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Abstract

We propose a Bayesian approach to estimating productive capital stocks
and depreciation rates within the production function framework, using annual
data on output, employment and investment only. Productive capital stock
is a concept related to the input of capital services to production, in contrast
to the more common net capital stock estimates, representing market value of
fixed assets. We formulate a full Bayesian model and employ it in a series of
illustrative empirical examples. We find that parameters of our model, from
which the time-path of capital is derived, are weakly identified with the data
at hand. Nevertheless, estimation is feasible with the use of prior information
on the production function parameters and the characteristics of productivity
growth. We show how precision of the estimates can be improved by augmenting
the model with an equation for the rate of return.
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1 Introduction
Studies of economic growth, as well as numerous empirical and applied economic
models, rely on estimates of fixed capital stock and its depreciation (aggregate or
industry-level). Appropriate measurement of these categories is a prerequisite to
adequate assessment of, among other things, technical change and the impact of
investment on production capacity. However, such measurement is subject to various
conceptual and practical difficulties. As a result, it is often the case that either
the available data are not best suited for productivity analysis, or the data are
not available at all, particularly for detailed industry disaggregation used in some
models. It is also a rather standard situation that the depreciation rate is not
provided explicitly, along with the capital stock assessment. Our aim is to propose
a practical econometric approach to estimation of capital stocks and depreciation
rates that could be used by modelers in applied work even with limited data, as an
alternative to relying on perhaps more arbitrary, ad hoc assumptions or questionable
external estimates.
Measurement of capital stock and depreciation may relate to two distinct functions
of capital – “storage of wealth and a source of capital services in production” (OECD,
2009, p. 11). The wealth aspect is captured by the net capital stock (net fixed asstes),
representing the current market value of fixed assets. Accordingly, depreciation
concept used in derivation of net capital stock relates to the decrease in market value
of the assets during an accounting period, e.g., a year (Lequiller and Blades, 2014,
p. 249–250).
A related measure is the gross capital stock, equal to accumulated acquisitions of
fixed assets (investment) minus their withdrawals. In this case, depreciation concept
relates to retirement of assets. Neither net nor gross capital stock is, in general,
an appropriate representation of production capacity in a single year, which is the
perspective taken by the production function. The actual contribution of capital to
production is conceptualized in the measure of capital services. The flow of capital
services is considered proportional to some kind of stock category which we shall
call, following (OECD, 2009, p. 59–62), productive capital stock (although Oulton
and Srinivasan, 2003, suggest that this category is better named as volume index of
capital services – VICS).
In most cases, the data in public statistics, when available, concern net or gross
capital stock (fixed assets). The latest version of the System of National Accounts,
SNA 2008, recognizes the importance of measurement of capital services (and related
capital stocks), by including a chapter devoted to that problem (SNA 2008, Chapter
20; see also Jorgenson and Schreyer 2013 for a discussion of productivity measurement
within this new conceptual framework). Still, relevant estimates are not commonly
provided by official sources. Data coverage (by country, industry etc.) from other
sources, such as EU KLEMS (van Ark and Jäger, 2017), is usually limited. Worth
noting, it is argued that “rather than introducing a new concept into the SNA, capital
services can, in theory, be identified within the existing accounts” by “improvements
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in the estimates of consumption of fixed capital (...) and of the values of capital stock”
(SNA 2008, p. 416).
The accounting perspective on capital measurement, and the related concepts, are
discussed in detail Section 2.1. Another perspective, featured in the literature, is
the econometric one, treating productive capital stock as an unobserved category.
In particular, under the so called production function approach (laid down in
Section 2.2), capital input is estimated (based, i.a., on data concerning past
investments) simultaneously with the production function parameters. Further
developments in this line – reviewed in Section 2.3 – involve framing capital utilization
and withdrawals as a part of optimization problems underlying dynamic general
equilibrium models.
Our paper draws upon the basic production function approach. Its contribution to
the previous studies is in three areas. First, we treat the problem Bayesianly. One
benefit is that the Bayesian approach allows to formulate prior knowledge explicitly
and include it in the estimation process. This is particularly important in a situation
in which informativeness of data is limited. Even if the estimation outcomes only
modify the prior knowledge moderately, it might still be considered an improvement
over the practice of using ad hoc assumptions given lack of data on capital stocks
and depreciation rates. Another possibility is, for example, to use available net
capital stock data as an initial proxy for productive capital stock characteristics,
and then let our estimation procedure modify such prior assumptions in order to get
a capital measure better suited for productivity analysis. In any case, the Bayesian
approach provides a full picture of uncertainty of the estimates, illustrating how prior
assumptions have been revised after confronting the data (conditional on the model
under study). We propose a specification of full Bayesian model and estimate its
variants using Markov-Chain Monte-Carlo (MCMC) techniques. Second, we augment
the production function model with additional equation, relating observed capital
income with the unknown stock, which improves precision of the estimates. Third,
we assume a fairly flexible formulation of technical progress, allowing for stochastic
shocks to total factor productivity.
The focus of this work is on methodology, whereas the presented empirical application
for Poland should be treated as illustrative. In particular, we examine the feasibility
of inference on capital stock and depreciation from relatively short time series of
aggregate data on output, employment and investment (we use annual data for the
years 1996–2017). From such a perspective, the assumption of fixed depreciation rate,
treated as a proxy or average of time-varying rate, is a natural starting point. Also,
capturing inter-industry differentials of capital characteristics, even approximately, is
arguably the first need in many simulation studies based on inter-industry models,
coming before theoretical advances. As we shall see in subsequent sections, estimation
is already challenging for a fixed depreciation rate, due to weak informativeness of
data. Therefore we treat introduction of time-varying or endogenous depreciation
rate as topics for further research, beyond the scope of this paper.
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2 Literature overview

2.1 Basic concepts of capital measurement
Extensive literature exists on concepts and methods of capital stock measurement.
The topic has been covered comprehensively in the OECD manual titled Measuring
Capital (OECD, 2009). Other systematic overviews are provided by Diewert (1996)
and Oulton and Srinivasan (2003). The expositions start with the case of a single
(homogeneous) asset type. A fundamental relationship is formulated, defining asset
price in a given year as a sum of discounted future incomes from asset rental over
its entire remaining lifetime. This leads to distinguishing between asset price, i.e.,
market value of an asset for resale, and rental prices, i.e., return from employing the
asset in production in a given year. From this follows the distinction between asset
depreciation and decay (“wear and tear”). Depreciation is defined as a decrease in
asset value due to ageing which exhausts asset’s remaining lifetime and efficiency –
note that even when asset’s efficiency is constant throughout entire lifetime (light bulb
being the classic example), it still depreciates due to exhaustion. The term decay, on
the other hand, relates directly to efficiency loss due to ageing. Accordingly, assets
are characterized by age-price and age-efficiency profiles, only the latter of which
corresponds directly with the contribution to production. These two profiles coincide
only in the case of geometric decay pattern, i.e., when asset efficiency deteriorates at
a constant rate (Measuring Capital, p. 97). Consequently, under geometric pattern
of efficiency deterioration depreciation rate is equal to the rate of decay. We shall
note at this point that most of the economics literature – unlike many of the works
dealing directly with capital measurement problems – uses the term depreciation in
a broader meaning. The actual interpretation then depends on the context of its use
(e.g., it might also indicate decay, obsolescence, retirement etc.). In this paper we
also adopt such a broader understanding of depreciation, leaning to the terminology
traditionally used in economic modelling of the production process.
One of key topics of the theory of capital measurement is the problem of aggregation.
Capital stock at either plant, industry or economy level is an aggregate of assets
across vintages and types. Different weights of individual assets are used, dependent
on whether the resulting aggregate stock is meant to represent wealth or input to
production. To obtain wealth capital stock, asset prices are used as weights, while
productive capital stock is based on weighting by rental prices. Notably, short lived
assets are characterized by relatively high ratio of rentals to asset price. Therefore,
they have a higher weight in productive capital stock than in wealth capital stock.
For this reason aggregate net capital stock will in general evolve at a different rate
than aggregate productive stock (Measuring Capital, p. 61). More specifically, if
the aggregate is composed of individual assets characterized by different geometric
decay rates, the aggregate age-efficiency pattern will not be geometric – with no new
investment the stocks of short-lived assets will decrease more quickly, thus changing
the shares of different asset types in the aggregate stock.
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Estimation of capital stock is not trivial even for relatively homogeneous assets,
based on plant level data. One reason is that asset prices of used assets, as well
as rental prices cannot always be observed, since fixed assets are often used by their
owners. Hulten and Wykoff (1981) argue that market prices might therefore not be
representative of the value of non-marketed assets, as owners may prefer to keep assets
of higher quality and sell only the assets of inferior quality (the so called lemons
problem). This poses a challenge to econometric estimation of, e.g., depreciation
rates, due to censored sample bias. Also, as Hulten (1991, p. 124) notes, age-
efficiency profiles are rarely observed directly, and so they need to be determined
using indirect methods. For example, Coen (1975) empirically tests plausibility of
alternative schemes of capital efficiency deterioration, by looking at the fit of capital
demand model. Likewise, Hulten and Wykoff (1981) perform econometric estimation
of depreciation rates for various asset classes. Another approach, demonstrated,
e.g., by Harris (2005), who derives productive capital stock in UK manufacturing
not relying on econometric techniques, is to carefully review the source data and
consider the consequences of alternative assumptions (e.g., the treatment of plant
closures) underlying estimation procedure. Other authors highlight specific issues in
capital measurement. Beaulieu and Mattey (1998) point to the workweek of capital as
a factor influencing the flow of capital services, and present relevant estimates based
on microdata. Oulton and Srinivasan (2003) discuss measuring depreciation related
to obsolescence, considering the case of computers and software. Obsolescence means
that although an asset does not decay physically, it is discarded. Whereas Cairns
(2006) analyzes how capital measurement is affected by the problem of sunk capital.
A lasting debate in the literature concerns the question whether geometric
depreciation – a widely used assumption – is actually adequate. A thorough literature
review and in-depth discussion of that issue is provided by Bitros (2010). One way to
look at that problem is to treat the geometric pattern as a convenient approximation
of more general convex age-efficiency or age-price profiles. It can be demonstrated
that combining linear pattern of efficiency loss for individual assets with retirement
profiles, characterized by probability distribution of asset retirement at each age,
may well result in a convex pattern of productive stock deterioration (Measuring
Capital, p. 42). Hulten and Wykoff (1981) show that geometric pattern is at least
more plausible than other simple alternatives. While a constant rate may usefully
approximate average depreciation over a longer period, it is argued that year-to-year
rates of depreciation and retirement vary in response to economic forces (Bitros,
2010). We shall return to this point further in the section concerned with endogenous
depreciation and capital utilization.
Abadir and Talmain (2001) propose a method of estimating capital stocks and time-
varying depreciation rates from the series of gross and net investment (the difference
between the two being defined by authors as depreciation charge – or consumption of
fixed capital, in national accounts terms). The two investment series are not sufficient
to reconstruct capital stocks and depreciation rates in a deterministic way. It would be
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possible, though, if only depreciation rate or capital stock was known for one period.
The authors note that such an “initial condition” could be provided approximately if
one could presume that depreciation rate is similar for two consecutive periods. In this
line of thinking, they provide an objective criterion of identifying such a data point
which leads to minimizing estimation error. The procedure proposed by Abadir and
Talmain (2001) helps solve a practical problem of estimating capital stocks and time-
varying depreciation rates in a specific data situation, defined by availability of gross
and net investment series. However, this does not necessarily address the question of
adequately measuring capital stock for productivity analysis, given that consumption
of fixed capital, constituting the difference between gross and net investment, is still
subject to conventionalities. Conceptually, the resulting capital stock measure leans
towards the net capital stock, discussed above.
As a final point here, let us note that measurement of stocks and depreciation may
relate to R&D capital, as well as physical capital. In this case, data availability is
more restricted. One example of direct measurement is the study by de Rassenfosse
and Jaffe (2018), who estimate R&D depreciation based on observed revenue streams
from innovations.

2.2 Production function approach
Direct application of the concepts reviewed in the previous section require access to
detailed micro data, including asset prices or rentals, allowing to compile aggregate
series in a bottom-up fashion. The production function approach aims at identifying
capital stocks in a more restricted data situation. It involves estimating a production
function in which capital stock is treated as an unobserved (latent) variable, being
a function of past investment, initial capital stock and depreciation rate(s). Initial
capital stock and depreciation rate(s) are estimated along with the regular production
function parameters. Some works in this line of research have been reviewed by
Diewert (1996, p. 26–27). However, that approach did not feature particularly
prominently in the literature.
It was adopted by Prucha (1995) who explains how to deal with the estimation
in standard econometric packages, given that the number of explanatory variables
increases with every observation (since capital stock in time t is a function of
investment in the periods 1, . . . , t − 1). Nadiri and Prucha (1996) extend the
approach to the estimation of R&D capital stock and depreciation, along with the
physical capital characteristics. Hernández and Mauleón (2005) allow for variable
depreciation rates, by regressing them on some explanatory variables. Diewert (1996,
p. 26) considers a more general specification, with period-specific depreciation rates,
indicating that this assumption may be restricted in some a priori fashion. Doms
(1996) presents a particularly detailed empirical study based on the production
function approach, using a rich sample of plant level data. The author focuses on
producers using a common technology of steel production, representing it using the
translog production function, in which he inserts “a parametrized investment stream
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for a capital variable” (Doms, 1996, p. 89). The model includes observed capacity
utilization as an explanatory variable which, among other things, plays the role of
“transforming the measure of capital stock into a proxy for capital service” (Doms,
1996, p. 84).
Although not explicitly a production function analysis, a similar general idea underlies
an earlier work by Pakes and Griliches (1984), who regress operating profits on a
distributed lag of past investment, in order to identify depreciation pattern. Their
paper is primarily concerned with developing econometric methodology for estimation
of distributed lags models from panel data – the mentioned application serves as
an illustrative example. In turn, Linnemann (2016) estimates capital utilization
rate, inferring its “empirical characteristics (...) from assumptions concerning the
production function”. Even though the cited study refers to a different problem than
the one considered in our paper, that latter statement illustrates well the essence of
the production function approach.

2.3 Endogenous depreciation in general equilibrium models
Depreciation is often, or even typically, treated as an exogenous characteristic of
capital, related to technical properties of the assets alone. Notwithstanding, in
the field of dynamic equilibrium modelling a broader view is sometimes taken, by
recognizing that observed capital depreciation and utilization should in fact be treated
as a result of the optimizing decisions by producers. When new, more efficient
capital becomes available or maintenance cost becomes high, producers might consider
quicker replacement of obsolete assets. Note that, in principle, such an approach does
not neglect existence of age-efficiency schedules of individual assets related to physical
properties of the equipment etc. (intensity of capital use may change asset’s lifetime
and efficiency, though). Rather, producer decisions may lead to earlier retirement of
assets or making them idle.
A thorough review of endogenous depreciation theory, accompanied by a critique of
the so called proportionality theorem, which underlies the assumption of a constant
rate of depreciation, is given by Bitros (2010). An early example of estimation of
the model of capital utilization and depreciation dependent on profit maximization
is the work by Epstein and Denny (1980). Boucekkine and Ruiz-Tamarit (2003)
formulate a theoretical model, in which depreciation rate is a function of the ratio
of maintenance cost to capital, and capital utilization rate. They find, among other
things, that maintenance and investment expenditure are complementary, i.e. they
move together in response to changes in either unit maintenance cost or price of new
capital, or in response to technical improvement. Chatterjee (2005) summarizes some
findings from empirical literature, such as that (i) capital is typically utilized less than
fully, (ii) capital utilization rate and depreciation rate are positively correlated with
per capita income, (iii) capital utilization rates vary significantly across industries, and
(iv) convergence rates of per capita income between countries are considerably smaller
than implied by standard neoclassical growth models. Based on one-sector theoretical
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model the author shows that treating utilization as an optimization variable (also,
with depreciation sensitive to utilization) helps reconcile the theory with the evidence.
Further theoretical developments are provided by Boucekkine et al. (2009). In their
formulation, the authors distinguish between neutral and investment-specific technical
progress (embodied – increasing productivity of new investment, and disembodied
reducing the cost of new investment), as well as between use-related depreciation
and obsolescence of capital. One of the findings is that accelerated investment-
specific technical progress leads to an increase in use-related depreciation and the
scrapping rate. From this follows a faster economic depreciation (reduction of the
value of assets), consistent with observations related to computer equipment and
software. The model also helps explain some additional stylized facts on capital
and depreciation. The positive link between capital-embodied (investment-specific)
technical progress and depreciation (related to obsolescence) is confirmed empirically
by Barañano and Romero-Ávila (2015). Escribá-Pérez et al. (2018) apply a model
with endogenous depreciation rate, resulting from dynamic optimization, in order to
measure aggregate capital stock for the non-financial business sector in Spain. The
outcome, termed ‘economic’ capital stock, is compared with ‘statistical’ capital stock
reconstructed from official data, showing marked differences particularly during the
years of the recent financial crisis. Accordingly, ‘economic’ depreciation rate fluctuates
around ‘statistical’ rate.
When applied empirically, dynamic general equilibrium models reviewed in this
section have a common point with the production function approach. Namely, they
allow for inference on capital stock and depreciation as latent variables, linked to
observable variables through theoretical formulations (such as production function
or factor demand equations resulting from optimization). Still, this literature takes
a broader perspective and is primarily concerned with theoretical extensions that allow
to better explain the phenomena observed in the data, rather than measurement (of
capital stock and depreciation) per se (the exception being the work by Escribá-Pérez
et al., 2018). Notably, the models considered in this line of research are typically
highly aggregate (comprising one or two sectors), with continuous time.

3 The basic model and estimation results

3.1 The economic model and statistical specification
Consider Cobb-Douglas production function, with output (Y ) produced from capital
(K) and labour (L):

Yt = AtK
α
t L

β
t (t = 1, 2, ..., T ). (1)

With elasticities α, β > 0, the specification allows for non-constant returns to scale.
We assume growth rates of total factor productivity (A) to be stochastic, independent
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and identically normally distributed:

∆ logAt ∼ iiN
(
µ, σ2) (2)

with unknown mean (µ) and standard deviation (σ). Changes in A capture
technological improvements, variations in production efficiency and all other shocks.
Thus, no additional error term applies. However, in order to be fully realistic,
changes in A should be more directly related to business cycle. This would
require generalising (2) to some non-trivial stochastic process through, e.g., an auto-
regressive specification. Since our Bayesian approach to capital stock estimation is
now presented within the simplest possible framework, such generalisation is not
considered here and left for future research.
Capital stock is accumulated according to:

Kt = Kt−1 · ρ+ It−1,

which yields, after a series of substitutions:

Kt = ρt ·K0 +
t∑
i=1

ρi−1 · It−i, (3)

where I is investment (gross fixed capital formation), K0 is the initial capital stock,
and ρ is the depreciation coefficient (defined as ρ ≡ 1−δ, where δ is the rate of capital
depreciation). Recall that in the context of our study the term “depreciation” relates
to decay (efficiency deterioration), while capital refers to productive capital stock.
In the model composed of equations (1)–(3), the core parameters (to be estimated)
are: α, β, ρ ∈ 〈0, 1〉, µ, σ > 0, K0 ≥ 0, whereas Kt (t = 1, 2, ..., T ) are functions of
core parameters (K0, ρ) and data on investment.
In terms of yt = log Yt and at = logAt, formulas (1) and (2) can be written as:

yt = α logKt + β logLt + at (t = 1, 2, ..., T ), (4)

at = at−1 + µ+ εt, εt ∼ iiN
(
0, σ2) . (5)

Elimination of latent variables at is achieved by inserting at = yt−(α logKt + β logLt)
and its lagged value into both sides of (5). This leads to the following normal non-
linear regression equation for production growth:

∆yt = α∆ logKt + β∆ logLt + µ+ εt, εt ∼ iiN
(
0, σ2) , (6)

where unobserved Kt is replaced by the right hand side of (3). This simple univariate
specification leads to the conditional normal distribution of yt (given Lt and past
data) with mean mt = yt−1 + αg(I0, ...It−1;K0, ρ) + β∆ logLt + µ and variance σ2,
where g(I0, ...It−1;K0, ρ) stands for ∆ logKt. The likelihood function is based on the
product of the T densities of these normal conditional distributions, each denoted as
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fN (yt|mt, σ
2), which depend on six parameters: α, β, µ, ρ, K0 and σ2. Thus, the

likelihood function is defined on the six-dimensional parameter space. Linearity of
the conditional mean of yt (i.e., mt) in α, β and µ (given ρ and K0) means that in (6)
we have the partly linear regression model, Bayesianly treated in Osiewalski (1988).
Our specification is, to some extent, in line with Osiewalski, Wróblewska, and Makieła
(2020). In fact, the simple model (1)–(2) gives economic interpretation to the
best models in Osiewalski, Wróblewska, and Makieła (2020), where co-integration
specifications (based on the aggregate production function concept) fail empirical
comparisons with simple vector auto-regression (VAR) structures for first differences,
which describe the three aggregates (i.e., logs of output, capital and labour) by
three stochastic trends. Our formulation here, with total factor productivity driven
by a simple stochastic trend process, reconciles the aggregate production function
framework with seemingly a-theoretical VAR structures that assume three stochastic
trends for three observable aggregates. Of course, our framework and purpose
of the analysis are different than in Osiewalski, Wróblewska, and Makieła (2020);
here we do not treat Kt as an observable process and we stay within uni-variate
framework, assuming exogenous labour and investment. This simplifying assumption,
not essential for our idea of estimation of the Kt path, could be relaxed in some future
research.

3.2 Prior distributions of the parameters
The parameter space of our partly linear regression model (6), with Kt defined by
(3), is six-dimensional. We adopt the following weakly informative prior distributions
for (groups of) model parameters, which are assumed independent a priori:

i) (α, β) are jointly normal with means 0.5, variances 0.0225 and covariance -0.018
(so α+ β ∼ N(1, 0.009)),

ii) µ ∼ N(0, 0.022),

iii) τ = σ−2 is gamma(100,0.01), with mean 10000 and standard deviation 1000,

iv) ρ is beta with mean 0.92 and standard deviation 0.03,

v) K0 is exponential with mean Km.

Prior mean Km of initial capital stock (K0) is determined as five times the observed
capital income in year 0, implying an assumed gross rate of return of 20%.
Sensitivity analysis with respect to prior assumptions is provided in Appendix A.
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3.3 The Bayesian model and simulation from the posterior
distribition

The full Bayesian model for our problem is composed of (i) the T conditional sampling
densities fN (yt|mt, σ

2), defined below (6), (ii) priors for six model parameters, listed
in Section 3.2. Given the available data, inference on the model parameters is based
on their 6-dimensional posterior distribution, characterised by the density function
proportional to the product of the joint prior density and the likelihood function:

p(θ|y) ∝ p(θ)
T∏
t=1

fN (yt|mt, σ
2), (7)

where y = (y1, ..., yT )′ and p(θ) is the joint prior density of θ = (α, β, µ, ρ,K0, σ
2)′.

Obtaining samples of six basic parameters from their posterior distribution is easy
within any Monte Carlo (MC) simulation scheme. Markov-Chain Monte-Carlo
(MCMC) sampling from the posterior distribution was performed using Stan modeling
language (Stan Development Team, 2021). Model code is available on request. Each
result discussed in the paper is based on N = 200000 draws (derived from mixing
four chains, each composed of 100000 draws, initial 50% of which were discarded as
warm-up samples). Even much smaller samples led to virtually the same posterior
characteristics, confirming convergence of the MCMC chain.
However, our main goal is to make inferences on the path of Kt (t = 1, 2, ..., T ),
the unobserved variables described by the capital accumulation identity (3). Also,
we would like to infer about the path of At (t = 1, 2, ..., T ). Note that Kt

is a transformation of two core parameters (K0, ρ) and the investment data,
and At is a function of the model parameters and the available data: At =
exp [yt − (α logKt + β logLt)]. Thus, for each MCMC draw from the posterior
distribution, we obtain the corresponding path of Kt first, and then, using it, we
compute the corresponding path of At. So finally, after obtaining N draws from the
posterior distribution, we also have N bundles of simulated paths of Kt and At, which
enable us to calculate their posterior characteristics.

3.4 Data
Estimation results presented in this paper are based on annual time series from
Eurostat, including constant price output (gross value added) and investment (gross
fixed capital formation), as well as employment measured in hours worked – at
aggregate and sector (NACE Rev. 2, 1-digit industry) level. Where available, we also
use data on gross fixed assets and net fixed assets (in constant prices) to compare
against the estimated path of capital stocks. However, those two series are not used in
the estimation or prior formulation. Since estimation results in this paper are meant
to be illustrative of the method, the presentation is limited to a few selected cases. We
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show the results for Poland, but also comment on the outcomes for other countries.
The data for Poland feature 22 observations, spanning the years 1996–2017.

3.5 Results: Total economy
Consider first the estimation results for the total economy. Table 1 reports prior and
posterior means and standard deviations of the six core parameters; in the case of
posterior, they are computed from samples from the marginal posterior distributions.
Whereas Figure 1 characterizes those distributions in terms of histograms (light gray
for prior, and dark gray for posterior distributions). The histograms have been scaled
in such a way that the areas of posterior density plots are comparable across the
parameters. As a consequence, prior density plots have been truncated in a number
of cases.
Apart from the core parameters, Figure 1 illustrates the time-path of mean estimated
capital stocks (solid line), with the ribbon representing ± one standard deviation of
the posterior distribution. It also presents gross (dashed line) and net (dotted line)
fixed assets from Eurostat data.

Table 1: Summary of prior and posterior distributions: Total economy

Prior Posterior
Mean St. dev. Mean St. dev.

µ 0.000 0.020 0.012 0.006
σ 0.010 0.0005 0.010 0.0005
α 0.500 0.150 0.391 0.098
β 0.500 0.150 0.545 0.081

α+ β 1.000 0.095 0.937 0.090
ρ 0.920 0.031 0.949 0.021

K0 1910 1910 1052 303

Inspection of the results leads to the following observations:

i) The informativeness of data is limited – they allow to revise and narrow down
prior distributions only moderately (although it depends on the parameter in
question).

ii) Output elasticity with respect to capital (posterior mean 0.39) is lower than the
elasticity with respect to labour (posterior mean 0.55). The former is estimated
with somewhat smaller precision, given that the capital stock is unobserved.
Constant returns to scale are not rejected by the results.

iii) Posterior mean rate of total factor productivity growth is rather low, equal
to 1.2%. This corresponds with a rather high depreciation coefficient, and
thus a fairly low depreciation rate, 0.05 = 1 − 0.95. Consequently, capital
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Figure 1: Prior (light gray) and posterior (dark gray) distributions of model
parameters: Total economy
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stock grows faster than shown by conventional capital measures (net and gross
fixed assets). Hence, according to estimation results, investment and capital
embody more technical change than under conventional capital measurements,
thus diminishing the estimated rate of disembodied productivity growth. The
“tradeoff” between ρ and µ can be seen in Figure 2 which shows negative
correlation of these two quantities in the posterior distribution. Negative
correlation in the posterior distribution can also be seen between α and µ
(Figure 3), that is, the higher the estimated capital elasticity, the lower the
estimated productivity growth rate.

iv) Mean posterior capital time path fits between official net and gross fixed assets
estimates, except in the very first years.

We could not find – in the literature or public data sources – estimates of productive
capital stocks or capital services for Poland that could be used for a systematic
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Figure 2: Posterior distribution: ρ and µ
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Figure 3: Posterior distribution: α and µ
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comparison with our results. In particular, EU KLEMS database (van Ark and Jäger,
2017) does not include such estimates for Poland, due to missing data. Gradzewicz et
al. (2018) have estimated the volume of capital services for Poland (total economy)
as a part of a growth accounting study. In that case, capital services are derived by
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aggregating and accumulating investment in different asset types, using capital rental
rates as weights, assuming asset-specific depreciation rates. The authors provide
growth rates of capital services for the years 1997–2013. Considering that capital
services can be interpreted as a flow proportional to the productive capital stock,
we can compare the results from Gradzewicz et al. (2018) with posterior mean
growth rates of productive capital stocks. In most years our estimates are higher
by 1–2 percentage points than the ones from the cited work. In the years of most
intensive investment, this difference increases to 2–3 percentage points. Otherwise,
the pattern of changes in capital growth rates in time is similar between the two
studies, because of the reliance on analogous investment data (although we only used
aggregate series) and the assumption of geometric depreciation scheme. We conclude
that our estimation yields smaller depreciation rates than the more conventional (non-
estimated) values, and/or lower initial productive capital stock (which we could not
compare directly, as it was not reported in the cited study).

3.6 Results: Industrial production
Estimation results for the industrial sector, comprising mining, manufacturing,
energy, and utilities, are shown in Table 2 and Figure 4. Uncertainty of the estimated
capital path is distinctively higher than in the case of the economy as a whole. This
is also the case of the depreciation coefficient, although to a lesser extent. Otherwise
the posterior uncertainty is similar to the total economy case. The estimated mean
posterior rate of total factor productivity growth for industry is 2.9%, compared with
1.2% for the total economy. This result perhaps explains the relatively high variance
of posterior capital stocks – we could hypothesize that substantial contribution
from exogenous technical change to output growth makes it difficult to identify the
contributions of capital increments.

Table 2: Summary of prior and posterior distributions: Industry

Prior Posterior
Mean St. dev. Mean St. dev.

µ 0.000 0.020 0.029 0.006
σ 0.010 0.0005 0.015 0.0007
α 0.500 0.150 0.455 0.106
β 0.500 0.150 0.449 0.072

α+ β 1.000 0.095 0.904 0.091
ρ 0.920 0.031 0.936 0.028

K0 351 351 775 305

469 J. Boratyński and J. Osiewalski
CEJEME 13: 455-486 (2021)



Jakub Boratyński and Jacek Osiewalski

Figure 4: Prior (light gray) and posterior (dark grey) distributions of model
parameters: Industry
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3.7 Results: Information and Communication

Three results stand out in the case of the Information and Communication sector (see
Table 3 and Figure 5). First, elasticity of capital is relatively high (with posterior
mean equal to 0.64), and elasticity of labour is low (0.30). Second, the elasticities
(labour elasticity in particular) are estimated with relatively high precision, compared
to industry and total economy. Third, precision of the posterior capital path is
relatively high, especially in the first part of the data sample, as well as it exhibits
structural change – initial rapid capital growth is followed by marked slowdown. The
latter reflects the fact that investment-to-output ratio was initially high, and then
it decreased permanently after the year 2001. Such a shift was perhaps helpful for
identification of the capital stock – in this case the rate of exogenous technical change,
similar to the one found in the industry sector, did not overwhelm the contribution
of capital accumulation to production changes.
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Table 3: Summary of prior and posterior distributions: Information and
Communication

Prior Posterior
Mean St. dev. Mean St. dev.

µ 0.000 0.020 0.032 0.006
σ 0.010 0.0005 0.015 0.0007
α 0.500 0.150 0.638 0.091
β 0.500 0.150 0.295 0.055

α+ β 1.000 0.095 0.933 0.090
ρ 0.920 0.031 0.943 0.020

K0 39 39 46 10

Figure 5: Prior (light gray) and posterior (dark gray) distributions of model
parameters: Information and Communication
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3.8 Results: Real Estate
The real estate sector encompasses, among other things, the services of renting real
estate, including rents of owner-occupied dwellings. Therefore, the capital stock in
this sector mostly consists of properties. Worth to note, investment in this sector
covers, i.a., purchases of property by private households.
Interestingly, in the light of posterior distributions of model parameters, the real
estate sector is likely characterized by decreasing returns to scale (see Table 4 and
Figure 6). This result can be straightforwardly explained by the omission of land in
the production function. Mean posterior elasticity of output with respect to labour is
only about 0.08, whereas the mean posterior elasticity with respect to capital equals
0.60 – the latter being subject to substantial uncertainty, though. The posterior
variance of the initial capital stock is rather high too. The estimated depreciation
rate is lower than in the other individual sectors considered (industry, and information
and communication), with posterior mean of 3.7%, consistent with the prevailing type
of capital (properties). As a result, the path of productive capital stock is increasing
relatively fast – faster than the official net and gross fixed assets estimates. Worth
noting, the results show negative rate of total factor productivity growth (posterior
mean equal to −1.4%).

Table 4: Summary of prior and posterior distributions: Real Estate

Prior Posterior
Mean St. dev. Mean St. dev.

µ 0.000 0.020 -0.014 0.008
σ 0.010 0.0005 0.015 0.0008
α 0.500 0.150 0.596 0.129
β 0.500 0.150 0.084 0.047

α+ β 1.000 0.095 0.680 0.114
ρ 0.920 0.031 0.963 0.017

K0 200 200 197 120

4 The use of return rate on capital – Model 2
In this section we take up the problem of little informativeness of data, and extend
the model with an additional observed variable and a related equation. Consider the
following relationship, augmenting the basic model (Model 1):

Ct ∼ iiN
(
φKt, (ωKt)2) , (8)

i.e.:
Ct/Kt ∼ iiN

(
φ, ω2) , (9)
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Figure 6: Prior (light gray) and posterior (dark gray) distributions of model
parameters: Real Estate
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where Ct is capital income (in constant prices), and Ct/Kt is gross rate of return
on capital. Therefore, rate of return is stochastic, normally distributed with mean
φ and variance ω2. Capital income, Ct is approximated by gross operating surplus,
available in the national accounts data. The rationale behind this specification is
that, short-run fluctuations aside, capital income is proportional to the (unobserved)
productive capital stock. Here we do not consider the possibility of trends in the
rate of return, which seems a natural further model extension. The following prior
distributions have been adopted:

i) φ ∼ N(0, 0.22),

ii) ψ = ω−2 is gamma(5, 0.05), with mean 100 and variance 2000.

Consider again the Industry sector. Table 5 and Figure 7 show estimation results
obtained using the extended model. The new observational equation significantly
reduces posterior standard deviation of the initial capital stock K0 (from 305 to
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Table 5: Summary of prior and posterior distributions: Industry

Prior Posterior
Mean St. dev. Mean St. dev.

µ 0.000 0.020 0.027 0.006
σ 0.010 0.0005 0.015 0.0007
α 0.500 0.150 0.291 0.138
β 0.500 0.150 0.530 0.079

α+ β 1.000 0.095 0.820 0.108
ρ 0.920 0.031 0.898 0.026

K0 351 351 306 84
φ 0.000 0.200 0.260 0.048
ω 0.108 0.027 0.072 0.012

Figure 7: Prior (light gray) and posterior (dark gray) distributions of model
parameters: Industry
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84), and, accordingly, uncertainty of the capital path. At the same, time the level
(posterior mean) of the initial capital stock is revised downwards considerably (from
775 to 306), whereas the (posterior mean) depreciation rate increases from 6.4% to
10.2%. In this case, the level of capital stock is in fact close to the net fixed assets found
in the data, albeit it exhibits a slightly higher growth rate. Changes in elasticities
are significant, with (posterior mean) capital elasticity reduced from 0.46 to 0.29, and
labour elasticity increased from 0.45 to 0.53. On the contrary, TFP growth rate is
very similar between the two models.
Narrowing the posterior distributions of capital stocks (as well as shifting their means)
is certainly obtained here using a rather strong economic assumption of fixed long-run
rate of return, also leading to a significant revision of production function elasticities.
Nevertheless it illustrates the point that broadening the set of economic relationships
in the model may, in principle, improve inference on the quantity of interest.

5 Discussion of outcomes for other countries and
estimation problems

Apart from the results reported in this paper, we have also conducted a series
of estimations for other EU Member States, based on the same data source and
sectoral classification. A relatively frequent problem was non-convergence of the
MCMC sampling process, undermining inference. This is related to the occurrence
of the so called divergent transitions, “that indicate the Hamiltonian Markov chain
has encountered regions of high curvature in the target distribution which it cannot
adequately explore” (Betancourt, 2017). In our estimations divergences were often
encountered for near-zero capital elasticities, α. Note that α = 0 implies that capital
has no effect on output, so it cannot be identified based on output variation. In most
cases decreasing prior standard deviations of elasticities α and β (under bi-variate
normal distribution) from 0.15 to 0.1 resolved the problem.
Interestingly, the above issue was more frequently found for the more developed EU
economies, than for the emerging economies (“new” EU Member States, including
Central and Eastern European economies; although it also appeared in, e.g., the
agricultural sector in Poland). Two broad explanations can be hypothesized. First,
emerging (catching-up) economies are likely characterized by higher capital growth
and more variation in investment, thus leading to more informative data. Second,
unlike for example Poland, “old” Member States recorded sharp output drops in
2009, due to global financial crisis. These drops were perhaps difficult to reconcile
with the model which (at least explicitly) assumes full capacity utilization. Output
decline can be accommodated by a decline in total factor productivity. However, since
the model accumulates TFP changes in a random walk process, it does not account
for the likely recovery after the period of capacity under-utilization.
The above points certainly require further exploration, and no binding conclusions
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can be drawn at this stage. Two broad directions include revising prior distributions
to exclude economically implausible values, and revising the model to allow for more
flexibility in adjusting to data.

6 Conclusions
We have proposed two variants of a Bayesian model, allowing to estimate unobserved
capital stocks and depreciation rate from output, employment and investment data
only, based on the production function approach. The exposition was complemented
with several illustrative applications for Poland. The resulting estimates allude to the
concept of productive capital stock, as opposed to, e.g., net and gross fixed assets,
largely dependent on the underlying accounting conventions. The idea to estimate
productive capital stocks by reference to the production function, has been proposed
and employed in the literature, although definitely not as the mainstream approach
to capital measurement. We add to that literature by framing the problem in the
Bayesian methodology, by modeling technical change as a random walk process, as
well as by extending the production function based model with a relationship involving
observed returns to capital (as a source of supplementary information). The Bayesian
approach allows to explicitly display uncertainty and correlations between parameters.
It is also flexible in terms of formulation of the prior knowledge regarding the economic
relationships under study.
Although the annual (sectoral and macro) series proved to be rather little informative,
the proposed estimation approach does allow to obtain estimates of capital stocks
(along with production function parameters) based on output, employment and
investment data. Often, the resulting (posterior mean) path of capital stocks lies
between net and gross fixed assets, available from official statistics, at least for sub-
periods of the data sample. At the same time, in most cases the resulting capital
growth rate is higher than the one of net or gross fixed assets (implying that our
estimated depreciation rate is smaller than the one underlying official statistics). The
results point to positive correlation, in the posterior distribution, of depreciation
rate (1 − ρ) and total factor productivity growth rate (µ). There is also negative
correlation between the estimates of capital elasticity (α) and TFP growth rate
(µ). Consequently, compared to production function estimates based on conventional
capital stock measures, our estimated productive capital stock would either imply
lower exogenous TFP growth rates (meaning that technical progress is to a larger
extent embodied in investment and capital) or a lower capital elasticity. The key to
distinguish between the contributions of exogenous productivity changes and latent
capital increments to the output changes was the prior assumption of a small variance
of productivity growth rates.
Uncertainty of capital estimates varied significantly across sectors, according to data
informativeness. It was typically the average total factor productivity growth rate for
which prior uncertainty was reduced most. Extending the model with an observational
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equation for capital income substantially reduced posterior uncertainty of capital and
depreciation coefficient, although at the cost of a rather strong economic assumption
of fixed average long-run capital rental rate.
We believe one area in which the proposed method could be particularly useful
is the field of dynamic computable general equilibrium (CGE) modeling. CGE
models typically rely on external estimates of parameters, such as production function
elasticities or demand elasticities, while calibrating other parameters – such as share
or scale parameters – to single period benchmark data. Such an “outsourcing” practice
is justified by high cost or infeasibility (due to data or other constraints) of dedicated
econometric estimation, in the otherwise complex, highly disaggregated simultaneous
equation models, used primarily for simulation analyses of various policies’ effects.
However, representation of capital accumulation within the CGE models is perhaps
an area, in which country and industry specific estimates are particularly desired.
For example, the specification proposed by Dixon and Rimmer (2009, pp. 189–195)
requires, inter alia, average growth rates of fixed capital stocks from past several years,
characterizing individual industries. More basic specifications require at least capital
stock estimates for the base year, and the depreciation rates by industry (see, e.g., van
der Mensbrugghe, 2019, pp. 46–48 and 117–118). If adequate data are not available,
a common proceeding is to calculate capital stock from base-year capital income,
assuming an arbitrary rate of return (often uniform across industries); alternatively
capital stock is calculated from base-year investment, assuming an arbitrary capital
growth rate. From such a perspective, the proposed estimation approach is arguably
a step forward. Moreover, as we have seen from the results, assessments of capital
growth, depreciation, productivity growth etc., are interrelated. Therefore, industry-
specific rates of technical change, consistent with capital stock estimates, can be used
to formulate a more consistent baseline projection than otherwise, when assumptions
are based on diffuse external sources.
More broadly, the above example illustrates a possibility of acquiring more
empirical grounding in applied general equilibrium modeling by using the Bayesian
methodology. It seems particularly well suited to that case, characterized by limited,
low frequency, short series data, and a strong theoretical orientation, allowing to
specify informative priors.
A number of further research routes and potential model generalizations emerge.
First, the proposed models could be extended by introducing time-varying
depreciation rates. One option is to model the depreciation coefficient ρt as
independent beta latent variables, that is ρt ∼ iiBeta (αρ, βρ). Alternatively,
a Gaussian AR(1) latent stochastic process can be applied for the logit of the
depreciation coefficient, that is δt = φ0 + φ1 · δt−1 + ζt, ζt ∼ iiN (0, χ), where
δt = log[(1 − ρt)/ρt]. Second, as indicated earlier, variable capital utilization would
allow to account for crises-related shocks. One option is to treat utilization rate as
a latent variable, an alternative – to use survey data on capital utilization. Third, the
capital income equation from the extended model considered in the paper could be
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generalized to an AR model. Furthermore, since capital rental rates in different
sectors are likely interrelated (e.g., subject to common trends), panel estimation
based on data for multiple sectors would likely improve inference. Fourth, a more
general stochastic specification of TFP changes could be applied, along with more
general production function forms. Fifth, the model should address the problem that
investment is highly pro-cyclical, implying that large investment are often actually
followed by a slowdown in output growth. This undermines identification of capital
increments in the model which attempts to link output (capacity) changes to previous
year’s investment. Accordingly, one could consider enhancing model dynamics or
distinguishing between short- and long-run effects or accounting for business cycle
through capital utilization modeling – such that the model could fit the data more
flexibly.
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Appendix A Sensitivity analysis
We consider three sensitivity analysis variants for the basic model (Model 1):

i) TFP: doubling of prior standard deviation of µ, and increasing prior standard
deviation of σ roughly ten times.

ii) Capital: increasing prior standard deviation of ρ and K0 by 50%. Since
K0 is exponentially distributed, increase in standard deviation also entails
a corresponding increase in prior mean.

iii) Elasticities: doubling prior standard deviations of α and β, as well
as truncating their (bi-variate normal) distribution at 0.05 to avoid non-
identifiability of capital when α = 0. Truncation results in standard deviations
being actually only around 50% larger than in the base case, as well as prior
means of the elasticities are shifted slightly, from 0.5 to 0.509.

Put otherwise, sensitivity scenarios assume an increase in prior uncertainty regarding
technical change, initial capital stock and depreciation, and production function
elasticities, respectively.
The magnitudes of changes in prior standard deviations are parameter-specific. They
were chosen to conform, on the one hand, with economic plausibility - increasing
standard deviations still further would essentially extend prior distributions over
economically unreasonable values. On the other hand, our testing shows that allowing
for even more prior uncertainty might, at least in some cases, lead to convergence
problems, likely related to limited informativeness of data and weak identifiability of
parameters (especially given the model structure with latent variables).
Tables A.1–A.4 show the results of sensitivity analysis for total economy, as well as
industry, information and communication, and real estate sectors. The base variant
represents the assumptions considered in the main part of the paper. Wherever prior
assumptions differ compared to the base variant, this is highlighted with bold font.
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TFP. Allowing for more prior uncertainty with respect to technical change
characteristics – in particular, increasing prior standard deviation of σ, the dispersion
of annual technical change rate, by a factor of nearly 11 – directly increases the
posterior standard deviation of σ 4–9 times, depending on the sector. This further
translates to posterior standard deviation of the initial capital stock, K0, increased by
30 − 80%, except in the case of the industrial sector, in which posterior uncertainty
was high already in the base case. Otherwise, the results of the TFP sensitivity
analysis variant are mixed. For the total economy, the remaining results are hardly
affected, with typically only slight increases in posterior standard deviations. In
the case of the sectors considered, similarly most of the results are affected only in
a rather limited way, incidentally however we observe a more substantial impact.
For example, in the case of the information and communication sector the change in
prior assumptions resulted in the increase of posterior mean of labour elasticity, β,
from around 0.3 to around 0.4, and posterior standard deviation for that parameter
doubled. A similar effect is found for the real estate sector. In this sensitivity variant,
posterior mean depreciation coefficient is also lower by 1–2 p.p. than in the base
case (except for the total economy). Overall, with limited data informativeness, prior
technical change characteristics seem an important identifying factor for productive
capital stock estimation, and less so for the other model parameters, although with
some exceptions).
Capital. With the exception of the information and communication sector, the
increase in prior standard deviation for the initial capital stock, K0, translates to
a roughly proportional (or even more than proportional – in the case of the real estate
sector) in posterior standard deviation for that model parameter. At the same time,
given that under exponential distribution standard deviation equals the expected
value, the change in prior assumptions also tends to increase posterior mean of the
initial capital stocks (although not as much as it increases the posterior dispersion).
Accordingly, the obtained posterior mean depreciation coefficients tend to be higher
than in the base case. At the same time, higher prior uncertainty of depreciation
coefficient is hardly reflected in posterior results. To sum up, prior assumptions
regarding initial capital stock are significant for its posterior evaluation. As mentioned
above, the one exception is the information and communication sector, where – among
the examples considered – precision of posterior capital stock was the highest (which
we attributed to a regime shift in the data – a change in investment-to-output ratio
which helped distinguish the impact of capital from the impact of technical change
and employment on production.
Elasticities. The most striking result of the increase in prior uncertainty of the
production function elasticities is the sharp drop in posterior mean of capital elasticity,
α – in all but the information and communication sector case. We conclude that,
unless data is informative enough to avoid this, stretching the distribution of α
towards zero, allows technical change to take over a larger part of production growth
explanation (mean posterior average technical change rates become higher). This
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effect is particularly strong in the real estate sector, and it hinders estimation of
capital stocks. In the other sectors, as well as for total economy, the impact on the
posterior distributions of the initial capital stock and depreciation coefficient are not
substantial.
We conclude from sensitivity analysis, that the use of prior information rooted in
economic theory is an essential ingredient of capital stock and depreciation rate
estimation in the proposed framework. However, this comes as no surprise given
little informativeness of data. We could not identify an universal pattern in which
sensitivity to prior assumptions exhibits itself – rather, depending on a specific case
(sector), an increase in prior uncertainty could affect one or another parameter
significantly, leaving other outcomes relatively stable. A promising insight comes from
the information and communication sector example – it suggest that more variability
of (inter alia) investment in the data should lead to more robust results. Even in
the worst case, though, we still see our prior economic assumptions revised when
confronted with data, and we obtain a consistent set of estimates to be used in applied
economic analysis based on simulation. Otherwise a common option is to use just the
prior assumptions, based on estimates for possibly unrelated sources.

Table A.1: Sensitivity analysis: Total economy

µ σ α β α+ β ρ K0

Prior mean
Base 0.000 0.010 0.500 0.500 1.000 0.920 1910
TFP 0.000 0.010 0.500 0.500 1.000 0.920 1910
Capital 0.000 0.010 0.500 0.500 1.000 0.920 2865
Elasticities 0.000 0.010 0.509 0.509 1.018 0.920 1910

Prior standard deviation
Base 0.020 0.0005 0.150 0.150 0.095 0.031 1910
TFP 0.040 0.0053 0.150 0.150 0.095 0.031 1910
Capital 0.020 0.0005 0.150 0.150 0.095 0.045 2865
Elasticities 0.020 0.0005 0.238 0.238 0.185 0.031 1910

Posterior mean
Base 0.012 0.010 0.391 0.545 0.937 0.949 1052
TFP 0.012 0.013 0.400 0.548 0.948 0.944 1095
Capital 0.010 0.010 0.416 0.533 0.949 0.964 1239
Elasticities 0.017 0.010 0.288 0.520 0.809 0.942 903

Posterior standard deviation
Base 0.006 0.0005 0.098 0.081 0.090 0.021 303
TFP 0.007 0.0021 0.108 0.093 0.093 0.022 449
Capital 0.006 0.0005 0.101 0.082 0.090 0.021 496
Elasticities 0.007 0.0005 0.123 0.093 0.147 0.024 363
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Table A.2: Sensitivity analysis: Industry

µ σ α β α+ β ρ K0

Prior mean
Base 0.000 0.010 0.500 0.500 1.000 0.920 351
TFP 0.000 0.010 0.500 0.500 1.000 0.920 351
Capital 0.000 0.010 0.500 0.500 1.000 0.920 527
Elasticities 0.000 0.010 0.509 0.509 1.018 0.920 351

Prior standard deviation
Base 0.020 0.0005 0.150 0.150 0.095 0.031 351
TFP 0.040 0.0053 0.150 0.150 0.095 0.031 351
Capital 0.020 0.0005 0.150 0.150 0.095 0.045 527
Elasticities 0.020 0.0005 0.238 0.238 0.185 0.031 351

Posterior mean
Base 0.029 0.015 0.455 0.449 0.904 0.936 775
TFP 0.026 0.035 0.482 0.491 0.973 0.924 629
Capital 0.029 0.015 0.481 0.441 0.922 0.953 1056
Elasticities 0.033 0.014 0.297 0.424 0.722 0.917 712

Posterior standard deviation
Base 0.006 0.0007 0.106 0.072 0.091 0.028 305
TFP 0.011 0.0055 0.130 0.119 0.093 0.029 309
Capital 0.007 0.0007 0.110 0.072 0.094 0.033 521
Elasticities 0.006 0.0007 0.140 0.078 0.142 0.039 298
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Table A.3: Sensitivity analysis: Information and Communication

µ σ α β α+ β ρ K0

Prior mean
Base 0.000 0.010 0.500 0.500 1.000 0.920 39
TFP 0.000 0.010 0.500 0.500 1.000 0.920 39
Capital 0.000 0.010 0.500 0.500 1.000 0.920 59
Elasticities 0.000 0.010 0.509 0.509 1.018 0.920 39

Prior standard deviation
Base 0.020 0.0005 0.150 0.150 0.095 0.031 39
TFP 0.040 0.0053 0.150 0.150 0.095 0.031 39
Capital 0.020 0.0005 0.150 0.150 0.095 0.045 59
Elasticities 0.020 0.0005 0.238 0.238 0.185 0.031 39

Posterior mean
Base 0.032 0.015 0.638 0.295 0.933 0.943 46
TFP 0.033 0.040 0.582 0.389 0.971 0.928 44
Capital 0.030 0.015 0.655 0.287 0.943 0.955 50
Elasticities 0.034 0.015 0.593 0.262 0.856 0.941 44

Posterior standard deviation
Base 0.006 0.0007 0.091 0.055 0.090 0.020 10
TFP 0.012 0.0062 0.116 0.104 0.093 0.027 18
Capital 0.007 0.0007 0.093 0.056 0.090 0.022 11
Elasticities 0.007 0.0007 0.147 0.060 0.160 0.022 12
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Table A.4: Sensitivity analysis: Real Estate

µ σ α β α+ β ρ K0

Prior mean
Base 0.000 0.010 0.500 0.500 1.000 0.920 200
TFP 0.000 0.010 0.500 0.500 1.000 0.920 200
Capital 0.000 0.010 0.500 0.500 1.000 0.920 300
Elasticities 0.000 0.010 0.509 0.509 1.018 0.920 200

Prior standard deviation
Base 0.020 0.0005 0.150 0.150 0.095 0.031 200
TFP 0.040 0.0053 0.150 0.150 0.095 0.031 200
Capital 0.020 0.0005 0.150 0.150 0.095 0.045 300
Elasticities 0.020 0.0005 0.238 0.238 0.185 0.031 200

Posterior mean
Base −0.014 0.015 0.596 0.084 0.680 0.963 197
TFP −0.010 0.044 0.659 0.242 0.901 0.938 223
Capital −0.012 0.015 0.674 0.070 0.745 0.980 384
Elasticities 0.008 0.014 0.114 0.082 0.196 0.927 21

Posterior standard deviation
Base 0.008 0.0008 0.129 0.047 0.114 0.017 120
TFP 0.016 0.0073 0.123 0.105 0.094 0.024 154
Capital 0.012 0.0008 0.125 0.046 0.110 0.013 393
Elasticities 0.005 0.0007 0.039 0.025 0.046 0.028 11
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