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Robust estimation of variance coefficient (VR-estimation)
for dependent observations”

The paper presents the method of robust estimation of variance coefficient. The concept of VR-
estimation presented in [6] is generalised in case of dependent observations. The basis of the method is
usage of reinforcement matrix which guarantees the robustness of the estimate. The reinforcement
matrix which is closely connected with the weight function of M-estimation, gives a possibility to
perform robust adjustment. Thus such a method is also presented. At last, an example is shown too.

1. Introduction

Robust estimation has been investigated in the field of geodesy. Studies have concentrated
on robust estimation of the parameter vector of the following model of geodetic network:

x=AX+¢ (1

where: x — vector of observations, A — known rectangular matrix, X — vector of parameters,
¥ . . . 2 -
£ - vector of observation errors with covariance matrix C, =c;Q=03P', Q — cofactor

matrix, P — weight matrix.
Up to now, proposed methods of robust estimation [1, 2] based on M-estimation, lead to the
equivalent adjustment problem [6]:

C, =oipP” )

Eym

minaLP'laM
X

where: P- equivalent weight matrix, &, — robust error vector with covariance matrix Cgk ,

Resolving (2) one can obtain:

* This paper has been done in the frame work of KBN grant No 9T12E00113 for “Developing of new methods of
statistical analysis of geodetic measurements results”
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8y = (1 _A(aTPAJ" Aij =M, 3)
where: I — identity matrix.
Thus the estimator of variance coefficient can be determined as [7]:

1

n—r

The above-mentioned estimator is invariant, unbiased and the most efficient (if the vector x
is normally distributed) but it is hard to say if it is robust. Considering robustness problem, a
concept of a new method of estimation has been formulated [6] VR-estimator, obtained using
the new method, is a quadratic estimate of the following type:

6 =x"Qx=£"Qe (5)

where: Q — symmetric matrix.

This estimate is assumed to have the same properties as (4) but also it is robust. Robustness
is the major purpose of this estimation. It is obtained using reinforcement matrix R which is
calculated on the basis of reinforcement function ().

The principles of VR-estimation were formulated in [6]. This paper presents generalisation
of this method in case of dependent observations.

2. VR estimation

As it was mentioned, the VR-estimator is assumed to be:
1) invariant if Q A=0
i1) unbiased if TrH(Q Q) =1
iii) the most efficient if Var( 6'5 ) =min

2.1. The most efficient estimate

Let all matrices Q , which fulfil the conditions i) and ii) form a set denoted as ¢. Then the
matrix defining the most efficient estimate should be determined as a solution of the following
optimization problem:

min Var(e' Q¢) (6)
Qep

This problem can be resolved using the indefinite Lagrange multipliers method [3, 5]. Thus,
if we assume that the excess for every variable ¢; is equal to zero, the unknown matrix can be
determined by minimising the auxiliary Lagrange function [5]:

9(Q)=Tr(QQQQ)-2/Tr(Q Q) - 1]-2Tr(x' Q A) (7
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where: A - the Lagrange multiplier corresponding to the condition i), y - matrix of the Lagrange
multipliers corresponding to the condition ii).

An easier solution can be obtained when we replace above function with function of vectors
formed with the elements of Q :

Q
Q,
vece(Q)=| .
. (8)
QVI
verd( Q) =[2,, @, ... 2, F 2, 25 .. 2, ..ol
where: Q ; — i-th column of the matrix.
Because Q is symmetric, one can write [4]:
vee(Q) =S, - verd(Q) )

where: Sy — transformation vector.
To make the replacement we should additionally define the following transformation:

A, Q") Ql o0 .. 0
A£(QT) = A(QT) | aly=| ° Q) .. 0
/{'n(QT) 0 0o .. Q,T

where: 0 — null vector.
Now, we can write (if Q is diagonal):

plvetd(Q)] = verd(Q) Wvetd(Q)-2A|verd(Q) verd(Q)- 1]- Zk/g(AT) vetrd(Q)  (10)

where: W= Sg(Q ®Q)SO, Ay (AT)= A (AT)SO, k — the Lagrange multipliers vector
replacing y, ® - Kronecker product.
Asg (AT) is not always full rank, therefore a new matrix g, (AT) (a full rank one) should be

formed. It can be made by removing right number of rows from the initial matrix [4]. Finally,
the vector minimising (10) can be written in the form:

verd(Q)= wol (ewe? | a (1)

A {“@0 (AT)J o H

verd(Q)
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The presented method gives rather simple solution and, what is more, is very convenient in
other applications, for example in VR-estimation [6].

2.2. Robust estimate

The main purpose of VR-estimation is to determine Q which makes the estimate be robust
(this is very similar to the purpose of M-estimation where we are searching for robust
parameter vector). M-estimation is based on influence functions, thus in VR-estimation one can
analogously define an influence matrix:

o T
J=—c,xVar(e' Q¢ 12
o ( ) (12)
where: ¢y — positive constant.
Because Var (¢ Q& ) = chr (Q QQQ ),thus:
I =4QQQ-2Diag(QNQQ) (13)

where: ¢j' =207
J should be adequately modified to obtain robust estimator of variance coefficient. At first,
it is possible to define the relationship between diagonal elements of the cofactor matrix Q and

equivalent cofactor matrix Q as follows:

gy = r(gl')qii (14)

where: r(¢;) — reinforcement function.
Thus the modified influence matrix can be written in the form:

T(e)=4Q(R(e)*2)Q-2Diag(Q(R(e)* 2)Q)

where: R(¢) - reinforcement matrix, R; ; = r(e;)r(¢;), ¥ - Hadamard product.
The estimator:

A2

Oor = e Qe

with matrix Q = Q, such that:

rgin Var(aT(R * Q)g): Var(eT(R *Qp )5)
€p

is the robust estimate of variance coefficient and can be called VR-estimator [6]. Unknown €
itself can be determined using the method described in the previous chapter. Therefore:

verd(Q, )= We'07 (@,wi'el ' (15)

where: W, :SoTDvec(R)(Q®Q)Dvec(R)So and D, r)- diagonal matrix formed from the

elements of the vector vec(R).
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The presented solution is correct for independent observations while generalised approach
is shown in the next chapter.

3. VR-estimation for dependent observations

When the set of observations includes dependent ones, the cofactor matrix is not diagonal.
This should be considered in estimation process. The influence matrix can still be determined
according to the definition (12) and it is easy to prove that in considered case we also obtain
(13) (the same result for dependent and independent observations). Taking into account

assumption (14), relation between full matrices Q and 6 can be written in the following form:

GZRQ*Q:RDQRD (16)

where: Ry, = Jr(e)Jr(€) . Rp :Diag(\/r(si),\/r(s,) ,,,,, \/r(e,-))

Therefore one can write:

J = 4R ,QR ,OR ,QR ;, — 2Diag(R ,QR ,QR ,QR , )

Modified influence matrix can also be expressed in more useful form. Replacing
Ry =Q 'R,QR, (if Q' exists) we finally obtain:

J=4QR,QRLQ-2Diag(RGQRLQ) (17)

Thus the auxiliary Lagrange function (7) should be changed as follows:

0(Q)= TH{RORLQR ,ORLQ]- 24[17(Q) - 1]- 277 (04 ) (18)

To find a matrix which minimises above function, of course we apply the method based on the
vector verd(Q2). Taking into account that:

Tr[RQQRgQRQQRgQ] = vec(RQQR(T))T(Q ® Q)vec (RQQR{))
and because:

vec[RaQRY = (1® R vec(QR] )= (1@ R L4 Ry )S verd (@)

thus finally:
Tr[RQQRgQRQQRgQ] = verd(Q) Wyvetd(Q)

where: Wy =SS! A4(Ro ) I®R,) (Q®QNI® R, 4(R,)S,
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Applying the above transformations, the function (18) can be written as follows:

plverd(Q)] = vetd(Q) Wypverd(Q) - 22.rec(Q) Syverd(Q)~1|- 2k (A7 herd(@)

According to the solution (11) the vector minimising this function has got the form:

vetd(Q, )= W;'o! (oW,0! | (19)

foglAT 0

where: ©, = . SO( T ) ;A=
vec(Q)'S, 1

It can be proved that W, depends on the vector ¢, therefore the presented solution is an iterative

process. New matrices, Wy and Qp, thereafter new VR-estimator should be determined for
every approximation of vector &.

3.1. Reinforcement function

Reinforcement matrix denoted as R plays the major role in VR-estimation. Determination
of this matrix is based on a reinforcement function. Therefore essential properties of such a
function should be given.

Function (&) can be defined in several ways. This paper presents the most easy and natural
one. The concept is based on the influence of outliers on the variance of &. We can write that:

2

Var(gl. +g)=Elg+g ) = E(gi)z +E(gi)2 =Var(s;)+ g} = [1 + l}afl(gi)]Var(gi)

where: g; — outlier of the i-th observation.

This formula describes relation between variances of the same observation with and
without an outlier. On this basis, one can consider a more general case and express relation
between variances of & in successive iteration steps in the form:

2

VarH’[ (gl, + g‘.): [1 o Vaf’i(gi)]Vari(gi> (20)

Thereafter it is possible to assume a proportionality between outliers and error estimator after
standardisation:

where: ¢ — constant, m; — mean error of estimator &, .
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Thus the formula (20) can be changed:

Var'™' (e, + g;)=| 1+ ———"4 Var'(e;) 1)

The above relation presents the way of changing the variance of observation influenced by
outliers. In turn, variances of observations without gross errors should not be modified at all.
Thus the reinforcement function can be defined as follows [6]:

(g, )=1 if |gi|sAg} 22)

r(e,-)> 1 if |8,| > Ag
where: A¢ - acceptable standardised value of random errors of measurements.

Taking into account the general form of reinforcement function (22) and the derived relation
(21), we can write:

1 it Ei<ae
méi
Y
= 2| &
(&)= c?| = ) (23)
mg, ) E;
1+ - if | —>A¢
Var'(e;) mg
The graph of the proposed function is shown in Fig.1
A
1
i T
i i
! ! >
-Ag Ag

Fig. 1. The reinforcement function



138 Robert Duchnowski

4. Iterative method of adjustment based on VR-estimation

Usage of the reinforcement function gives a possibility for robust adjustment, not only for
estimation of variance coefficient. Combining VR-estimation with M-estimation creates a new
method of adjustment which results are robust estimates of vector of parameters and of
variance coefficient. The idea of this method is presented in the following scheme:

Enter data
x A P

v

Adjustment

P g

X eo
0

v

VR-estimation

r(éi)—’RD»QR' E’gk

v

Modificafion of Q

6(2)k- ’(éi)_’ R,

i+l

i
Q" =R, *Q
If
%% < ax
Yes No
The End

Fig. 2. The general scheme of iterative adjustment

As it is shown every iteration consists of some steps:

— LS adjustment

— VR-estimation

— modification of Q matrix

— checking the convergence condition.
The first three steps do not need any comments, in the fourth step we should assume a criterion
of convergence. Analogously to other robust methods [7] the convergence of parameters has
been chosen as the mentioned criterion.
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S. Numerical tests

The proposed method of estimation has been applied to adjustment of the model geodetic
network presented in the paper [7]. This network consists of four fixed points called A, B, C
and D and two new points — I and II. Sixteen vertical angles has been taken to the adjustment
(Fig. 2). According to the mentioned paper the following cofactor matrices have been applied:

2 -1 0|}=Q=
Q5 =Qp=Q,=Qy=|-1 2 -1
0o -1 2

Qp
Q;

Qu |

Fig. 3. The tested network

The first test was a comparison of results obtained from LS-adjustment with results of the
iterative method with several values of the constant ¢ (see 23). It was assumed that: Ag = 1.5,
cc cc ..
g10=-40 and g, = 60 . The convergence condition was as follows:

max |)A(f+l—/\}f‘<1.0 mm (24)
J
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The outcomes are given in Table 1. The first column presents the results of the LS
adjustment, the second one - also LS but with the outliers, next five — the results of the
proposed method with several values of c.

Table 1
Results of the iterative adjustments

LS LS with & o

outliers 1 2 5 10 20 2
6—3 10.128 251.279 100.330 59.683 17.800 7.800 4.021 27.778
-0.0102 —0.0016 -0.0048 —-0.0062 -0.0086 -0.0099 -0.0104 -0.0083
d X [m] -0.0109 —-0.0041 -0.0075 -0.0083 -0.0098 -0.0112 -0.0117 -0.0099
-0.0002 0.0060 0.0019 0.0009 -0.0002 -0.0007 -0.0011 -0.0003
0.0101 0.0100 0.0096 0.0096 0.0100 0.0100 0.0100 0.0097
—6.89 -13.80 -11.88 -10.66 -8.46 -7.62 -7.32 -8.74
-3.26 3.66 1.72 0.48 -1.68 -2.52 —2.82 -1.41
0.42 24.35 13.99 10.66 7.64 0.48 -1.12 4.82
3.75 -25.05 -12.45 -8.28 —0.58 4.10 595 -1.42
2.79 7.66 5.42 4.58 2.90 2.38 2.13 3.56
1.89 9.87 5.15 3.79 1.96 1.19 0.73 2.24
3 1.15 —6.83 -2.11 -0.74 1.08 1.85 2.31 0.80
£ [€] -3.90 -10.43 -5.26 —4.14 -3.81 -3.27 -2.81 -3.03
1.45 3.84 1.63 0.78 1.03 1.60 1.61 0.46
-3.41 40.73 37.76 38.00 36.92 35.80 35.34 36.71
3.21 10.15 9.99 9.45 6.72 4.46 3.92 7.00
0.65 —38.22 -51.38 54.43 -58.31 —61.31 —62.85 -58.61
-0.69 2.07 3.11 2.13 0.53 0.82 0.98 1.02
-1.25 13.26 3.37 0.88 -1.26 -2.58 -3.50 -1.78
-0.68 -13.53 -6.58 437 —0.86 0.42 1.14 -1.79
—0.40 7.27 7.83 6.72 2.89 1.2] 0.89 4.03

It is obvious, that results of the robust adjustment depend on ¢*. Among taken to the test, the
best results were obtained for ¢* = 10. For the other, the results seem to be worse. It is caused
by the role of ¢* in adjustment process (see (23)). If the constant is too big, e. g. 20, changes of
Q are big too, and some element of this matrix may be overstated. On the other hand, a small
value of ¢* should influence the convergence of the method and increase the number of
iteration steps. However, the results for ¢*= 1 or 2 are not satisfactory at all. It was caused by
the unsuitable convergence condition. In case of a small value of the constant, differences
between successive iterations would be small too, they could be even smaller than 1 mm
assumed in the criterion of convergence (24), and that caused, the iterative process was finished
too early. To verify such a hypothesis the new condition was assumed:

max 'Xf*'—)?f'<0,01 mm
J

The results for this condition and ¢, = 2 are shown in the last column of the table. They are
more similar to the values of the LS adjustment presented in the first column. It confirms the
hypothesis and the correctness of the method of adjustment.
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The second test was a comparison of the proposed method with other robust methods of
adjustment. Two methods were chosen to the test: Huber’s and IGG Scheme. Both of them are
iterative and based on application of proper weight functions. The following modified Huber’s
weight was assumed [7]:

Pij }gj

D, .= a
Pl Pij- T(?’) £

i

J

where: é;a standardised &, ao=1.5
In IGG Scheme the elements of the weight matrix were modified according to the following

relation [7]:
P &<k
Pij=\Pij W, kg <‘£‘l <k
0 6";‘ > kl
k —|£]
where: w; = ko ! I Ak =k — kg

&5

The values of the used constant were assumed as 1.5 and 2.5 [7].

Table 2
Comparison of robust adjustment methods
LS LS with =10 IGG Huber’s
outliers 1 Scheme method
65 10.128 251.279 7.800 58.191 387.736
-0.0102 -0.0016 -0.0099 -0.0095 -0.0083
—0.0109 —0.0041 -0.0112 -0.0107 -0.0099
dX [m] -0.0002 0.0060 -0.0007 0.0003 -0.0003
0.0101 0.0100 0.0100 0.0100 0.0096
-6.89 -13.80 -7.62 -7.78 -8.87
-3.26 3.66 -2.52 -2.36 -1.28
0.42 24.35 0.48 1.86 4.97
3.75 -25.05 4.10 1.77 -1.77
2.79 7.66 2.38 3.33 3.77
1.89 9.87 1.19 2.63 2.33
1.15 —6.83 1.85 0.41 0.70
& <] -3.90 -10.43 -3.27 —4.32 -2.80
1.45 3.84 1.60 2.16 0.30
-3.41 40.73 35.80 36.30 36.64
3.21 10.15 4.46 3.30 7.13
0.65 -38.22 -61.31 -58.29 -58.66
-0.69 2.07 0.82 0.48 1.22
-1.25 13.26 -2.58 -0.09 -1.90
-0.68 -13.53 0.42 -1.96 =2.11
-0.40 127 1.21 0.51 4.44
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Modifications of weight matrices were performed for the columns and for the rows
(changing 5] - 8, ), so that the modified matrices were still symmetric.

The convergence criterion (24) was also applied in that test. The results of adjustments are
listed in Table 2.

It is easy to see that all the three methods give almost the same results except the estimator
of variance coefficient. The estimates of parameter vector and the estimates of & are robust.
This test confirms that using VR-estimation it is possible to obtain the robust estimate of

variance coefficient as well as robust vectors X and £.

The results of the tests lead us to the conclusion that the method of adjustment proposed in
this paper is just an alternative for the other ones. It should be especially applied in case we
want to know the value of the variance coefficient without the influence of gross errors.
However to obtain better results, this method should be still developed especially about the
reinforcement function.
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Robert Duchnowski
Odporna estymacja wspoélczynnika wariacji (VR-estymacja) w przypadku zmiennych zaleznych

Streszczenie

W pracy przedstawiono odporna metodg estymacji wspolczynnika wariacji. Koncepcj¢ takiej estymacji (VR-
estymacji), przestawiono w pracy [6], uogélniono na przypadek zmiennych zaleznych. Podstawa VR-estymacji jest
uzycie macierzy wzmocnienia, ktéra zapewnia szukanemu estymatorowi odporno$¢ na biedy grube. Macierz
wzmocnienia, podobnie jak funkcja wzmocnienia, jest $cisle powigzana z funkcja wagowa stosowana w M-estymacii,
co daje mozliwo$¢ przeprowadzenia odpornego wyréwnania. W pracy zaproponowano odporng metod¢ wyrdéwnania
bazujaca na VR-estymacji oraz przestawiono przyktad jej zastosowania do wyréwnania sieci geodezyjnej.
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Pobepm [lyxnoecku

YcroiiunBasi oneHka BapHauHOHHOro ko3¢ duunenTa (oueika VR) B ciryyae 3aBHCHMBIX NePeMEHHbIX

PecromMme

B pabote npeacTaBiieH yCTOHYHBBIH METON OLIEHKH BapHaUuoHHOro koddduuuenta. KoHuenus takoi OLEHKH
(ouenxa VR), mpexactasneHHas B pabote [6], 06o6uieHa s cnydas 3aBUCHMBIX epeMeHHbIX. OcHOBOH oueHkn VR
SIBJIAETCS TPUMEHEHHE MaTPHLbl YCHJICHHs, KOTopas ofecrneuydBaeT HCKOMOH OLEHKE YCTOHYMBOCTM K MpoMaxam.
Marpuua ycunenusi, nogo6HO ToMy Kak QyHKUWs ycuieHus, GIU3KO CBsizaHa ¢ BECOBOH (yHKUMEH NpUMEHAEMOM B
OoueHKe M, 4To 1aéT BO3MOXKHOCTb MPOBEACHHs YCTOMYHMBOro BhIpaBHHBaHHA. B paboTe npemsiokeH ycTOHYHMBBIH
METOJI BLIPABHHBAHHS, OCHOBaH Ha olieHKe VR. a Take NpencTasieH NpUMEp €ro MPUMEHEHHS JUIA BbIDaBHHBAHHS
re0Ie3N4YECKOH CETH.



