for the model with variable capacity
Cases 𝑙 − 𝑟 (𝑙) 𝜋0

𝑗𝑙
𝜋1
𝑗𝑙
𝜋2
𝑗𝑙

𝑣 𝑗𝑙 𝜂 𝑗𝑙 𝑣
′′
𝑗𝑙

𝑙 − 𝑓 𝑎 𝑗 𝑓 Group
aA ­ 𝑄 𝑗 + 2 0 0 1 1 − − 𝑄 𝑗 + 0 𝑅 𝑗 + 𝑞 𝑗𝐶 + 𝜋𝐿

𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑞 𝑗 𝑠 𝑗𝑙 1)

bB 0 0 1 0 − − 𝑄 𝑗 + 1 𝑅 𝑗 + 𝜋0
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑠 𝑗𝑙 2)

cC = 𝑄 𝑗 + 1 0 1 0 1 − − 𝑄 𝑗 + 0 𝑅 𝑗 + 𝑞 𝑗𝐶 + 𝜋𝐿
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑞 𝑗 𝑠 𝑗𝑙 1)

dD 0 1 0 0 1 − 𝑄 𝑗 + 1 𝑅 𝑗 + 𝜋0
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑠 𝑗𝑙 2)

eE 0 1 0 0 0 1 𝑄 𝑗 + 1 𝑅 𝑗 + 𝜋0
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑠 𝑗𝑙 2)

fF 0 1 0 0 0 0 𝑄 𝑗 + 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙 3)
GM ¬ 𝑄 𝑗 + 0 1 0 0 − 1 1 𝑄 𝑗 + 0 𝑅 𝑗 + 𝑞 𝑗𝐶 + 𝜋𝐿

𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑞 𝑗 𝑠 𝑗𝑙 1)

HN 1 0 0 − 1 0 𝑄 𝑗 + 1 𝑅 𝑗 + 𝜋0
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑠 𝑗𝑙 2)

KO 1 0 0 − 0 1 𝑄 𝑗 + 1 𝑅 𝑗 + 𝜋0
𝑗𝑙
(𝐶 − 𝐶𝑟 (𝑙) ) − 𝑠 𝑗𝑙 2)

LP 1 0 0 − 0 0 𝑄 𝑗 + 2 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗𝑙 3)

“–” denotes unimportant value
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unnecessary for all products during all periods. Variable 𝑣 𝑗 𝑡 is needless for each
product 𝑗 during each period 𝑡, which is fewer than 𝑄 𝑗 + 1 periods from recent
shorter period 𝑟 (𝑡); i.e., for 𝑡 − 𝑟 (𝑡) ¬ 𝑄 𝑗 (or 𝜋0𝑗 𝑡 = 1), or for 𝜋

0
𝑗 𝑡
in short.

Variable 𝑣′′
𝑗 𝑡
is needless for 𝜋2

𝑗 𝑡
(or 𝑡 − 𝑟 (𝑡) ­ 𝑄 𝑗 + 2) and for products with

𝜂 𝑗 𝑡 = 1 (or 𝐶𝑟 (𝑡) ­ 𝑅 𝑗 ) for 𝜋1𝑗 𝑡 (or 𝑡 − 𝑟 (𝑡) = 𝑄 𝑗 + 1). Only for 𝜂 𝑗 𝑡 = 0 and
𝜋1
𝑗 𝑡
are both variables necessary to identify the periods overlapped by the setup

operation. Therefore, these may be determined with the help of the following
constraints (replacing (1.11)):

𝑠 𝑗 𝑡 ­ 𝑅 𝑗𝑣 𝑗 𝑡 , 𝑗∈N: 𝑄 𝑗 = 0, 𝑡∈ T : 𝜋0𝑗 𝑡 = 0, (6.1)

𝑠 𝑗 𝑡 ­ (𝑅 𝑗 + 𝜂 𝑗 𝑡𝐶 − 𝐶𝑟 (𝑡)) 𝑣′′𝑗 𝑡 , 𝑗∈N , 𝑡∈ T : 𝜋0𝑗 𝑡 = 1 ∨ 𝜋1𝑗 𝑡 = 1 ∧ 𝜂 𝑗 𝑡 = 0.
(6.2)

In all other cases, 𝑣 𝑗 𝑡 and 𝑣′′𝑗 𝑡 are useless; i.e., they may be set to zero or simply
ignored. Summarizing, in themodel with variable capacity, there is one additional
binary variable necessary for each shorter period and each product with 𝜂 𝑗 𝑡 = 0.
Independent from the distance to the recent shorter period, one can distinguish

three groups of cases that require the same general constraints: 1) aAcCGM, 2)
abBdDeEHNKO, and 3) fFLP. The general constraints for all three groups are
determined below.
First, we need constraints that set the continuation variables 𝑢 𝑗 𝑡 equal to 1 in

time interval [ 𝑓 , 𝑙 − 1] to replace (4.1). There are three groups of cases:
1) in cases aAcCGM: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 1, . . . , 𝑄 𝑗 ,

2) in cases bBdDeEHNKO: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 1, . . . , 𝑄 𝑗 + 1,
3) in cases fFLP: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 1, . . . , 𝑄 𝑗 + 2,

where 1, . . . , 0 denotes an empty set of indices 𝑘 for Group 1. One can reformulate
the description of these inequalities:

I. in all cases: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 1, . . . , 𝑄 𝑗 ,

II. not in cases aAcCGM: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 𝑄 𝑗 + 1,
III.only in cases fFLP: 𝑧 𝑗 𝑙 ¬ 𝑢 𝑗 ,𝑙−𝑘 , 𝑘 = 𝑄 𝑗 + 2.

Bearing in mind that all variables are fixed and equal to zero for a period
smaller than or equal to zero, one may determine the following constraint (re-
placing (1.13) and (1.16), or (4.1) ):

𝑢 𝑗 𝑡 ­ 𝑞 𝑗

𝑄 𝑗∑︁
𝑘=1

𝑧 𝑗 ,𝑡−𝑘 +
(
𝑧 𝑗 𝑙1 − (𝜋2𝑗 𝑙1 + 𝜋1𝑗 𝑙1)𝑣 𝑗 𝑙1 − 𝜂 𝑗 𝑙1𝜋

0
𝑗 𝑙1
𝑣′′𝑗 𝑙1

)
+ (1 − 𝜂 𝑗 𝑙2) (𝜋1𝑗 𝑙2 + 𝜋0𝑗 𝑙2) (𝑧 𝑗 𝑙2 − 𝑣′′𝑗 𝑙2),
𝑗 ∈ N , 𝑡 ∈ T ∪ P 𝑗 , 𝑙𝑖 = 𝑡 +𝑄 𝑗 + 𝑖,

(6.3)
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On the right side, there are three elements modeling conditions I–III. If 𝑧 𝑗 𝑙 = 1,
then in 𝑄 𝑗 previous periods 𝑢 𝑗 𝑡 = 1 (Condition I). Moreover, the setup may be
processed during period 𝑡 if it finishes during period 𝑙1 = 𝑡+ (𝑄 𝑗 +1). This will be
so for 𝑧 𝑗 𝑙1 = 1 in all cases except for aAcCGM (Condition II.); i.e., for 𝜋2

𝑗 𝑙1
or 𝜋1

𝑗 𝑙1

when 𝑧 𝑗 𝑙1 = 0 (neither aA nor cC);and also for 𝜂 𝑗 𝑙1 = 1 and 𝜋0𝑗 𝑙1 when 𝑧 𝑗 𝑙1 = 0
(not GM). The setups finished in 𝑙2 = 𝑡 + (𝑄 𝑗 + 2) may start in 𝑡 (Condition III.)
for cases fF and GM; i.e., for 𝜂 𝑗 𝑙2 = 0, 𝜋1𝑗 𝑙2 or 𝜋

0
𝑗 𝑙2
when 𝑧 𝑗 𝑙2 = 1 but 𝑣′′𝑗 𝑙2 = 0.

Constraint (1.8) allows 𝑎 𝑗 𝑡 > 0 only when the setup operation for product 𝑗
starts during period 𝑡. This first setup period must be identified with the help of
variables pointing to the end of the setup. The constraint below replaces (1.8) and
takes all cases from Table 8 into account:

𝑎 𝑗 𝑡 ¬ 𝐶𝑡

〈
(𝜋2𝑗 𝑙0 + 𝜋1𝑗 𝑙0)𝑣 𝑗 𝑙0 + 𝜂 𝑗 𝑙0𝜋

0
𝑗 𝑙0
𝑣′′𝑗 𝑙0

+(𝜋2𝑗 𝑙1 + 𝜋1𝑗 𝑙1) (𝑧 𝑗 𝑙1 − 𝑣 𝑗 𝑙1) + 𝜂 𝑗 𝑙1𝜋
0
𝑗 𝑙1
(𝑧 𝑗 𝑙1 − 𝑣′′𝑗 𝑙1)

+(1 − 𝜂 𝑗 𝑙1) (𝜋1𝑗 𝑙1 + 𝜋0𝑗 𝑙1)𝑣
′′
𝑗 𝑙1

+ (1 − 𝜂 𝑗 𝑙2) (𝜋1𝑗 𝑙2 + 𝜋0𝑗 𝑙2) (𝑧 𝑗 𝑙2 − 𝑣′′𝑗 𝑙2)
〉
,

𝑗 ∈ N , 𝑡 ∈ T , 𝑙𝑖 = 𝑡 +𝑄 𝑗 + 𝑖,

(6.4)

The three rows on the right side take a value of 1 if the setup starts during period
𝑡, and time interval 𝑙 − 𝑓 is equal to 𝑄 𝑗 + 0, 𝑄 𝑗 + 1, and 𝑄 𝑗 + 2; i.e., if the setup
finishes during period 𝑙0 = 𝑡 +𝑄 𝑗 , 𝑙1 = 𝑡 +𝑄 𝑗 + 1 or 𝑙2 = 𝑡 +𝑄 𝑗 + 2.
According to Table 8, the setup operation started during period 𝑡 may end in

𝑙0 = 𝑡 +𝑄 𝑗 : for the distance from 𝑙0 to its recent shorted period 𝑟 (𝑙0) denoted by
𝜋2
𝑗 𝑙0
and 𝜋1

𝑗 𝑙0
only when 𝑣 𝑗 𝑙0 = 1 (cases aAcC); and for 𝜂 𝑗 𝑙0 = 1 and 𝜋0𝑗 𝑙0 when

𝑣′′
𝑗 𝑙0

= 1 (cases GM).
The setup started in 𝑡 may finish in 𝑙1 = 𝑡 + (𝑄 𝑗 + 1): for 𝜋2𝑗 𝑙1 and 𝜋

1
𝑗 𝑙1
when

𝑣 𝑗 𝑙1 = 0 (cases bBdDeE); for 𝜂 𝑗 𝑙1 = 1 and 𝜋0𝑗 𝑙1 when 𝑣
′′
𝑗 𝑙1

= 0 (cases HN); and for
𝜂 𝑗 𝑙1 = 0 and 𝜋1𝑗 𝑙1 or 𝜋

0
𝑗 𝑙1
when 𝑣′′

𝑗 𝑙1
= 1 (cases eEKO).

The setup started in 𝑡 may end in 𝑙2 = 𝑡 + (𝑄 𝑗 +2): for 𝜂 𝑗 𝑙2 = 0 and 𝜋1𝑗 𝑙2 or 𝜋
0
𝑗 𝑙2

when 𝑣′′
𝑗 𝑙2

= 0 (cases fFLP). In cases fF, condition 𝑣 𝑗 𝑙2 = 0 is omitted because, if
𝑣′′
𝑗 𝑙2

= 0 (i.e., 𝑠 𝑗 𝑙2 < 𝑅 𝑗 − 𝐶𝑟 (𝑙2) ), then also 𝑣 𝑗 𝑙2 = 0 (i.e., 𝑠 𝑗 𝑙2 < 𝑅 𝑗 ).
Next, we need constraints that replace constraints (4.3)–(4.4). They determine

the time 𝑎 𝑗 𝑓 required to start the setup operation during the first overlapped period
𝑓 . According to Table 8, there are three groups of cases:
1) in cases aAcCGM: 𝑙 − 𝑓 = 𝑄 𝑗 + 0 and

𝑎 𝑗 𝑓 ­
[
𝑅 𝑗 + 𝑞 𝑗𝐶 + 𝜋𝐿

𝑗 𝑓
(𝐶 − 𝐶𝑟 ( 𝑓 ))

]
−𝑞 𝑗 𝑠 𝑗 𝑙 ;

2) in cases bBdDeEHNKO: 𝑙− 𝑓 = 𝑄 𝑗+1 and 𝑎 𝑗 𝑓 ­
[
𝑅 𝑗 + 𝜋0

𝑗 𝑓
(𝐶 − 𝐶𝑟 ( 𝑓 ))

]
−𝑠 𝑗 𝑙 ;
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3) in cases fFLP: 𝑙 − 𝑓 = 𝑄 𝑗 + 2 and 𝑎 𝑗 𝑓 ­
[
𝑅 𝑗 − 𝐶𝑟 ( 𝑓 )

]
−𝑠 𝑗 𝑙 .

In the above inequalities, 𝑠 𝑗 𝑙 and 𝑎 𝑗 𝑓 are the only variables, and their minimum
value is zero; therefore, the expressions in square brackets represent the big-M
number of the indicator constraints:

∑
𝑗 𝑎 𝑗𝑥 𝑗 − 𝑏 ¬ 𝑀 𝛿; i.e., the upper bound of

its left side. The inequalities below are slightly reduced big-M constraints that
implement the conditions of all groups:

𝑎 𝑗 𝑡 + 𝑞 𝑗 𝑠 𝑗 𝑙 ­
[
𝑅 𝑗 + 𝑞 𝑗𝐶 + 𝜋𝐿

𝑗𝑙 (𝐶 − 𝐶𝑟 (𝑙))
]
×

×
〈
1 − (𝜋2𝑗 𝑙 + 𝜋1𝑗 𝑙) (1 − 𝑣 𝑗 𝑙) − 𝜋0𝑗 𝑙 (1 − 𝑣′′𝑗 𝑙)

〉
𝑗 ∈ N: 𝑄 𝑗 , 𝑡 ∈ T , 𝑙 = 𝑡 +𝑄 𝑗:

𝑙 ¬ 𝑇max, 𝜋
0
𝑗 𝑙 = 0 ∨ 𝜂 𝑗 𝑙 = 1;

(6.5)

𝑎 𝑗 𝑡 + 𝑠 𝑗 𝑙 ­
[
𝑅 𝑗 + 𝜋0𝑗 𝑙 (𝐶 − 𝐶𝑟 ( 𝑓 ))

] 〈
𝑧 𝑗 𝑙 − (𝜋2𝑗 𝑙 + 𝜋1𝑗 𝑙)𝑣 𝑗 𝑙−

− 𝜂 𝑗 𝑙𝜋
0
𝑗 𝑙𝑣

′′
𝑗 𝑙 − (1 − 𝜂 𝑗 𝑙) (𝜋1𝑗 𝑙 + 𝜋0𝑗 𝑙) (1 − 𝑣′′𝑗 𝑙)

〉
𝑗 ∈ N , 𝑡 ∈ T , 𝑙 = 𝑡 + (𝑄 𝑗 + 1): 𝑙 ¬ 𝑇max;

(6.6)

𝑎 𝑗 𝑡 + 𝑠 𝑗 𝑙 ­
[
𝑅 𝑗 − 𝐶𝑟 (𝑙)

] 〈
𝑧 𝑗 𝑙 − 𝜋1𝑗 𝑙 (𝑣 𝑗 𝑙 + 𝑣′′𝑗 𝑙) − 𝜋0𝑗 𝑙𝑣

′′
𝑗 𝑙)
〉

𝑗 ∈ N , 𝑡 ∈ T , 𝑙 = 𝑡 + (𝑄 𝑗 + 2):
𝑙 ¬ 𝑇max, 𝜋

2
𝑗 𝑙 = 𝜂 𝑗 𝑙 = 0.

(6.7)

For all cases, condition 𝑧 𝑗 𝑙 = 1 is necessary (i.e., 1-𝑧 𝑗 𝑙 = 0). However, in
constraint (6.5) for group 1), it is omitted because, when 𝑣 𝑗 𝑙 = 1 or 𝑣′′𝑗 𝑙 = 1, then
𝑧 𝑗 𝑙 = 1 holds as well (see (6.1) or (6.2) and (1.12)).
Constraint (6.5) describes the condition for Group 1) when the setup overlaps

exactly 𝑄 𝑗 periods; i.e., 𝑙 − 𝑓 = 𝑄 𝑗 . According to Table 8, for 𝑙 − 𝑟 (𝑙) ¬ 𝑄 𝑗 (or
for 𝜋0

𝑗 𝑙
in short), this is possible only for 𝜂 𝑗 𝑙 = 1; hence, condition 𝜋0

𝑗 𝑙
= 0 or

𝜂 𝑗 𝑙 = 1. Moreover, for 𝜋2𝑗 𝑙 and 𝜋
1
𝑗 𝑙
, this occurs only when 𝑣 𝑗 𝑙 = 1 (cases aAcC)

and for 𝜋0
𝑗 𝑙
when 𝑣′′

𝑗 𝑙
= 1 (cases GM).

Constraint (6.6) describes the condition for Group 2) when the setup overlaps
𝑄 𝑗 + 1 periods. For 𝜋2𝑗 𝑙 and 𝜋

1
𝑗 𝑙
, this occurs only when 𝑣 𝑗 𝑙 = 0 (cases bBdDeE);

for 𝜂 𝑗 𝑙 = 1 and 𝜋0𝑗 𝑙 when 𝑣
′′
𝑗 𝑙
= 0 (cases HN); and for 𝜂 𝑗 𝑙 = 0 and 𝜋1𝑗 𝑙 or 𝜋

0
𝑗 𝑙
when

𝑣′′
𝑗 𝑙
= 1 (cases eEKO).
Constraint (6.7) describes the condition for Group 3) when the setup overlaps

𝑄 𝑗 + 2 periods. This is possible only for 𝜂 𝑗 𝑙 = 0 and 𝜋1𝑗 𝑙 or 𝜋
0
𝑗 𝑙
; i.e., 𝜋2

𝑗 𝑙
= 0. For

distance 𝜋1
𝑗 𝑙
, this occurs when 𝑣 𝑗 𝑙 = 𝑣′′

𝑗 𝑙
= 0 (cases fF) and for 𝜋0

𝑗 𝑙
when 𝑣′′

𝑗 𝑙
= 0

(cases LP).
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To summarize, to reformulate the model with uniform periods (1) into the
model with variable periods, constraints (6.1)–(6.2) must replace (1.11); (6.3)
must replace (1.13) and (1.16) (or their generalized equivalent (4.1)); (6.4) must
replace (1.8); (6.5)- (6.7) must replace (1.14)–(1.15) and (1.17)–(1.18) (or their
generalization (4.3)–(4.4)).

3.5. MIP heuristic

Start-up variables 𝑧 𝑗 𝑡 determine the crucial decisions of when to switch the
machine from one product to another. Variables 𝑣 𝑗 𝑡 make only some fine-tuning.
Therefore Kaczmarczyk [15] proposed a mip heuristic (denoted as hr) that uses
heuristic cuts (7) to set the values of 𝑣 𝑗 𝑡 . The following derived parameters
simplify the description of the hr heuristic:

T̃𝑗 = {𝑄 𝑗 + 2, . . . , 𝑇max}, 𝑗 ∈ N ;
𝜇 𝑗 𝑡 = 𝑅 𝑗/𝐶𝑡 , 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 ;
𝜇′′𝑗 𝑡 =

(
𝑅 𝑗 + 𝜂 𝑗 𝑡𝐶 − 𝐶𝑟 (𝑡)

)
/𝐶𝑡 , 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 .

Heuristics hr consist of two steps:

Step 1. Optimize the explicit model (1) extended by constraints (7):

𝑣 𝑗 𝑡 ­ 𝑧 𝑗 𝑡 , 𝑗 ∈ N: 𝜇 𝑗 𝑡 ¬ 0.5 𝑡 ∈ T̃𝑗 ; (7.1)
𝑣 𝑗 𝑡 = 0, 𝑗 ∈ N: 𝜇 𝑗 𝑡 > 0.5 𝑡 ∈ T̃𝑗 . (7.2)

Step 2. Optimize the explicit model (1) again, now without constraints (7), but
with the start-up variables 𝑧 𝑗 𝑡 fixed according to the solution obtained in
Step 1.

Cuts (7) is an attempt to assign more likely values to variables 𝑣 𝑗 𝑡 . If 𝑅 𝑗 is smaller
than 0.5𝐶, then it is more likely that the setup operation will overlap only 𝑄 𝑗 + 1
periods rather than 𝑄 𝑗 + 2 periods. In the model with variable capacity, heuristic
cuts of hr may be defined as follows:

𝑣 𝑗 𝑡 ­ 𝑧 𝑗 𝑡 , 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 : (𝜋2𝑗 𝑡 ∨ 𝜋1𝑗 𝑡) ∧ (𝜇 𝑗 𝑡 ¬ 0.5), (8.1)

𝑣 𝑗 𝑡 = 0, 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 : (𝜋2𝑗 𝑡 ∨ 𝜋1𝑗 𝑡) ∧ (𝜇 𝑗 𝑡 > 0.5), (8.2)

𝑣′′𝑗 𝑡 ­ 𝑧 𝑗 𝑡 , 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 :
(
𝜋1𝑗 𝑡 ∧ (𝜂 𝑗 𝑡 = 0) ∧ (𝜇 𝑗 𝑡 > 0.5) ∨ 𝜋0𝑗 𝑡

)
∧ (𝜇′′𝑗 𝑡 ¬ 0.5),

(8.3)
𝑣′′𝑗 𝑡 = 0, 𝑗 ∈ N , 𝑡 ∈ T̃𝑗 :

(
𝜋1𝑗 𝑡 ∧ (𝜂 𝑗 𝑡 = 0) ∧ (𝜇 𝑗 𝑡 > 0.5) ∨ 𝜋0𝑗 𝑡

)
∧ (𝜇′′𝑗 𝑡 > 0.5).

(8.4)
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4. Results of experiments

To verify the impact of the new explicit model formulation the following
experiments were executed. The data sets used in the experiments imitate the
division of real periods (macro-periods; e.g., weeks) into many short fictitious
micro-periods (e.g., days, shifts, or fractions of shifts), with non-zero demand
only in the last micro-period of each macro-period. In such a case, it is more
likely that a single setup operation will overlap multiple periods.
All instances were solved with the help of the Cplex 12.8.0 solver on an Intel

Core i9-7900X processor with 3.3 GHz clock speed, 16 GB RAM, and 10 cores.
All computations were performed with a ten-minute computation time limit with
the standard-setting of the solver.
In the data set, there are eight macro-periods divided into 5, 10, 15, or 20

micro-periods. Macro-period capacity is always 1200. In the basic calendar with
five micro-periods, the regular capacity 𝐶 is 240. There are five products with
uniform processing times 𝑝 𝑗 and unit holding costs ℎ 𝑗 equal to 1. Holding costs
are accounted only at the end of each macro-period.
There are three patterns of setup times: mix, short, and long. In the first one,

there is a mix of different setup times equal to 48, 96, 144, 192, and 240. For
𝐶 = 240, these setup times constitute 0.2, 0.4, 0.6, 0.8, and 1.0 of𝐶, respectively.
The ratios of the setup times and period capacity 𝑠𝑡/𝐶𝑡 for a greater number of
micro-periods are presented in Table 9. The setup-time quotients 𝑄 𝑗 are within
a range of [0, 3]; in each instance, the setup remainders 𝑅 𝑗 are within a range
of [0.2, 1.0]. Two other setup time patterns assume uniform setup times for all
products equal to 96 or 192 (i.e., 0.4 or 0.8 of 𝐶 = 240).

Table 9: Ratios of setup times to capacity

Micro-periods
𝑗 𝑠𝑡 𝑗 5 10 15 20
1 48 0.2 0.4 0.6 0.8
2 96 0.4 0.8 1.2 1.6
3 144 0.6 1.2 1.8 2.4
4 192 0.8 1.6 2.4 3.2
5 240 1.0 2.0 3.0 4.0

𝐶 240 120 80 60

A different set of five demand scenarios was generated with the following
procedure for each setup time pattern. At first, average demand values 𝑑 𝑗 for all
products 𝑗 were randomly drawn from a uniform distribution over an interval
of [10, 90] to create high- and low-demand products. Next, all macro-period
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demands 𝑑 𝑗𝑤 were randomly generated with the help of the gamma distribution,
with a shape parameter equal to 𝑑 𝑗 and a scale parameter equal to 1. Initial
inventory values 𝐼 𝑗0 were generated with the same distribution as the demand.
Finally, the demand and initial inventory have been rescaled proportionally for
all products in such a way as to keep the machine’s workload equal to 60%.
The setup time has been set so that the expected time devoted to the setup

operations is about 20% of the total capacity. For the pattern with setup times
𝑠𝑡 𝑗 = 96, average cycle time 𝑇eoq (i.e., the time interval between lots of the
same product) was assumed to be equal to two macro-periods. If each of the
five products has a setup operation every two macro-periods, then the average
setup time per macro-period is 5 × 0.5 × 96 = 240, equal to 0.2 × 1200. For
𝑠𝑡 𝑗 = 192, the cycle was assumed to be 𝑇eoq = 4, which gives a total setup time
of 5 × 0.25 × 193 = 240. For the mixed pattern, this was 𝑇eoq = 3, and the total
setup time was (48 + 96 + 144 + 192 + 240) × 1/3 = 240.
The setup cost was set to 𝑠𝑐 𝑗 = 𝑇2eoq(

∑
𝑗 𝑡 𝑑 𝑗 𝑡 −

∑
𝑗 𝐼 𝑗0)/𝑊max/2, according to

the eoq formula. This way, the total expected machine utilization is 80% for each
instance. In optimal solutions, the utilization was within a range of 74.2-75.8%
The design of the data set is based on experience with lot-sizing and scheduling
in the electronics industry [13].
The construction of the micro-period calendar within a single macro-period

is presented in Table 10. For regular capacity 𝐶 = 240, 120, 80, or 60, there are
7, 11, 17, or 21 micro-periods, respectively.

Table 10: Capacity with shorter micro-periods

7 11 17 21

𝑡 𝐶𝑡
𝑠𝑡 𝑗

𝐶
𝑡 𝐶𝑡

𝑠𝑡 𝑗

𝐶
𝑡 𝐶𝑡

𝑠𝑡 𝑗

𝐶
𝑡 𝐶𝑡

𝑠𝑡 𝑗

𝐶

∗ 240 1.0 ∗ 120 1.0 ∗ 80 1.0 ∗ 60 1.0
2 96 0.4 3 96 0.8 5 16 0.2 6 36 0.6
4 96 0.4 6 96 0.8 10 16 0.2 12 36 0.6
6 48 0.2 9 48 0.4 14 48 0.6 17 48 0.8

𝑡 – period, “∗” regular periods

For regular capacity 𝐶 = 240, there are four regular micro-periods (1, 3, 5,
and 7) and three shorter (2, 4, and 6) with a capacity equal to 0.4, 0.4, and 0.2 of
the regular capacity, respectively.
Calendars for smaller regular capacity are constructed by a division of these

basic micro-periods. For example, three periods arise for 𝐶 = 80 from each
micro-period with a capacity of 240, and two periods arise from a micro-period
with 𝐶𝑡 = 98, one with 𝐶𝑡 = 80, and another with 𝐶𝑡 = 16.
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Data instances with the same demand and setup scenario differ only by
a micro-period calendar, and therefore their solutions may be directly compared.
Experiments were executed on two formulations of the PLSP/E model:
post1 – the easier to solve implicit model proposed by Suerie [21],
e-ms/p – the new explicit model.
The explicit model was also solved with the help of heuristics hr with cuts (8).
Two characteristics are used to assess the quality of the solutions. The objective

gap [%] is the average relative difference between objective value 𝑓 for best
solution obtained with considered model and the best objective value 𝑓 ∗ for
best solution obtained any model (in most cases, some of them were solved to
optimality), i.e., the objective gap [%] = ( 𝑓 − 𝑓 ∗)/ 𝑓 ∗ × 100%. The mip gap [%]
is the average relative difference between objective value 𝑓 for the best solution
to the best lower bound lb obtained with the given solver and model formulation;
i.e., mip gap [%] = ( 𝑓 − lb)/ 𝑓 × 100%. The number of instances for which the
solver found a feasible solution and completed the search (mip gap was zero) is
given in the Sol. and Opt. columns, respectively.
The computational effort may be evaluated with help of the following charac-

teristics. Time [s] is the computation time. Iter. is the mean number of iterations,
and It. time is the average time per single iteration.
Table 11 presents the average results. First, note that models with macro-

period-based ilbw inventory lower bounds are easier to solve than with classic
ilb micro-period-based bounds. The time-saving for post1 is equal to 37%, and
for e-ms/p even 53%. For ilb, the mip gap is higher, and there are some unsolved
instances; which suggests that the difference would be greater for a higher time
limit. Therefore, only models with ilbw bounds are considered further.

Table 11: Average results

Cuts Model Gap [%] Sol. Opt. Time Nodes Iter. It.time
obj. mip [s] [103] [106] [μs]

ilb post1 2.49 3.78 58 24 411 25.4 6.7 74
e-ms/p 0.87 1.30 59 41 262 8.0 2.3 111

ilbw post1 1.03 1.93 58 41 258 23.7 9.3 28
e-ms/p 0.21 0.17 60 57 124 11 3.7 32

ilbw, hr e-ms/p 0.62–0.58† 0.00 60 60 48 9 2.4 24

† results after the first and second step of the heuristic

Next, the e-ms/p explicit model was solved 52% faster than the post1 model
on average, and the heuristic hr even 81% faster. The numbers of nodes were
53% and 63% smaller, respectively. Moreover, for post1, the solver failed to find
a feasible solution with the time limit for 2 instances and failed to find optimal
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solutions in another 17 cases. For e-ms/p, the solver always found a feasible
solution, and only in 3 cases failed to complete the search, and therefore provided
the best average quality of solutions.
Finally, the average objective value obtained using heuristics was worse then

for e-ms/p with ilbw only by 0.37% for two reasons. First, with hr, the solver
always completed the searchwithin the time limit, so the mip gapwas 0%. Second,
the limitations of the decision space imposed by the heuristics do not seem to
have a destructive impact on solution quality.
Figure 1 shows a rapid increase in computation time as the number of micro-

periods increases. The heuristic needs ten times more time for 21 than for 7
microperiods. Still, the heuristic is only 6 seconds slower for 21 periods than the
post1 for 7 microperiods.

7 11 17 21
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Figure 1: Computation time [s]

The objective gap is not zero only if the mip gap is also not zero. In other
words, all solutions with an optimality guarantee (and some others as well) have
exactly the same objective value, for both post1 and e-ms/p models, independent
of the number of micro-periods. This observation is not surprising, as both the
post1 and e-ms/p models allow any schedule of setup and production operations;
i.e., they do not impose any constraints on their beginnings or endings.
Table 12 presents the average objective gap [%] of the hr heuristic for various

values of setup times and micro-period numbers. The average gap is 0.58%, and
the maximal is 2.54%. It is two times higher for the long setups than for the mixed
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ones. For the short setups, it is almost zero. The calendar of micro-periods does
not seem to have any impact on the solution quality.

Table 12: Average objective gap [%] obtained with hr heuristic

Micro-periods
setup 7 11 17 21 Mean
Short 0.06 – – 0.16 0.05
Long 1.31 1.32 0.97 1.13 1.18
Mix 0.31 0.70 0.29 0.75 0.58
Mean 0.56 0.67 0.42 0.68

5. Summary

This paper presents newmixed-integer programming (MIP) model of the pro-
portional lot-sizing problem (PLSP) with setup operations overlapping multiple
periods and variable period length (capacity). The new model explicitly deter-
mines a schedule of each setup operation, i.e., for the known ending of the setup
operation, the constraints explicitly point to its beginning. It is based on two
assumptions: first – most periods have the same length, and only a few of them
are shorter; second – the time interval determined by two consecutive shorter
periods is always equal to or longer than a single setup operation.
Computational experiments confirmed that the explicit mip model requires

52% less time than the implicit formulation proposed by Suerie [21] at least.
Besides, the proposed heuristic requires 81% less time than the implicit model,
while the average and maximal increments of the objective value were 0.58% and
2.54%, respectively.
The new explicit model for setup operations overlapping multiple periods

enables practical applications of models with many short micro-periods in multi-
level systems, which enables reduction of production cycles and work-in-process.
Future research should evaluate this opportunity.

Appendix A: Examples for all cases

The approach used to derive all cases is explained in Section 3.3. All cases
are completely described in Table 7. Here they are illustrated by examples with
ordinary capacity𝐶 = 100, the remainder after division of set-up time by ordinary
capacity 𝑅 𝑗 = 50, and the recent shorter period 𝑟 (𝑙) = 5. The capacity of recent
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shorter period 𝐶𝑟 (𝑙) in examples with 𝐶𝑟 (𝑙) < 𝑅 𝑗 is equal to 30; in examples with
𝐶𝑟 (𝑙) ­ 𝑅 𝑗 , the capacity is equal to 70.

1. Short set-up time (𝑄 𝑗 = 0 or 𝑞 𝑗 = 0)
In this section, all possible cases of the set-up process are presented for set-up
times shorter than period length (𝑄 𝑗 = 0).

For distance 𝑙 − 𝑟 (𝑙) ­ 2:

Case a: If 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 1) then 𝑓 = 𝑙 − 0 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − − 50 − − −

Case b: If 𝑠 𝑗 𝑙 < 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 0) then 𝑓 = 𝑙 − 1 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − 1 49 − − −
𝑠′
𝑗 𝑡

− − − − − 49 1 − − −

For distance 𝑙 − 𝑟 (𝑙) = 1:

Case c: If 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 1) then 𝑓 = 𝑙 − 0 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 .
𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − 50 − − − −

Case d: For 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1), e.g., 𝐶𝑟 (𝑙) = 70:
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 0) then 𝑓 = 𝑙 − 1 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − 1 49 − − − −
𝑠′
𝑗 𝑡

− − − − 49 1 − − − −

Case e: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0), e.g., 𝐶𝑟 (𝑙) = 30:
if 𝑅 𝑗 > 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣 𝑗 𝑙 = 0 and 𝑣′′𝑗 𝑙 = 1),
then 𝑓 = 𝑙 − 1 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − 1 49 − − −
𝑠′
𝑗 𝑡

− − − − 30 20 − − −
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Case f: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0), e.g., 𝐶𝑟 (𝑙) = 30:
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0),
then 𝑓 = 𝑙 − 2 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − 1 30 19 − − −
𝑠′
𝑗 𝑡

− − − 19 30 1 − − −

If the setup operation ends in a shorter period, then constraint (4.2) ensures that:
𝑠 𝑗 𝑙 ¬ 𝐶𝑙 ; the recent shorter period is not the fifth period but an earlier one;
because of assumption (5) holds 𝑙 − 𝑟 (𝑙) ­ 2, i.e., the beginning of the set-up is
determined as in the a or b cases.

2. Long set-up time (𝑄 𝑗 ­ 1 or 𝑞 𝑗 = 1)
In this section, all possible cases of the set-up process are presented for set-up

times longer or equal to period length (𝑄 𝑗 ­ 1). All cases are illustrated by
examples with 𝑠𝑡 𝑗 = 350; i.e., 𝑄 𝑗 = 3, 𝑅 𝑗 = 50.

For distance 𝑙 − 𝑟 (𝑙) ­ 𝑄 𝑗 + 2:
Case A: If 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 1),
then 𝑓 = 𝑙 −𝑄 𝑗 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − − 50 100 100 100
𝑠′
𝑗 𝑡

− − − − − − 100 100 100 50

Case B: If 𝑠 𝑗 𝑙 < 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 0),
then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − 1 100 100 100 49
𝑠′
𝑗 𝑡

− − − − − 49 100 100 100 1

For distance 𝑟 (𝑙) − 𝑙 = 𝑄 𝑗 + 1:
Case C: If 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 1),
then 𝑓 = 𝑙 −𝑄 𝑗 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − − 50 100 100 100 −
𝑠′
𝑗 𝑡

− − − − − 100 100 100 50 −
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Case D: For 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1),
if 𝑎 𝑗 𝑓 < 𝑅 𝑗 (or 𝑣 𝑗 𝑙 = 0),
then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − 1 100 100 100 49 −
𝑠′
𝑗 𝑡

− − − − 49 100 100 100 1 −

Case E: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0),
if 𝑅 𝑗 > 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣 𝑗 𝑙 = 0 and 𝑣′′𝑗 𝑙 = 1 ),
then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − 1 100 100 100 49 −
𝑠′
𝑗 𝑡

− − − − 30 100 100 100 20 −

Case F: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0),
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0),
then 𝑓 = 𝑙 − (𝑄 𝑗 + 2) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙 .

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − 1 30 100 100 100 19 −
𝑠′
𝑗 𝑡

− − − 19 30 100 100 100 1 −

For distance 𝑙 − 𝑟 (𝑙) = 𝑄 𝑗 :

Case G: For 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1),
if 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 1)

then 𝑓 = 𝑙 −𝑄 𝑗 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − − 50 100 100 100 − −
𝑠′
𝑗 𝑡

− − − − 70 100 100 80 − −

Case H: For 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1),
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0)

then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙
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𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − 1 70 100 100 79 − −
𝑠′
𝑗 𝑡

− − − 79 70 100 100 1 − −

Case K: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0),
if 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 1)

then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙 .
𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − 20 30 100 100 100 − −
𝑠′
𝑗 𝑡

− − − 100 30 100 100 20 − −

Case L: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0),
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0)
then 𝑓 = 𝑙 − (𝑄 𝑗 + 2) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − 1 100 30 100 100 19 − −
𝑠′
𝑗 𝑡

− − 19 100 30 100 100 1 − −

For distance 1 ¬ 𝑙 − 𝑟 (𝑙) < 𝑄 𝑗 :

Case M: For 𝐶𝑟 (𝑙) ­ (or 𝜂 𝑗 𝑙 = 1),
if 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 1)

then 𝑓 = 𝑙 −𝑄 𝑗 and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 2𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − − 80 70 100 100 − − −
𝑠′
𝑗 𝑡

− − − 100 70 100 80 − − −

Case N: For 𝐶𝑟 (𝑙) ­ 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 1)
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0)

then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − 0 100 70 100 80 − − −
𝑠′
𝑗 𝑡

− − 79 100 70 100 1 − − −
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Case O: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0)
if 𝑠 𝑗 𝑙 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 1)

then 𝑓 = 𝑙 − (𝑄 𝑗 + 1) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 + 𝐶 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− − 20 100 30 100 100 − − −
𝑠′
𝑗 𝑡

− − 100 100 30 100 20 − − −

Case P: For 𝐶𝑟 (𝑙) < 𝑅 𝑗 (or 𝜂 𝑗 𝑙 = 0)
if 𝑠 𝑗 𝑙 < 𝑅 𝑗 − 𝐶𝑟 (𝑙) (or 𝑣′′𝑗 𝑙 = 0)
then is 𝑓 = 𝑙 − (𝑄 𝑗 + 2) and 𝑎 𝑗 𝑓 ­ 𝑅 𝑗 − 𝐶𝑟 (𝑙) − 𝑠 𝑗 𝑙

𝑡 1 2 3 4 5 6 7 8 9 10
𝑠′
𝑗 𝑡

− 1 100 100 30 100 19 − − −
𝑠′
𝑗 𝑡

− 19 100 100 30 100 1 − − −
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