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Neural state estimation in sea navigation 

The article presents the putting into practice of a neural state estimator for navigational 
measurements. One of the basic problems of sea navigation is considered, which is the statistic working 
out of navigational measurements with the purpose of determining the estimated vector of the vessel's 
movement and position. 

1. Introduction 

One of the basic problems of sea navigation is reproducing the actual vector of an object's state 
on the basis of gathered information, frequently burdened with errors and incomplete. 
A solution to this problem was provided, i.a. by Kalman. A computer estimation of state by 
means of a Kalman filter requires a large calculation expenditure, and the determination of 
filtration error covariance matrix is a numerically unstable process, which creates the necessity 
of applying special factorisation methods. The applied methods of non-linearity approximation 
do not always warrant the correctness of object state reproduction, in our case the vessel's state 
vector, and the Kalman filters thus obtained, called extended filters, make it considerably more 
difficult and increase the calculation expenditure when putting it into practice. 

Taking into account the above conditioning a lot of sub-optimal algorithms of Kalman filter 
[2,3] and calculation procedures were worked out, thus increasing the effectiveness of putting 
the designed filters into practice computer-wise. Independently of results obtained in this range, 
the problem of high numerical load and adapting the filters for strongly non-linear objects still 
remains. Within this context, the application of neural networks for solving problems of 
dynamic objects' state reproduction seems to be justified for two main reasons. Firstly, there is 
the possibility of obtaining a fast (parallel transformation) and signal-indeterminacy resistant 
(adaptation and learnability) Kalman filter both for linear and non-linear objects. Secondly, 
there seems to be possible a neural production of a filter for strongly non-linear objects, for 
which an extended Kalman filter constitutes an inadmissible approximation. 
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2. Numerical methods of state estimation 

Let the dynamic system be given by means of a system of vector differential equations with 
the matrices of time-dependent coefficients [ 1, 2]: 

X;+l/i = Fi+I xxi+I + wi+I 

Z;+1 = Ci+! X X;+I + Vi+I 

where: 
X;+l/i 

W;+I 

Zi+I 

Vi+1 

F;+I 

G;+1 

i= 1,2, ... 

- n - dimensional state vector, 
- n - dimensional vector of non-measurable input, 
- measurable output vector, 
- m - dimensional vector of measurement disturbances, 
- system matrix of dimensions (n x m), 
- measurement system matrix of dimensions (n x m), 
- discrete time. 

It is assumed that [1,2]: 

- W;+i is an uncorrelated vector of zero average constituting a random sequence of Gaus­ 
sian distribution, 

- Vi+i is an uncorrelated vector of random sequences of Gaussian distribution, 
initial condition x(O) is a vector of random sequences of normal distribution, 
there is no correlation between W+i and V;+i and the state vector x(O). 

There should be determined the estimate X;+; of the state vector X; on the basis of a 
measurably accessible sequence of output vectors Y1, Y2, ... ,Y;, in such a way that the estimate 
X;+; should minimise the accuracy indicator. 

If the above-mentioned conditions are fulfilled, then the optimal Kalman filter is described 
by the following system of differential equations [1,2]: 

vector equations of X;+; estimate: 

X;+;= X;+lli + K;+J X [Z;+J - G;+J X X;+id 

X;+Jli = F;+1 X X; 

covariance matrix equations of estimation error P;+i and the amplification matrix: 

Ki+I = ?;+Ili X ci:I X [ Gi+I X ?;+Ili xc;:1 + R;+1 ]-1 
T 

?;+Ili = Fi+I X Pz; X F°;+1 + P; 
?;+1 = P;+11i - K;+1 xG;+1 x P;+1ti 

where: 

X;+ii; extrapolation vector of xi+I estimate one step forward (vector of estimation 
position coordinates), 

K;+1 amplification matrix, 
Zi+J vector of measurements, 
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C;+i - matrix of gradients, 
P;+ii; - covariance matrix of estimated position coordinates, which takes into account 

errors due to estimating the position during correction, 
P; - covariance matrix of previous estimated position coordinates, 
P,,. - covariance matrix of accretion vector of estimated position coordinates, 
F;+i - transition matrix, 
Ri., - covariance matrix of measurement vector. 
Kalman filter functions correctly in the period of stable work, but it shows considerable 

discrepancies in the initial estimation period. The generalised method of least squares uses the 
estimated vector x,,. based on running measurements instead of the vector from the previous 
estimation step. The form of the generalised method of least squares is as follows [2]: 

X;+1 ·= x,;+1 + K;+1 x [z;+1 -C,.+1 xx,;+1] 

K,-+1 = P,.+11i x c,.:1 x [ci+! x P,.+11i x c,.:1 + R,-+1 ]-
1 

T 
?,-+Ili = Fi+I X r; X F;+I + P,. 
P,.+1 = ?,-+Ili - K;+1 X C;+J X Pi+I 
x,;+i = Fi+I xx,; 

The ship's movement is characterized by variable parameters in the range of its stability. 
During stable work of the vessel's propulsion system (rudder and screws) the changes of 
movement parameters are small and therefore the information about real movement parameters 
in relation to the bottom obtained from the previous correction period are more valuable than in 
the case when there are big changes in speed and course. Therefore, during stable movement 
the Kalman filter method should be applied; during considerable changes in the movement 
parameters on the other hand and in the initial estimation period - the method of least squares. 
A method like this, which combines the merits of the methods described above, is the 
intermediate estimation method. The algorithm of this estimation method is described by the 
following relationships [2]: 

x,-+1 = x pi+I + K;+i x [zi+i - C,-+1 x xi+ii;] 

K,-+1 = P,.+11i x ci:1 x [ci+! x P,.+11; x ci:1 + R,-+1 ]-
1 

T 
?,-+Ili = Fi+I XP,,. X Fi+I + pi 
Pi+I = Pi+lli - K;+1 X C;+] X Pi+l/i 
x,,;+1 = Fi+I xx,,; 

at the same time: w1 + w2 = l 

where: w1, x2 - weight coefficients. 

It can be noticed that when w1 = O the Kalman filter is obtained; in the case of w2 = O, on the 
other hand, the generalized method of least squares. A smooth change in the weight coefficients 
should allow to use the merits of both above-mentioned methods in the highest degree. 
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As numerous numerical experiments have shown this methods helps to obtain a much 
better estimate of object state than traditional methods of state estimation. To adduce results of 
experiments conducted would exceed the scope of this work. 

3. A neural state estimator 

The perceptron type of neural network, i.e. with feed forward signal flow, was used for 
building the model of a neural state estimator. The network is made up of three neural layers. 
The first layer, also called the input layer, contains two neurons and it fulfils the function of 
entrance into the network. The input signal from the first layer is given, after multiplication of 
the weight of particular entrances, to the hidden layer, which contains from twenty to two 
hundred neurons. Every neuron of the hidden layer determines its answer to the input signals 
obtained and similarly transmits it to each of the two neurons of the output layer. Similarly to 
the previous case signals determined by the hidden layer are multiplied by the weight 
coefficient of the output layer neural entrances. There is a strictly defined direction of signal 
flow - from the input (where the network is given signals that are input data, specifying the 
task to be solved), to the output, where the network gives the established solution. 

Input layer 

Hidden layer 

Output layer 

Fig. I. Diagram of the perceptron applied. in the neural state estimator 
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The number of elements of the input layer (two neurons) corresponds to the number of 
input data (two components of the estimated speed vector). Its task is to receive the steering 
signal and transform it into information accessible to the neurons of next successive layers. The 
essence of this process is scaling the value of the input signal in the range <O. I>. 

The delta rule was applied for teaching the network described above. Let us recall that it 
consists in every neuron determining its output signal on receiving signals at their entrances, 
making use of previously determined values of the amplification coefficient (of weights) of all 
the entrances and (possibly) of the threshold. The value of the output signal, determined by the 
neuron in the particular stage of the teaching process, is compared with the pattern answer 
given by the teacher (intermediate estimation method) in the teaching sequence. If there are 
discrepancies, the neuron determines the difference between its own output signal, and the 
value of the signal correct according to the teacher. 

In the case of one-layer network the situation is simple and self-evident: the output signal 
of every neuron is compared with the correct value given by the teacher, which provides a 
sufficient basis for weight correction. 

In a multilayer network (a network like this was applied in the state estimator neural model 
discussed), the situation is more complicated. The neurons of the output layer can have their 
errors estimated in a relatively simple and certain way - as previously, by comparing the signal 
produced by every neuron with the pattern signal given by the teacher. On the other hand, 
neural errors of earlier layers must be estimated mathematically, as they cannot be directly 
measured because of lack of information what the values of respective signals should be (the 
teacher does not define these intermediate values, concentrating exclusively on the final effect). 

A method commonly applied for estimating errors of hidden layers is the backpropagation 
method. It consists in reproducing supposed errors of deeper layers of the network on the basis 
of a back-projection of errors detected in the output layer. That means, while considering a 
neuron of the hidden layer there are considered all the errors of all these neurons the output 
signal was sent to, and they are summed up, considering the coefficient values of weight 
connections between the neuron under consideration with the neurons, the errors of which are 
summed up. Acting in this way and proceeding from the output to the input of the network, 
supposed errors of all the neurons are designated, thus gaining a basis for defining corrections 
of all the weight coefficients of these neurons. 

As results from the above considerations, in the model of a neural state estimator there was 
applied the variant of teaching the network by means of a "teacher" (it being in this case the 
intermediate method) based on rules described above. The process of teaching the network 
consists in the presenting to the network a set of exemplary input signals (input pictures) and 
the corresponding output signals (output pictures). A set of these examples (otherwise called 
the teaching sequence) is presented to the network as long as the network does not work out a 
correct output signal. The accuracy to be attained by the network in the teaching process is 
determined by the size of the error. This error is defined as the difference between the output 
signal determined by the network at a given stage of the teaching process and the pattern 
answer given by the teacher in the teaching sequence. 

The teaching sequence is completed while the numerical estimator is working. This 
sequence contains twenty of so-called teaching pairs, constituted by: the vector calculated on 
the basis of running measurements and the corresponding estimated vector obtained from the 
Kalman-type numerical estimator. 
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Fig. 2. A diagram of numerical-neural system estimating the vector of the object state 

Fig.2 presents a schematic diagram of the activity of a constructed neural object state 
estimator. 

The cycle of the numerical - neural system can be divided into four stages: 
1. The functioning of the numerical filter up to the moment of the estimation process 

stabilising. It was assumed that the stage would last one minute, i.e. twenty estimation stages. 
2. The second stage is the stage for gathering information for the teaching sequence. This 

stage lasts from the first to the second estimation minute (20-40th step). The teaching sequence 
in this stage is the collection of two speed vectors, i.e. the components of the estimated speed 
vector and the components of the speed vector obtained from the numerical filter. 

3. Immediately on the teaching sequence having been gathered, the filter goes over to the 
next stage of work, which is the teaching of the network. The network receives from the teacher 
a collected teaching sequence as many times as the (delta) error is smaller than the assumed 
one, i.e. L1 = 0.001. The initial moment of teaching is the most essential in the working of the 
filter, as the initial weights among particular neurons are chosen at random, which has 
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decisively influences the final effect of the teaching process. In the model constructed teaching 
the net with a teacher was applied. 

The selection of the kind of teacher is the basic problem. The numerical filter, which is 
assumed to fulfil this function, has itself big errors in the initial estimation stage. For lack of a 
better pattern, it was necessary to "supplement" the education of the network while the 
experiment lasts. This is a kind of feedback with a continual exchange of the teaching sequence 
with new, more precise elements. Thus, the network education is supplemented in a cyclic way. 

A variant was also examined, where the teaching sequence is exchanged with network 
outputs. This variant was called network self-learning. 

v; 

Object 

Numerical Kalman 
Filter 

=: 
Neural State 
Estimator 

Teaching 
Sequence 

...... ~ 

Fig. 3. Diagram of network teaching 
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The intermediate estimation method [2], which is a combination of Kalman filter and the 
generalized method of least squares showed the best convergence of the estimation process. 
This method became the "teacher" of the neural network. 

4. The next period of estimator work is the so-called examination, which commences 
immediately after the network has been taught. The numerical part continues working, and the 
neural network output is given the values of the estimation vector components. At the network 
output we obtain state vector values filtered off by the network. The diagram below presents 
the process of this stage of filter work. 

w; 

Object 

Numerical State 
Estimator 

XU,; Teaching 
Sequence 

=; 
. I 
: I . I 
,XU;: 

,_ 

Neural State 
Estimator 

, 
I 
I 
I 
I 
I 
I : »« 

e; 

Fig. 4. A stage of network work, so-called -xarnination 
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The algorithm of determining the state vector based on a neural state estimator has been 
presented on the diagram below. 

I. Work of the numerical filter. calculation of speed vector 
components by a selected numerical method 

Yes 

2.Collecting the teaching sequence 

3.Tcaching the network 

Yes 

4.Work of the numerical filter and exchange of the teaching sequence 

5. Work of the neural network 
Yes 

Fig. 5. Working algorithm of a neural state estimator 

What comes below presents examples of neural filter estimation and its teacher, the 
numerical filter (intermediate estimation method) and process of estimation without filtering. 
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Fig. 6. Examples of estimation results

5. Final remarks 

The treatise presents the neural realisation of the Kalman filter. Numerous numerical
experiments carried out have provided no basis for rejecting the hypothesis of the correctness
of the constructed neural mathematical model of state estimation. In the scope of numerical
methods, decidedly the best results have been obtained by applying the intermediate estimation
method [2]. In most cases the neural filter gave better results than the numerical filter. A
multilayer perceptron has been applied for network construction, consisting of the input layer,
one hidden layer (100 neurons) and the output layer. ·
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The experiments carried out gave reasons for suppositions that in real conditions a hybrid
adaptive system would work best, where, depending on the characteristics of the process the
most suitable method of state estimation would be selected (numerical or neural) and the
network "teacher" (supplementary teaching with a numerical filter or the self-education of the
network).

REFERENCES

[I] Balicki J., Stateczny A.: The Application of Artificial Neural Networks in Anti-Collision Systems. Naval
Academy Scientific Papers, No 4, Gdynia 1995, 5-22.

[2] Kantak T., Stateczny A., Urbański J.: Basics of Navigational Automation. A Naval Academy Manual, Gdynia
1988.

[3] Korbicz J., Obuchowicz A., Uciński O.: Artificial Neural Networks. Basics and Applications. AOW, Warszawa
1994.

Received 26 April, 2000 
Accepted 24 October, 2000 

Andrzej Stateczny 

Neuronowa estymacja stanu w nawigacji morskiej 

Streszczenie

W artykule przedstawiono realizację neuronowego estymatora stanu dla pomiarów nawigacyjnych. Rozpatruje się
jedno z podstawowych zagadnień nawigacji morskiej jakim jest statyczne opracowanie pomiarów nawigacyjnych w
celu wyznaczenia estymowanego wektora ruchu i pozycji okrętu.

AH0;;1ceu Cmameunu 

Henponaas OUCHK3 COCTOHHIIH B MOpCKOH H3BHrau1111 

Pe310Me

B crari,e npencranneua pearunauus tteiipOHHOH ouenxu COCTOHHHH HaBHral(HOHHblX 113MepeHHH. PacCMOTpeH
OJ(l·IH 1-13 OCHOBHblX sonpocou MOpCKOi-i Han11rau1111, KaK11M HBJrneTCH CTaTJ-1'leCKaH oópaóorxa H381-ff3l(HOHHblX
11JMepem1i-i c uenio onpeneneuas ouenuaaevoro sexropa nn1-1iKeH1-rn 1-1 Mec-ro cynua.


