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Robust estimation of variance coefficient (YR-estimation) 
for dependent observations" 

The paper presents the method of robust estimation of variance coefficient. The concept of YR­ 
estimation presented in (6] is generalised in case of dependent observations. The basis of the method is 
usage of reinforcement matrix which guarantees the robustness of the estimate. The reinforcement 
matrix which is closely connected with the weight function of M-estimation, gives a possibility to 
perform robust adjustment. Thus such a method is also presented. At last, an example is shown too. 

I. Introduction 

Robust estimation has been investigated in the field of geodesy. Studies have concentrated 
on robust estimation of the parameter vector of the following model of geodetic network: 

x=AX+E ( 1) 

where: x - vector of observations, A - known rectangular matrix, X - vector of parameters, 
& - vector of observation errors with covariance matrix Cc= CT5Q = CTJP-1, Q - cofactor 
matrix, P - weight matrix. 
Up to now, proposed methods of robust estimation [l, 2] based on M-estimation, lead to the 
equivalent adjustment problem [6]: 

~M ==X~~I, 
CM 0 

m!nE~)•-1EM 
(2) 

where: P- equivalent weight matrix, &M - robust error vector with covariance matrix C5M 

Resolving (2) one can obtain: 

This paper has been done in the frame work of KBN grant No 9TI 2E00 I I 3 for "Developing of new methods of 
statistical analysis of geodetic measurements results" 
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, ( ( T- '\-I -) £ M = I - A A PA J AP x = MM (3) 

where: I - identity matrix. 
Thus the estimator of variance coefficient can be determined as [7]: 

(4) 

The above-mentioned estimator is invariant, unbiased and the most efficient (if the vector x 
is normally distributed) but it is hard to say if it is robust. Considering robustness problem, a 
concept of a new method of estimation has been formulated [6] YR-estimator, obtained using 
the new method, is a quadratic estimate of the following type: 

·2 T Tr. cr0 =x lli=& ~l& (5) 

where: O - symmetric matrix. 
This estimate is assumed to have the same properties as ( 4) but also it is robust. Robustness 

is the major purpose of this estimation. It is obtained using reinforcement matrix R which is 
calculated on the basis of reinforcement function r(c). 

The principles of YR-estimation were formulated in [6]. This paper presents generalisation 
of this method in case of dependent observations. 

2. VR estimation 

As it was mentioned, the YR-estimator is assumed to be: 
i) invariant if O A= O 
ii) unbiased if Tr( O Q) = 1 
iii) the most efficient if Var( ó-J) = min 

2.1. The most efficient estimate 

Let all matrices O, which fulfil the conditions i) and ii) form a set denoted as rp. Then the 
matrix defining the most efficient estimate should be determined as a solution of the following 
optimization problem: 

min Var( t:T !u;) 
llEQ> 

(6) 

This problem can be resolved using the indefinite Lagrange multipliers method [3, 5]. Thus, 
if we assume that the excess for every variable &; is equal to zero, the unknown matrix can be 
determined by minimising the auxiliary Lagrange function [5]: 

cp(O) = Tr(O QO Q)-2J.[Tr(O Q)-1]-2Tr(-/O A) (7) 
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where: /4 - the Lagrange multiplier corresponding to the condition i), X - matrix of the Lagrange 
multipliers corresponding to the condition ii). 

An easier solution can be obtained when we replace above function with function of vectors 
formed with the elements of Q : 

Qlj n? 
vec(Q) = :- 

Qn

vetd(Q) = [.01_1 D1_2 • • . D1_
11 

(8) 

lr o.,

where: Q; - i-th column of the matrix. 
Because Q is symmetric, one can write [4]: 

vec(n) = S0 · vetd(Q) (9) 

where: S0 - transformation vector. 
To make the replacement we should additionally define the following transformation: 

../41 (D T)

../4 (QT ) = ../42 ( f2 T) 

../4n(DT)

o 
o 
o 

o o 

where: O - null vector. 
Now, we can write (ifQ is diagonal): 

<p[vetd(n)] = vetd(nY Wvetd(n)-n[vetd(QY vetd(o)-il- 2k Jtś(A r) vetd(n) (I O) 

where: W=S[(Q0Q)S0, As(Ar)=A(Ar)s0, k - the Lagrange multipliers vector 

replacing X, 0 - Kronecker product. 
./45(Ar) is not always full rank, therefore a new matrix ./450(Ar) (a full rank one) should be 
formed. It can be made by removing right number of rows from the initial matrix [4]. Finally, 
the vector minimising (IO) can be written in the form: 

( ) I T ( T )-1 vetd Q = w- 00 \0W00 I:,, ( 1 1) 

where: 
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The presented method gives rather simple solution and, what is more, is very convenient in 
other applications, for example in YR-estimation [6]. 

2.2. Robust estimate 

The main purpose of YR-estimation is to determine Q which makes the estimate be robust 
(this is very similar to the purpose of M-estimation where we are searching for robust 
parameter vector). M-estimation is based on influence functions, thus in YR-estimation one can 
analogously define an influence matrix: 

O T J=-c1xVar(c Oe) an 
where: CJ - positive constant. 
Because Var ( c T Q c ) = a 6 Tr (n Q Q Q ) , thus: 

J = 4QOQ- 2Diag(QQQ) 

(12) 

(13) 

h -I 2 2 w ere: cJ = O"o 
J should be adequately modified to obtain robust estimator of variance coefficient. At first, 

it is possible to define the relationship between diagonal elements of the cofactor matrix Q and 
equivalent cofactor matrix Q as follows: 

( 14) 

where: r(r:;) - reinforcement function. 
Thus the modified influence matrix can be written in the form: 

where: R(c) - reinforcement matrix, R;,j = r(r:;)r(r:j), * - Hadamard product. 
The estimator: 

with matrix Q =QR, such that: 

is the robust estimate of variance coefficient and can be called YR-estimator [6]. Unknown QR 

itself can be determined using the method described in the previous chapter. Therefore: 

(15) 

where: w R = s;ovec(R)(Q ® Q)Dvec(R)So and Dvec(Rj~ diagonal matrix formed from the 

elements of the vector vec(R). 
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The presented solution is correct for independent observations while generalised approach 
is shown in the next chapter. 

3. VR-estimationfor dependent observations 

When the set of observations includes dependent ones, the cofactor matrix is not diagonal. 
This should be considered in estimation process. The influence matrix can still be determined 
according to the definition (12) and it is easy to prove that in considered case we also obtain 
(13) (the same result for dependent and independent observations). Taking into account 
assumption ( 14 ), relation between full matrices Q and Q can be written in the following form: 

(16) 

where: 

Therefore one can write: 

Modified influence matrix can also be expressed in more useful form. Replacing 
R0 = Q-

1R0QR0 (ifQ-
1 exists) we finally obtain: 

Thus the auxiliary Lagrange function (7) should be changed as follows: 

(17) 

(18) 

To find a matrix which minimises above function, of course we apply the method based on the 
vector vetd(D.). Taking into account that: 

and because: 

thus finally: 
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Applying the above transformations, the function ( 18) can be written as follows: 

According to the solution (11) the vector minimising this function has got the form: 

(19) 

where: 00 =[ Jtso(Ar)]. D.=[O] vec(QY S0 ' 1 

It can be proved that WR depends on the vector E, therefore the presented solution is an iterative 
process. New matrices, WR and QR, thereafter new YR-estimator should be determined for 
every approximation of vector E:. 

3.1. Reinforcement function 

Reinforcement matrix denoted as R plays the major role in YR-estimation. Determination 
of this matrix is based on a reinforcement function. Therefore essential properties of such a 
function should be given. 

Function r(c;) can be defined in several ways. This paper presents the most easy and natural 
one. The concept is based on the influence of outliers on the variance of E:;. We can write that: 

where: g; - outlier of the i-th observation. 
This formula describes relation between variances of the same observation with and 

without an outlier. On this basis, one can consider a more general case and express relation 
between variances of E:; in successive iteration steps in the form: 

Va/+1 (c; + g;) = [1 + g~ ))var; (c;) Var E:; 
(20) 

Thereafter it is possible to assume a proportionality between outliers and error estimator after 
standardisation: 

f:. 
g;~c-' 

m­ e; 

where: c - constant, mi; - mean error of estimator E; . 
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Thus the formula (20) can be changed: 

c2[iL_l2 
V. ; + 1 ( ) 1 mi; V. ; ( ) ar c; + g; = + ;( ) ar c; 

Var c; 
(21) 

The above relation presents the way of changing the variance of observation influenced by 
outliers. In tum, variances of observations without gross errors should not be modified at all. 
Thus the reinforcement function can be defined as follows [6]: 

r{c; )= 1 if led:":'. ~cl 
r(c;)>I if lc;I>~& (22) 

where: ~£ - acceptable standardised value of random errors of measurements. 
Taking into account the general form of reinforcement function (22) and the derived relation 
(21 ), we can write: 

if _!_J_ :'o'.~£ 
m· e; 

r(i;) = c'[ ;; J (23) 
I e, if _.!i_ > ~c + Va/(c;) m· e; 

The graph of the proposed function is shown in Fig. I 

Fig. l. The reinforcement function 
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4. Iterative method of adjustment based on Vlc-estimation 

Usage of the reinforcement function gives a possibility for robust adjustment, not only for 
estimation of variance coefficient. Combining YR-estimation with M-estimation creates a new 
method of adjustment which results are robust estimates of vector of parameters and of 
variance coefficient. The idea of this method is presented in the following scheme: 

Enter data 
x A P 

Adjustment 

xi ó-2 
o 

YR-estimation 

r(ij➔R0, nR, 6-~R 

Modification ofQ 

6-~R' r(E;) ➔ RQ 

Q;+1 =Ro• Q; 

If 

lx; - x'" I< D.X 
Yes No 

The End 

Fig. 2. The general scheme of iterative adjustment 

As it is shown every iteration consists of some steps: 
- LS adjustment 
- YR-estimation 
- modification ofQ matrix 
- checking the convergence condition. 

The first three steps do not need any comments, in the fourth step we should assume a criterion 
of convergence. Analogously to other robust methods [7] the convergence of parameters has 
been chosen as the mentioned criterion. 
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5. Numerical tests 

The proposed method of estimation has been applied to adjustment of the model geodetic 
network presented in the paper [7). This network consists of four fixed points called A, B, C 
and D and two new points - I and II. Sixteen vertical angles has been taken to the adjustment 
(Fig. 2). According to the mentioned paper the following cofactor matrices have been applied: 

Ol ⇒Q= 
-1 
2 

o ,~ 

\\ 
\ . 
~~4/5 
~\' 

B 
Fig. 3. The tested network 

The first test was a comparison of results obtained from LS-adjustment with results of the 
iterative method with several values of the constant c (see 23). It was assumed that: Se= 1.5, 
g10 = -40cc and g12 = 60cc. The convergence condition was as follows: 

max 1xt1-xJI <I.O mm 
J 

(24) 
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The outcomes are given in Table I. The first column presents the results of the LS 
adjustment, the second one - also LS but with the outliers, next five - the results of the 
proposed method with several values of c. 

Tab Ie 1 

Results of the iterative adjustments 

LS LS with c2 c2 

outliers I 2 5 10 20 2 
-2 10.128 251.279 I 00.330 59.683 17.800 7.800 4.021 27.778 O' o 

dX[m] 
-0.0102 -0.0016 -0.0048 -0.0062 -0.0086 -0.0099 -0.0104 -0.0083 
-0.0109 -0.0041 -0.0075 -0.0083 -0.0098 -O.Ol 12 -O.Ol 17 -0.0099 
-0.0002 0.0060 0.0019 0.0009 -0.0002 -0.0007 -0.0011 -0.0003 
0.0101 0.0!00 0.0096 0.0096 0.0!00 0.0!00 0.0!00 0.0097 

-ó.89 -13.80 -11.88 -10.66 -8.46 -7.62 -7.32 -8.74 
-3.26 3.66 1.72 0.48 -1.68 -2.52 -2.82 -1.41 
0.42 24.35 13.99 10.66 7.64 0.48 -1.12 4.82 
3.75 -25.05 -12.45 -8.28 -0.58 4.10 5.95 -1.42 
2.79 7.66 5.42 4.58 2.90 2.38 2.13 3.56 
1.89 9.87 5.15 3.79 1.96 1.19 0.73 2.24 
1.15 -ó.83 -2.11 -0.74 1.08 1.85 2.31 0.80 

in -3.90 -10.43 -5.26 -4.14 -3.81 -3.27 -2.81 -3.03 
1.45 3.84 1.63 0.78 1.03 1.60 1.6 l 0.46 
-3.41 40.73 37.76 38.00 36.92 35.80 35.34 36.71 
3.21 10.15 9.99 9.45 6.72 4.46 3.92 7.00 
0.65 -38.22 -51.38 54.43 -58.3 l -ól.3 l -ó2.85 -58.61 
-0.69 2.07 3.11 2.13 0.53 0.82 0.98 1.02 
-l.25 13.26 3.37 0.88 -l.26 -2.58 -3.50 -1.78 
-0.68 -13.53 -ó.58 4.37 -0.86 0.42 1.14 -1.79 
-0.40 7.27 7.83 6.72 2.89 l.21 0.89 4.03 

It is obvious, that results of the robust adjustment depend on cz. Among taken to the test, the 
best results were obtained for c2 = I O. For the other, the results seem to be worse. It is caused 
by the role of c2 in adjustment process (see (23)). If the constant is too big, e. g. 20, changes of 
Q are big too, and some element of this matrix may be overstated. On the other hand, a small 
value of c2 should influence the convergence of the method and increase the number of 
iteration steps. However, the results for cz= I or 2 are not satisfactory at all. It was caused by 
the unsuitable convergence condition. In case of a small value of the constant, differences 
between successive iterations would be small too, they could be even smaller than I mm 
assumed in the criterion of convergence (24), and that caused, the iterative process was finished 
too early. To verify such a hypothesis the new condition was assumed: 

max liJ+1-iJl<O.Ol mm 
J 

The results for this condition and Cz = 2 are shown in the last column of the table. They are 
more similar to the values of the LS adjustment presented in the first column. It confirms the 
hypothesis and the correctness of the method of adjustment. 
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The second test was a comparison of the proposed method with other robust methods of 
adjustment. Two methods were chosen to the test: Huber's and IGG Scheme. Both of them are 
iterative and based on application of proper weight functions. The following modified Huber's 
weight was assumed [7]: 

!
Pi.J 

P; · = Go 
'
1 

P;,J · 1,q 
Ji~I < G0 
li~I ~ G0 

where: i~- standardised i1, Go= 1.5 
In IGG Scheme the elements of the weight matrix were modified according to the following 
relation [7]: 

!
p . 1,J 

p . = p . ·W 1,j 1,j j 

o 

k k1 -ii~J 
where: w = -0 · --- Ilk = k1 - k0 

J 1 ·· I Ilk ,c JI 
The values of the used constant were assumed as 1.5 and 2.5 [7]. 

Table 2 
Comparison of robust adjustment methods 

LS LS with c2 = IO !GG Huber's 
outliers I Scheme method 

'? 10.128 251.279 7.800 58.191 387. 736 O"ij 
-O.O I 02 -0.0016 -0.0099 -0.0095 -0.0083 
-0.0109 -0.0041 -O.Ol 12 -O.Ol 07 -0.0099 

dX [ml -0.0002 0.0060 -0.0007 0.0003 -0.0003 
0.0101 O.OIOO O.OIOO 0.0100 0.0096 

--6.89 -13.80 -7.62 -7.78 -8.87 
-3.26 3.66 -2.52 -2.36 -1.28 
0.42 24.35 0.48 1.86 4.97 
3.75 -25.05 4.10 1.77 -1.77 
2.79 7.66 2.38 3.33 3.77 
1.89 9.87 1.19 2.63 2.33 
1.15 -6.83 1.85 0.41 0.70 

c ["] -3.90 -10.43 -3.27 -4.32 -2.80 
1.45 3.84 1.60 2.16 0.30 
-3.41 40.73 35.80 36.30 36.64 
3.21 10.15 4.46 3.30 7.13 
0.65 -38.22 --61.31 -58.29 -58.66 
-0.69 2.07 0.82 0.48 1.22 
-1.25 13.26 -2.58 -0.09 -1.90 
-0.68 -13.53 0.42 -1.96 -2.11 
-0.40 7.27 1.21 0.51 4.44 
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Modifications of weight matrices were performed for the columns and for the rows
(changing i:~ ➔ i:;), so that the modified matrices were still symmetric.

The convergence criterion (24) was also applied in that test. The results of adjustments are
listed in Table 2.

It is easy to see that all the three methods give almost the same results except the estimator
of variance coefficient. The estimates of parameter vector and the estimates of £ are robust.
This test confirms that using YR-estimation it is possible to obtain the robust estimate of
variance coefficient as well as robust vectors X and i . 

The results of the tests lead us to the conclusion that the method of adjustment proposed in
this paper is just an alternative for the other ones. It should be especially applied in case we
want to know the value of the variance coefficient without the influence of gross errors.
However to obtain better results, this method should be still developed especially about the
reinforcement function.
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Odporna estymacja współczynnika wariacji (YR-estymacja) w przypadku zmiennych zależnych

Streszczenie

W pracy przedstawiono odporną metodę estymacji współczynnika wariacji. Koncepcję takiej estymacji (YR­
estymacji), przestawiono w pracy [6]. uogólniono na przypadek zmiennych zależnych. Podstawą YR-estymacji jest
użycie macierzy wzmocnienia, która zapewnia szukanemu estymatorowi odporność na błędy grube. Macierz
wzmocnienia, podobnie jak funkcja wzmocnienia, jest ściśle powiązana z funkcją wagową stosowaną w M-estymacji,
co daje możliwość przeprowadzenia odpornego wyrównania. W pracy zaproponowano odporną metodę wyrównania
bazującą na YR-estymacji oraz przestawiono przykład jej zastosowania do wyrównania sieci geodezyjnej.



Robust estimation of variance coefficient ... 143 

Po6epm Ilyxuoecsu 

YcToii•111BaH onemca sapH3UII0HH0ro KO)(jl(jl11u11eHTa (ouemca VR) B cnyxae 33BHCHMblX nepcsseuusrx 

PeclOMe

B paóore npencraanen ycTOii'IHBblll MeTOn ouenxa B3pH3UH0HH0ro K03cpcjmutteHT3. Koauenuas TaK0II ouenxa
(oueuxa VR), npencT3BJleHH3H B paóore [6], oóoóuresa /UlH cny-ras 33BHCHMblX nepeaeaasrx. OcHOBOII oueaxa YR 
HBJlHeTCH np11MeHeHHe M3Tplll..(bl ycaneaas, K0T0paH oóecne-ursaer HCKOMOII oueuxe ycT0ll'll1B0CTl1 K npoeraxav. 
MaTPHUa ycnneuaa, nonoóuo TOMY K3K cjlyHKUHH yc11J1eHHH, 6JlH3KO CBH33Ha C aecosoa cj>yHKUHeii np11MeHHeMOII B
ouenxe M, 'lTO naer B03M0)1(H0CTb npoaencuas ycroasaeoro Bb1paBHl1B3HHH. B paóore npennoxeu YCTOll'lHBblll
MeT0Jl Bb1paBHl1B3Hl1H, 0CH0B3H Ha oueince YR. a raiose npencraanea npauep ero npttMeHeHHH JlJlH BbipaBHl1B3Hl1H
reoneaa-recxotł ceT11.


